Switched capacitor defibrillation circuit

Information

  • Patent Grant
  • 6778860
  • Patent Number
    6,778,860
  • Date Filed
    Monday, November 5, 2001
    23 years ago
  • Date Issued
    Tuesday, August 17, 2004
    20 years ago
Abstract
A defibrillator circuit for generating a rectangular waveform across a patient from capacitively stored energy and employing a plurality of capacitors initially chargeable to a common voltage and thereafter sequentially switchable into parallel relation with one another so as to raise the voltage supplied to an H-bridge circuit from a point of decay back to said common voltage.
Description




FIELD OF THE INVENTION




The subject invention relates to electronic circuitry and particularly to circuitry having applications in defibrillating apparatus.




BACKGROUND OF THE INVENTION




Defibrillation/cardioversion is a technique employed to counter arrhythmic heart conditions including some tachycardias in the atria and/or ventricles. Typically, electrodes are employed to stimulate the heart with electrical impulses or shocks, of a magnitude substantially greater than pulses used in cardiac pacing. Because current density is a key factor in both defibrillation and pacing, implantable devices may improve what is capable with the standard waveform where the current and voltage decay over the time of pulse deliver. Consequently, a waveform that maintains a constant current over the duration of delivery to the myocardium may improve defibrillation as well as pacing.




Defibrillation/cardioversion systems include body implantable electrodes that are connected to a hermetically sealed container housing the electronics, battery supply and capacitors. The entire system is referred to as implantable cardioverter/defibrillators (ICDs). The electrodes used in ICDs can be in the form of patches applied directly to epicardial tissue, or, more commonly, are on the distal regions of small cylindrical insulated catheters that typically enter the subclavian venous system, pass through the superior vena cava and, into one or more endocardial areas of the heart. Such electrode systems are called intravascular or transvenous electrodes. U.S. Pat. Nos. 4,603,705, 4,693,253, 4,944,300, 5,105,810, the disclosures of which are all incorporated herein by reference, disclose intravascular or transvenous electrodes, employed either alone, in combination with other intravascular or transvenous electrodes, or in combination with an epicardial patch or subcutaneous electrodes. Compliant epicardial defibrillator electrodes are disclosed in U.S. Pat. Nos. 4,567,900 and 5,618,287, the disclosures of which are incorporated herein by reference. A sensing epicardial electrode configuration is disclosed in U.S. Pat No. 5,476,503, the disclosure of which is incorporated herein by reference.




In addition to epicardial and transvenous electrodes, subcutaneous electrode systems have also been developed. For example, U.S. Pat. Nos. 5,342,407 and 5,603,732, the disclosures of which are incorporated herein by reference, teach the use of a pulse monitor/generator surgically implanted into the abdomen and subcutaneous electrodes implanted in the thorax. This system is far more complicated to use than current ICD systems using transvenous lead systems together with an active can electrode and therefore it has no practical use. It has in fact never been used because of the surgical difficulty of applying such a device (3 incisions), the impractical abdominal location of the generator and the electrically poor sensing and defibrillation aspects of such a system.




Recent efforts to improve the efficiency of ICDs have led manufacturers to produce ICDs which are small enough to be implanted in the pectoral region. In addition, advances in circuit design have enabled the housing of the ICD to form a subcutaneous electrode. Some examples of ICDs in which the housing of the ICD serves as an optional additional electrode are described in U.S. Pat. Nos. 5,133,353, 5,261,400, 5,620,477, and 5,658,321 the disclosures of which are incorporated herein by reference.




ICDs are now an established therapy for the management of life threatening cardiac rhythm disorders, primarily ventricular fibrillation (V-Fib). ICDs are very effective at treating V-Fib, but are therapies that still require significant surgery.




As ICD therapy becomes more prophylactic in nature and used in progressively less ill individuals, especially children at risk of cardiac arrest, the requirement of ICD therapy to use intravenous catheters and transvenous leads is an impediment to very long term management as most individuals will begin to develop complications related to lead system malfunction sometime in the 5-10 year time frame, often earlier. In addition, chronic transvenous lead systems, their reimplantation and removals, can damage major cardiovascular venous systems and the tricuspid valve, as well as result in life threatening perforations of the great vessels and heart. Consequently, use of transvenous lead systems, despite their many advantages, are not without their chronic patient management limitations in those with life expectancies of >5 years. The problem of lead complications is even greater in children where body growth can substantially alter transvenous lead function and lead to additional cardiovascular problems and revisions. Moreover, transvenous ICD systems also increase cost and require specialized interventional rooms and equipment as well as special skill for insertion. These systems are typically implanted by cardiac electrophysiologists who have had a great deal of extra training.




