Switched resonant ultrasonic power amplifier system

Information

  • Patent Grant
  • 9768373
  • Patent Number
    9,768,373
  • Date Filed
    Friday, January 23, 2015
    9 years ago
  • Date Issued
    Tuesday, September 19, 2017
    7 years ago
Abstract
A switched resonant power amplifier system for ultrasonic transducers is disclosed. The system includes an amplifier that receives and processes a driver output signal for generating a drive signal that is provided to an ultrasonic device for controlling output of the ultrasonic device. An output control circuit receives and processes a signal related to a feedback signal generated by the ultrasonic device and a divider reference signal, and generates a compensated clock signal that is adjusted for at least one of phase and frequency differences between the received feedback signal and the divider reference signal. A compensated drive circuit receives and processes the compensated clock signal for generating the divider reference signal, and for generating the driver output signal.
Description
BACKGROUND OF THE INVENTION

1. Technical Field


The present disclosure relates to devices for amplifying an input signal and providing an output signal to a surgical instrument. More particularly, the present disclosure relates to a switched resonant ultrasonic power amplifier system for surgical instruments.


2. Background of Related Art


Conventional power amplifier circuits for supplying drive signals to ultrasonic transducers are susceptible to drift and droop in power delivery and variations in frequency when the ultrasonic transducer is exposed to changing loading conditions. Additionally, conventional power amplifier circuits require a relatively large footprint, are not lightweight, have efficiency problems, are generally complex circuits, and require heat sinking to dissipate heat generated during operation. Due to their relatively large size and radiated heat, placement of conventional power amplifier circuits may be problematic in a medical treatment facility. Therefore, a need exists for a power amplifier circuit to supply a drive signal to an ultrasonic transducer and which overcomes the problems of conventional power amplifiers.


SUMMARY

A switched resonant ultrasonic power amplifier system that has improved operating efficiency is provided. The switched resonant ultrasonic power amplifier system of the present disclosure has reduced heat generating characteristics and a smaller footprint than conventional power amplifiers. Furthermore, the switched resonant ultrasonic power amplifier system includes compensation circuitry for changing tissue loads during system operation, structure for frequency, phase, and gain stabilization and structure for ultrasonic power loss compensation.


The present disclosure relates to a switched resonant ultrasonic power amplifier system including a switched resonant power amplifier. The power amplifier system further includes a wave shaping circuit, a frequency generating and compensating circuit, and a compensated drive circuit. The switched resonant power amplifier generates a transducer driver signal for driving an ultrasonic transducer. The wave shaping circuit includes a zero crossing detector and a comparator. A feedback signal from the ultrasonic transducer is generally sinusoidal and is applied to an input of the zero crossing detector where it is transformed into a square wave. The square wave output of the zero crossing detector is capacitively coupled to the input of the comparator to form a reset signal.


The frequency generating and compensating circuit includes a reference timer and a phase-locked loop. The reset signal is applied to an input of the reference timer to generate a compensated reference signal having a substantially identical frequency that is further applied to an input of the phase-locked loop. The phase-locked loop outputs a compensated clock signal at a particular frequency that is controllable by the compensated reference signal applied to the input of the phase-locked loop. The compensated clock signal is generally at a different frequency than the desired output signal to be applied to the ultrasonic transducer.


The phase locked loop compares the compensated reference signal to a divider reference signal for generating a frequency error signal and/or a phase error signal. The phase locked loop provides frequency compensation by adjusting the compensated clock signal according to a value of the frequency error signal. In addition, it may include a phase delay circuit for adjusting the phase relationship between the compensated reference signal and the divider reference signal according to a value of the phase error signal. Generally, the phase locked loop receives digital input signals from the drive circuit and the wave shaping circuit. Alternatively, the phase locked loop may be configured and adapted for mixed-mode signal processing where the inputs are a combination of analog and digital signals. By advantageously adjusting the compensated clock signal for frequency and/or phase, the ultrasonic power amplifier system compensates the gain of the ultrasonic amplifier system.


The compensated clock signal is applied to an input of the compensated drive circuit. The compensated drive circuit includes a divider, a flip-flop, and a driver. A selected step-down ratio is applied to the compensated clock signal in the divider that results in a counter output signal delivered by the divider to the flip-flop, which has a lower frequency than the compensated clock signal. The counter output signal has a frequency that is approximately double the selected operating frequency for the ultrasonic transducer. A further reduction in frequency occurs as the counter output signal is applied to the flip-flop. The flip-flop generates two complementary square waves that are substantially 180° out-of-phase with respect to each other. Each of the square waves has a frequency that is at the selected operating frequency for the power amplifier and approximately one-half of the frequency of the counter output signal. These complementary square waves are applied to inputs of the driver for amplification and transmission to the inputs of the switched resonant power amplifier as driver output signals.


In another preferred embodiment, the driver includes a phase delay circuit that cooperates with the driver and provides phase compensation for the switched resonant power amplifier input signals. By controlling the phase relationship between the input signals, the driver is now phase correlated and random phase relationships are significantly minimized.


The switched resonant power amplifier includes a pair of insulated gate bi-polar transistors that receive the driver output signals. The insulated gate bi-polar transistors are biased such that when one is conducting the other one is not conducting, since one driver output signal has a value that corresponds to a “high” value, while the complementary driver output signal has a value that corresponds to a “low” value. When the driver signals change states (e.g., high to low and low to high), the respective insulated gate bi-polar transistors change from a conducting state to a non-conducting state, thereby providing an output to a primary side of an output transformer. On a secondary side of the output transformer is a pair of DC blocking output capacitors further coupled to an input of an ultrasonic device. The waveforms on the primary side of the output transformer are coupled