In addition to the background related to ICD therapy, the present invention requires a brief understanding of a related therapy, the automatic external defibrillator (AED). AEDs employ the use of cutaneous patch electrodes, rather than implantable lead systems, to effect defibrillation under the direction of a bystander user who treats the patient suffering from V-Fib with a portable device containing the necessary electronics and power supply that allows defibrillation. AEDs can be nearly as effective as an ICD for defibrillation if applied to the victim of ventricular fibrillation promptly, i.e., within 2 to 3 minutes of the onset of the ventricular fibrillation.




AED therapy has great appeal as a tool for diminishing the risk of death in public venues such as in air flight. However, an AED must be used by another individual, not the person suffering from the potential fatal rhythm. It is more of a public health tool than a patient-specific tool like an ICD. Because >75% of cardiac arrests occur in the home, and over half occur in the bedroom, patients at risk of cardiac arrest are often alone or asleep and can not be helped in time with an AED. Moreover, its success depends to a reasonable degree on an acceptable level of skill and calm by the bystander user.




What is needed therefore, especially for children and for prophylactic long term use for those at risk of cardiac arrest, is a combination of the two forms of therapy which would provide prompt and near-certain defibrillation, like an ICD, but without the long-term adverse sequelae of a transvenous lead system while simultaneously using most of the simpler and lower cost technology of an AED. What is also needed is a cardioverter/defibrillator that is of simple design and can be comfortably implanted in a patient for many years.




Moreover, it has appeared advantageous to the inventor to provide the capability in such improved circuitry to produce a defibrillating waveform which includes a defibrillating pulse approximating a rectangular pulse. Such a pulse is advantageous, for example, because it can approximate a constant current density across the heart.




SUMMARY




According to the invention, circuitry is provided for enabling the generation of an approximation of a rectangular waveform from energy stored in energy storage devices such as a capacitor.











BRIEF DESCRIPTION OF THE DRAWINGS




For a better understanding of the invention, reference is now made to the drawings where like numerals represent similar objects throughout the figures and wherein:





FIG. 1

is an electrical circuit schematic of an illustrative embodiment of the invention.





FIG. 2

is a waveform diagram illustrative of operation of the circuit of FIG.


1


.





FIG. 3

is a waveform diagram illustrative of operation of the circuit of FIG.


1


.











DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS




An illustrative embodiment is shown in FIG.


1


. The illustrative embodiment includes an H bridge circuit


13


and a drive circuit


15


for supplying voltage or energy to the H bridge circuit


13


.




The H bridge circuit


13


may be of conventional form, including first and second high side switches H


1


, H


2


and first and second low side switches L


1


, L


2


. The switches H


1


, H


2


; L


1


, L


2


may be manipulated to appropriately and selectively apply a voltage present at junction


17


across a patient indicated by a patient resistance R


PAT


. The H bridge circuit


13


may also include features disclosed in co-pending applications filed herewith on behalf of inventor Alan H. Ostroff and entitled Defibrillation Pacing Circuitry and Simplified Defibrillator Output Circuit.




The drive circuit


15


of

FIG. 1

includes a plurality of energy storage devices in the illustrative form of four capacitors C


1


, C


2


, C


3


, C


4


. Across each capacitor C


1


, C


2


, C


3


, C


4


is connected a respective secondary l


1


, l


2


, l


3


, l


4


of a transformer T


1


. The primary of the transformer T


1


is switchable via a switch SW


1


to connect to a source of D.C. voltage V


S


, e.g., a battery.




The first capacitor C


1


has a first terminal connected to ground and a second terminal in common with the junction


17


. The second terminal of the capacitor C


1


is further connected to the cathode of a diode D


1


, whose anode is connected to a first terminal of the first secondary winding l


1


. The remaining capacitors C


2


, C


3


, C


4


have second terminals which are switchable via respective switches SW


2


, SW


3


, SW


4


to establish or remove electrical connection to the junction


17


. The respective first terminals of the capacitors C


2


, C


3


, C


4


are connected to respective switches SW


5


, SW


6


, SW


7


which can be selectively operated to connect those respective first terminals to ground. The respective second terminals of the capacitors C


2


, C


3


, C


4


are connected to the respective cathodes of respective diodes D


2


, D


3


, D


4


. The respective anodes of the diodes D


2


, D


3


, D


4


are connected to respective first terminals of the secondary windings l


2


, l


3


, l


4


, whose second terminals are connected to ground.




In illustrative operation of the circuit of

FIG. 1

, the capacitors C


1


, C


2


, C


3


, C


4


are charged to a common voltage level V. Next, the high side switch H


1


and the low side switch L


2


are closed while H


2


and L


1


are open, thereby connecting the voltage on the capacitor C


1


across the patient resistance R


PAT


.




As shown in

FIG. 2

, the voltage across the patient is initially V


PAT


and decays with a time constant RC


1


for a selected time period up to a point in time denoted t


1


in FIG.


2


. At time t


1


, a switching signal Φ


2


(

FIG. 3

) is activated to close the switch SW


2


. The patient voltage V


PAT


initially rises and then begins to decay with time constant equal to R(C


1


+C


2


). At a selected time t


2


, a switching signal Φ


3


is activated, closing the switch SW


3


and connecting the voltage across the capacitor C


3


to the junction


17


. As shown in

FIG. 2

, the patient voltage again rises and thereafter begins to decay with a time constant equal to R(C


1


+C


2


+C


3


). Then, at time t


3


, the switching signal Φ


4


is activated, closing the switch SW


4


, thereby applying the voltage across the capacitor C


4


and to the junction


17


, again resulting in the voltage V


PAT


rising and thereafter decaying with a time constant R(C


1


+C


2


+C


3


+C


4


). Finally, at time t


4


, the switches H


1


, L


2


are opened, thereby terminating the first phase of the waveform.




If desired, these switches H


2


, L


1


may then be closed to produce a conventional second phase


19


of a biphasic waveform. This waveform drops to a voltage V


PAT1


and then decays with a time constant determined by the patient resistance R


PAT


and the effective value of the parallel capacitors C


1


, C


2


, C


3


, C


4


. An inverted biphasic waveform may also be produced by first activating H


2


and L


1


.




It will be observed that circuitry according to the preferred embodiment produces an approximation to a square or rectangular pulse. The times t


1


, t


2


, t


3


, t


4


can easily be adjusted to further control the shape of the waveform, for example, such that ΔV remains constant for each interval of decay despite the change in time constants each time an additional capacitor, e.g., C


2


, C


3


, C


4


, is switched into the current. Additionally, the number of parallel capacitors, e.g., C


1


, C


2


, C


3


, etc., may be more or less than the number depicted in

FIG. 1

, a particularly useful range being two to seven.




While the present invention has been described above in terms of specific embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, the following claims are intended to cover various modifications and equivalent methods and structures included within the spirit and scope of the invention.



Claims
  • 1. An apparatus comprising:first and second switches adapted to be connected across a patient resistance and activatable when so connected to deliver a current to said patient in response to switching signals activating said first and second switches; a plurality of capacitors providing said current through said first and second switches; and capacitor switch means for selectively coupling said plurality of capacitors into parallel relation with one another to generate an approximate rectangular waveform for said current; wherein said capacitor switch means and said plurality of capacitors cooperate to cause said waveform to rise to a first voltage level, decay for a selected time interval and thereafter experience a second rise and decay for a second selected time interval; and wherein said plurality of capacitors includes a first and a second capacitor and said second rise and second delay are caused by said capacitor switch means switching of the second capacitor into parallel connection with the first capacitor.
  • 2. The apparatus of claim 1 wherein said capacitor switch means includes a plurality of additional switches selectively activated to create said parallel connection.
  • 3. An apparatus comprising:first and second switches adapted to be connected across a patient resistance and activatable when so connected to deliver a current to said patient in response to switching signals activating said first and second switches; a plurality of capacitors providing said current through said first and second switches; and capacitor switch means for selectively coupling said plurality of capacitors into parallel relation with one another to generate an approximate rectangular waveform for said current; wherein said capacitor switch means and said plurality of capacitors cooperate to cause said waveform to rise to a first voltage level, decay for a selected time interval and thereafter experience a second rise and decay for a second selected time interval; wherein said plurality of capacitors includes at least four capacitors and said capacitor switch means includes a plurality of additional switches, said additional switches being constructed and arranged to selectively couple said capacitors into one of a plurality of parallel combinations; and wherein said capacitors are selectively coupled in sequence to generate said waveform with four respective decays, said decays being proportional respectively to C1, C1+C2, C1+C2+C3, C1+C2+C3+C4 where C1, C2, C3, and C4 represent the respective values of said four capacitors.
  • 4. The apparatus of claim 3 further comprising transformer windings, an energy source coupled to said transformer windings and coupling means for coupling said plurality of capacitors to said transformer windings to charge said capacitors to a predetermined voltage.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present invention may find application in systems such as are disclosed in the U.S. patent application entitled “SUBCUTANEOUS ONLY IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR AND OPTIONAL PACER,” having Ser. No. 09/663,607, filed Sep. 18, 2000, pending, and U.S. patent application entitled “UNITARY SUBCUTANEOUS ONLY IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR AND OPTIONAL PACER,” having Ser. No. 09/663,606, filed Sep. 18, 2000, pending, of which both applications are assigned to the assignee of the present application, and the disclosures of both applications are hereby incorporated by reference. Applications related to the foregoing applications include a U.S. patent application entitled “DUCKBILL-SHAPED IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR AND METHOD OF USE,” U.S. patent application entitled “CERAMICS AND/OR OTHER MATERIAL INSULATED SHELL FOR ACTIVE AND NON-ACTIVE S-ICD CAN,” U.S. patent application entitled “SUBCUTANEOUS ELECTRODE FOR TRANSTHORACIC CONDUCTION WITH IMPROVED INSTALLATION CHARACTERISTICS,” U.S. patent application entitled “SUBCUTANEOUS ELECTRODE WITH IMPROVED CONTACT SHAPE FOR TRANSTHORACIC CONDUCTION,” U.S. patent application entitled “SUBCUTANEOUS ELECTRODE FOR TRANSTHORACIC CONDUCTION WITH HIGHLY MANEUVERABLE INSERTION TOOL,” U.S. patent application entitled “SUBCUTANEOUS ELECTRODE FOR TRANSTHORACIC CONDUCTION WITH LOW-PROFILE INSTALLATION APPENDAGE AND METHOD OF DOING SAME,” U.S. patent application entitled “SUBCUTANEOUS ELECTRODE FOR TRANSTHORACIC CONDUCTION WITH INSERTION TOOL,” U.S. patent application entitled “METHOD OF INSERTION AND IMPLANTATION FOR IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR CANISTERS,” U.S. patent application entitled “CANISTER DESIGNS FOR IMPLANTABLE CARDIOVERTER-DEFIBRILLATORS,” U.S. patent application entitled “RADIAN CURVED IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR CANISTER,” U.S. patent application entitled “CARDIOVERTER-DEFIBRILLATOR HAVING A FOCUSED SHOCKING AREA AND ORIENTATION THEREOF,” U.S. patent application entitled “BIPHASIC WAVEFORM FOR ANTI-BRADYCARDIA PACING FOR A SUBCUTANEOUS IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR,” and U.S. patent application entitled “BIPHASIC WAVEFORM FOR ANTI-TACHYCARDIA PACING FOR A SUBCUTANEOUS IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR,” the disclosures of which applications are hereby incorporated by reference.

US Referenced Citations (108)
Number Name Date Kind
3653387 Ceier Apr 1972 A
3710374 Kelly Jan 1973 A
3911925 Tillery, Jr. Oct 1975 A
4157720 Greatbatch Jun 1979 A
4191942 Long Mar 1980 A
4223678 Langer et al. Sep 1980 A
4248237 Kenny Feb 1981 A
4291707 Heilman et al. Sep 1981 A
4314095 Moore et al. Feb 1982 A
4402322 Duggan Sep 1983 A
4407288 Langer et al. Oct 1983 A
4424818 Doring et al. Jan 1984 A
4450527 Sramek May 1984 A
4567900 Moore Feb 1986 A
4602637 Elmqvist et al. Jul 1986 A
4603705 Speicher et al. Aug 1986 A
4693253 Adams Sep 1987 A
4765341 Mower et al. Aug 1988 A
4800883 Winstrom Jan 1989 A
4830005 Woskow May 1989 A
4944300 Saksena Jul 1990 A
5105810 Collins et al. Apr 1992 A
5109842 Adinolfi May 1992 A
5129392 Bardy et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144946 Weinberg et al. Sep 1992 A
5184616 Weiss Feb 1993 A
5191901 Dahl et al. Mar 1993 A
5203348 Dahl et al. Apr 1993 A
5230337 Dahl et al. Jul 1993 A
5255692 Neubauer et al. Oct 1993 A
5261400 Bardy Nov 1993 A
5300106 Dahl et al. Apr 1994 A
5331966 Bennett et al. Jul 1994 A
5342407 Dahl et al. Aug 1994 A
5366496 Dahl et al. Nov 1994 A
5376103 Anderson et al. Dec 1994 A
5376104 Sakai et al. Dec 1994 A
5385574 Hauser et al. Jan 1995 A
5391200 KenKnight et al. Feb 1995 A
5405363 Kroll et al. Apr 1995 A
5411539 Neisz May 1995 A
5411547 Causey, III May 1995 A
5413591 Knoll May 1995 A
5423326 Wang et al. Jun 1995 A
5476503 Yang Dec 1995 A
5479503 Fujiwara Dec 1995 A
5507781 Kroll et al. Apr 1996 A
5509923 Pyka et al. Apr 1996 A
5509928 Acken Apr 1996 A
5531765 Pless Jul 1996 A
5531766 Kroll et al. Jul 1996 A
5534019 Paspa Jul 1996 A
5534022 Hoffmann et al. Jul 1996 A
5597956 Ito et al. Jan 1997 A
5601607 Adams Feb 1997 A
5603732 Dahl et al. Feb 1997 A
5618287 Fogarty et al. Apr 1997 A
5620477 Pless et al. Apr 1997 A
5643328 Cooke et al. Jul 1997 A
5645586 Meltzer Jul 1997 A
5658317 Haefner et al. Aug 1997 A
5658321 Fayram et al. Aug 1997 A
5674260 Weinberg Oct 1997 A
5690648 Howell et al. Nov 1997 A
5690683 Haefner et al. Nov 1997 A
5697953 Kroll et al. Dec 1997 A
5713926 Hauser et al. Feb 1998 A
5766226 Pedersen Jun 1998 A
5776169 Schroeppel Jul 1998 A
5814090 Latterell et al. Sep 1998 A
5836976 Min et al. Nov 1998 A
5843132 Ilvento Dec 1998 A
5895414 Sanchez-Zambrano Apr 1999 A
5919211 Adams Jul 1999 A
5919222 Hjelle et al. Jul 1999 A
5925069 Graves et al. Jul 1999 A
5935154 Westlund Aug 1999 A
5941904 Johnston et al. Aug 1999 A
6014586 Weinberg et al. Jan 2000 A
6026325 Weinberg et al. Feb 2000 A
6058328 Levine et al. May 2000 A
6093173 Balceta et al. Jul 2000 A
6095987 Shmulewitz et al. Aug 2000 A
H1905 Hill Oct 2000 H
6128531 Campbell-Smith Oct 2000 A
6144866 Miesel et al. Nov 2000 A
6144879 Gray Nov 2000 A
6185450 Seguine et al. Feb 2001 B1
6241751 Morgan et al. Jun 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6280462 Hauser et al. Aug 2001 B1
6411844 Kroll et al. Jun 2002 B1
6647292 Bardy et al. Nov 2003 B1
20010027330 Sullivan et al. Oct 2001 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035379 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020049476 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020107549 Bardy et al. Aug 2002 A1
Foreign Referenced Citations (39)
Number Date Country
298 01 807 Jul 1998 DE
0 095 727 Dec 1983 EP
0 316 616 May 1989 EP
0 316 616 May 1989 EP
0 347 353 Dec 1989 EP
0 517 494 Dec 1992 EP
0 517 494 Dec 1992 EP
0 518 599 Dec 1992 EP
0 518 599 Dec 1992 EP
0 536 873 Apr 1993 EP
0 536 873 Apr 1993 EP
0 586 858 Mar 1994 EP
0 627 237 Dec 1994 EP
0 627 237 Dec 1994 EP
0 641 573 Mar 1995 EP
0 641 573 Mar 1995 EP
0 677 301 Oct 1995 EP
0 917 887 May 1999 EP
0 923 130 Jun 1999 EP
1 000 634 May 2000 EP
WO 9319809 Oct 1993 WO
WO 9729802 Aug 1997 WO
WO 9825349 Jun 1998 WO
WO 9903534 Jan 1999 WO
WO 9937362 Jul 1999 WO
WO 9937362 Jul 1999 WO
WO 9953991 Oct 1999 WO
WO 0041766 Jul 2000 WO
WO 0041766 Jul 2000 WO
WO 0050120 Aug 2000 WO
WO 0143649 Jun 2001 WO
WO 0156166 Aug 2001 WO
WO 0222208 Mar 2002 WO
WO 0222208 Mar 2002 WO
WO 0224275 Mar 2002 WO
WO 0224275 Mar 2002 WO
WO 0224275 Mar 2002 WO
WO 02068046 Sep 2002 WO
WO 03018121 Mar 2003 WO
Non-Patent Literature Citations (83)
Entry
U.S. patent application Ser. No. 09/663,607 to Gust H. Bardy et al., filed Sep. 18, 2000.
Friedman, Richard A. et al., “Implantable Defibrillators In Children: From Whence to Shock,” Journal of Cardiovascular Electrophysiology, vol. 12, No. 3, Mar. 2001, pp. 361-362.
Gradaus, Rainer et al., “Nonthoracotomy Implantable Cardioverter Defibrillator Placement in Children: Use of Subcutaneous Array Leads and Abdominally Placed implantable Cardioverter Defibrillators in Children,” Journal of Cardiovascular Electrophysiology, vol. 12, No. 3, Mar. 2001, pp. 356-360.
Mirowski, M. et al., “Automatic Detection and Defibrillation of Lethal Arrhythmias—A New Concept,” JAMA, vol. 213, No. 4, Jul. 27, 1970, pp. 615-616.
Olson, Walter H. et al., “Onset and Stability for Ventricular Tachyarrhythmia Detection in an Implantable Pacer-Cardioverter-Defribrillator,” IEEE, (1987) pp. 167-170.
Schuder, John C., “Completely Implanted Defibrillator,” JAMA, vol. 214, No. 6, Nov. 9, 1970. p. 1123 (single sheet).
Schuder, John C., “The Role of an Engineering Oriented Medical Research Group in Developing Improved Methods and Devices for Achieving Ventricular Defibrillation: The University of Missouri Experience,” PACE, vol. 16, Jan. 1993, pp. 95-124.
Schuder, John C. et al., “Experimental Ventricular Defibrillation with an Automatic and Completely Implanted System,” Trans. Amer. Soc. Artif. Int. Organs, vol. XVI (1970) pp. 207-212.
Schuder, John C. et al., “Standby Implanted Defibrillators,” Arch Intern. Med, vol. 127, Feb. 1971, p. 317 (single sheet).
Schuder, John C. et al., “Transthoracic Ventricular Defibrillation in the Dog with Truncated and Untruncated Exponential Stimuli,” IEEE Transactions on Bio-Medical Engineering, vol. BME-18, No. 6, Nov. 1971, pp. 410-415.
Tietze U. et al., “Halbleiter-Schaltungstechnik,” ©Springer-Verlag (Berlin, Germany), (1991), pp. 784-786.
Walters, R.A. et al., “Analog to Digital Conversion Techniques in Implantable Devices,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 13, No. 4 (1991) p. 1674-1676.
International Search Report dated Mar. 28, 2003, PCT/IB03/04454 filed Oct. 28, 2002, published as WO 03/041278 on May 15, 2003, “Low Power A/D Converter”, Inventors: Ostroff.
International Search Report dated Apr. 16, 2003, PCT/IB03/04546 filed Oct. 28, 2002, published as WO 03/039656 on May 15, 2003, “Subcutaneous Electrode with Improved. Contact Shape for Transthoracic Conduction”, Inventors: Bardy et al.
International Search Report dated Apr. 16, 2003 PCT/IB03/04490 filed Oct. 28, 2002, published as WO 03/039665 on May 15, 2003, “Monophasic Waveform for Anti-Tachycardia Pacing for a Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Cappato.
International Search Report dated Apr. 16, 2003, PCT/IB03/04498 filed Oct. 28, 2002, published as WO 03/039666 on May 15, 2002, “Current Waveforms for Anti-Bradycardia Pacing for a Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Ostroff et al.
International Search Report dated Apr. 16, 2003, PCT/IB03/04507 filed Oct. 28, 2002, published as WO 03/039667 on May 15, 2003, “Current Waveforms for Anti-Tachycardia Pacing for a Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Ostroff et al.
International Search Report dated Apr. 16, 2003, PCT/IB03/04516 filed Oct. 28, 2002, published as WO 03/039668 on May 15, 2003, “Flexible Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Ostroff et al.
International Search Report dated Apr. 16, 2003, PCT/IB03/04543 filed Oct. 28, 2002, published as WO 03/039669 on May 15, 2003, “Monophasic Waveform for Anti-Bradycardia Pacing for a Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Bardy et al.
International Search Report dated Apr. 23, 2003, PCT/IB02/04497 filed Oct. 28, 2002, published as WO 03/039649 on May 15, 2003, “Packaging Technology For Non-Transvenous Cardioverter-Defibrillator Devices”, Inventors: Ostroff et al.
International Search Report dated Apr. 23, 2003, PCT/IB02/04515 filed Oct. 28, 2003, published as WO 03/039651 on May 15, 2003, “Subcutaneous Implantable Cardioverter-Defibrillator Employing A Telescoping Lead”, Inventors: Erlinger et al.
International Search Report dated Apr. 25, 2003, PCT/IB02/04475 filed Oct. 28, 2002 published as WO 03/039647 on May 15, 2003, “Optional Use of a Lead For a Unitary Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Bardy et al.
International Search Report dated May 8, 2003, PCT/IB02/04514 filed Oct. 28, 2002, published as WO 03/039650 on May 15, 2003, “H-Bridge With Sensing Circuit”, Inventors: Rissman et al.
International Search Report dated Oct. 1, 2003, PCT/US03/10666 filed Apr. 4, 2003, published as WO 03/089059 on Oct. 30, 2003, “Subcutaneous Cardiac Stimulator Device With Small Contact Surface Electrodes”, Inventors: Bardy et al.
International Search Report dated May 8, 2003, PCT/IB02/04476 filed Oct. 28, 2002, published as WO 039648 on May 15, 2003, “Defibrillation Pacing Circuitry”, Inventors: Ostroff.
International Preliminary Examination Report dated Nov. 20, 2002; PCT/US01/29168 filed Sep. 14, 2001, published as WO 02/22208 on Mar. 21, 2002, “Subcutaneous Only Implantable Cardioverter Defibrillator Optional Pacer”, Inventors: Bardy et al.
International Preliminary Examination Report dated Dec. 18, 2002, PCT/US01/29106 filed Sep. 14, 2001, published as WO 02/24275 on Mar. 28, 2002, “Subcutaneous Only Implantable Cardioverter Defibrillator & Optional Pacer”, Inventors: Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03447 filed Aug. 27, 2002; published as WO 03/018110 on Mar. 6, 2003, “Subcutaneous Electrode for Transthoracic Conduction with Improved Installation Characteristics”, Inventors: Bardy et al.
International Preliminary Examination Report dated Sep. 9, 2003, PCT/IB02/03452 filed Aug. 23, 2002; published as WO 03/018119 on Mar. 6, 2003, “Insulated Shell for Subscutaneously Implantable Cardioverter-Defibrillator Canister”, Inventors Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03453 filed Aug. 23, 2002; published as WO 03/018122 on Mar. 6, 2003, “Duckbill-Shaped Implantable Cardioverter-Defibrillator Canister and Method of Use”, Inventors: Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03467 filed Aug. 26, 2002; published as WO 03/018123 on Mar. 6, 2003, “Canister Designs for Implantable Cardioverter-Defibrillators”, Inventors: Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03469 filed Aug. 26, 2002; published as WO 03/018124 on Mar. 6, 2003, “Biphasic Waveform for a Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03484 filed Aug. 26, 2002; published as WO 03/018126 on Mar. 6, 2003, “Cardioverter-Defibrillator having a Focused Shocking Area and Orientation Thereof”, Inventors: Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03501 filed Aug. 26, 2002; published as WO 03/018112 on Mar. 6, 2003, “Subcutaneous Electrode for Transthoracic Conduction with Low-Profile Installation Appendage and Method of Doing Same”, Inventors Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03502 filed Aug. 23, 2002; published as WO 03/018127 on Mar. 6, 2003, “Subcutaneous Electrode for Transthoracic Conduction with Insertion Tool”, Inventors: Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03503 filed Aug. 26, 2002; published as WO 03/018128 on Mar. 6, 2003, “Power Supply for a Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03522 filed Aug. 26, 2002; published as WO 03/018129 on Mar. 6, 2003, “Biphasic Waveform for Anti-Bradycardia Pacing for a Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03525 filed Aug. 23, 2002; published as WO 03/018130 on Mar. 6, 2003, “Subcutaneous Electrode for Transthoracic Conduction with Highly Maneuverable Insertion Tool”, Inventors: Bardy et al.
International Preliminary Examination Report dated Sep. 2, 2003, PCT/IB02/03488 filed Aug. 26, 2002, published as WO 03/018120 on Mar. 6, 2003, “Curved Implantable Cardioverter-Defibrillator Canister”, Inventors: Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03447 filed Aug. 27, 2002; published as WO 03/018110 on Mar. 6, 2003, “Subcutaneous Electrode for Transthoracic Conduction with Improved Installation Characteristics”, Inventors: Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03452 filed Aug. 23, 2002; published as WO 03/018119 on Mar. 6, 2003, “Insulated Shell for Subcutaneously Implantable Cardioverter-Defibrillator Canister”, Inventors Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03453 filed Aug. 23, 2002; published as WO 03/018122 on Mar. 6, 2003, “Duckbill-Shaped Implantable Cardioverter-Defibrillator Canister and Method of Use”, Inventors: Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03467 filed Aug. 26, 2002; published as WO 03/018123 on Mar. 6, 2003, “Canister Designs for Implantable Cardioverter-Defibrillators”, Inventors: Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03469 filed Aug. 26, 2002; published as WO 03/018124 on Mar. 6, 2003, “Biphasic Waveform for a Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03484 filed Aug. 26, 2002; published as WO 03/018126 on Mar. 6, 2003, “Cardioveter-Defibrillator having a Focused Shocking Area and Orientation Thereof”, Inventors: Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03502 filed Aug. 23, 2002; published as WO 03/018127 on Mar. 6, 2003, “Subcutaneous Electrode for Transthoracic Conduction with Insertion Tool”, Inventors: Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03503 filed Aug. 26, 2002; published as WO 03/018128 on Mar. 6, 2003, “Power Supply for a Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03522 filed Aug. 26, 2002; published as WO 03/018129 on Mar. 6, 2003, “Biphasic Waveform for Anti-Bradycardia Pacing for a Subcutaneous Implantable Cardioverter-Defibrillator”, Inventors: Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03525 filed Aug. 23, 2002; published as WO 03/018130 on Mar. 6, 2003, “Subcutaneous Electrode for Transthoracic Conduction with Highly Maneuverable Insertion Tool”, Inventors: Bardy et al.
Written Opinion dated May 12, 2003, PCT/IB02/03488 filed Aug. 26, 2002, published as WO 03/018120 on Mar. 6, 2003, “Curved Implantable Cardioverter-Defibrillator Canister”, Inventors: Bardy et al.
IEEE Engineering in Medicine & Biology Society Magazine—Proceedings of the Annual International Conference of the IEEE Orlando, FL, copyright 1991, vol. 13, 1674-1676 pp, “Analog to Digital Conversion Techniques in Implantable Devices”, by RA Walters et al Comment s on Relevance: ISR PCT/IB03/04454.
Pace, vol. 16, Part I, Jan. 1993, 95-124pp, “The Role Of An Engineering Oriented Medical Research Group in Developing Improved Methods & Devices For Achieving Ventricular Defibrillation: The University of Missouri Experience”, by JC Schuder PhD.
Springer-Verlag, Berlin-Germany, copyright 1991, 784-786pp, “Halbleiter-Schaltungstechnik”, by U. Tietze and Ch. Schenk Comments on Relevance: ISR PCT/IB03/04454.
“Onset & Stability for Ventricular Tachyarrhythmia Detection in an Implantable Pacer-Cardioverter-Defibrillator”, IEEE Computers in Cardiology, 1987, vol 0276-6574, 167-170pp, by Walter H Olson et al.
U.S. patent application Ser. No. 09/663,606, Bardy et al.
U.S. patent application Ser. No. 09/663,607, Bardy et al.
International Search Report dated Mar. 26, 2002, PCT/US01/29168 filed Sep. 14, 2001, published as WO 02/22208 on Mar. 21, 2002, Subcutaneous Only Implantable Cardioverter Defibrillator & Optional Pacer, Inventors: Gust H Bardy et al.
Written Opinion dated Sep. 10, 2002, PCT/US01/29168 filed Sep. 14, 2001, published as WO 02/22208 on Mar 21, 2002, Subcutaneous Only Implantable Cardioverter Defibrlillator & Optional Pacer, Inventors: Gust H Brady et al.
International Search Report dated Mar. 21, 2002, PCT/US01/29106 filed Sep. 14, 2001, published as WO 02/24275 on Mar. 28, 2002, Unitary Subcutaneous Only Implantable Cardioverter Defibrillator & Optional Pacer, Inventors: Gust H Bardy et al.
Written Opinion dated Sep. 3, 2002, PCT/US01/29106 filed Sep. 14, 2001, published as WO 02/24275 on Mar. 28, 2002, Unitary Subcutaneous Only Implantable Cardioverter Defibrillator & Optional Pacer, Inventors: Gust H Bardy et al.
International Search Report dated Feb. 14, 2003, PCT/IB02/03452 filed Aug. 23, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 14, 2003, PCT/IB02/03453 filed Aug. 23, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 14, 2003, PCT/IB02/03467 filed Aug. 26, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 14, 2003, PCT/IB02/03469 filed Aug. 26, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 14, 2003, PCT/IB02/03484 filed Aug. 26, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 14, 2003, PCT/IB02/03488 filed Aug. 26, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 14, 2003, PCT/IB02/03522 filed Aug. 26, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 18, 2003, PCT/IB02/03503 filed Aug. 26, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 20, 2003, PCT/IB02/03447 filed Aug. 27, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 20, 2003, PCT/IB02/03481 filed Aug. 28, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 20, 2003, PCT/IB02/03501 filed Aug. 26, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 20, 2003, PCT/IB02/03502 filed Aug. 23, 2003; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Feb. 20, 2003, PCT/IB02/03525 filed Aug. 23, 2002; Not yet published; Applicant: Cameron Health Inc.
International Search Report dated Mar. 6, 2003, PCT/IB02/04513 filed Oct. 28, 2003; Not yet published; Applicant: Cameron Health Inc.
Office Action dated Oct. 15, 2002; U.S. patent application Ser. No. 09/663,606; Inventors: Bardy et al.
Journal of the American Medical Association (JAMA), vol. 214, No. 6, 1123pp, Nov. 9, 1970, “Completely Implanted Defibrillator”, an editorial comment by JC Schuder PhD.
Amer Soc Trans Artif Int Organs, vol. XVI, 1970, 207-212pp, “Experimental Ventricular Defibrillation With An Automatic & Completely Implanted System”, by JC Schuder PhD et al.
Archives of Internal Medicine (Specialized Journal of the AMA), vol. 127, Feb. 1971, Letters to the Editor pp 317, “Standby Implanted Defibrillators”, an editirial comment by JC Schuder PhD.
Journal of the American Medical Association (JAMA), vol. 213, 615-616pp, 1970, “Automatic Detection & Defibrillation of Lethal Arrhythmias—A New Concept”, by Mirkowski et al.
IEEE Transactions on Bio-Medical Engineering, vol. BME-18, No. 6, Nov. 1971, 410-415pp, “Transthoracic Ventricular Defibrillation In The Dog With Truncated and Untruncated Exponential Stimuli”, by JC Schuder PhD et al.
Pace, vol. 16, Part I, Jan. 1993, pp 95-124, “The Role Of An Engineering Oriented Medical Research Group In Developing Improved Methods & Devices For Achieving Ventricular Defibrillation: The University of Missouri Experience”, by JC Schuder PhD.
Journal of Cardiovascular Electrophysiology, vol. 12, No. 3, Mar. 2001, pp 356-360, Copyright 2001, by Future Publishing Company Inc, Armonk-NY 1050-0418, “Nonthoracotomy Implantable Cardioverter Defibrillator Placement In Children”, by Rainer Gradaus MD et al.
Journal of Cardiovascular Electrophysiology, vol. 12, No. 3, Mar. 2001, 361-362pp, Copyright 2001, by Future Publishing Company Inc, Armonk-NY 1050-0418, “Implantable Defibrillators In Children: From Whence to Shock”, by Richard A Friedman MD et al.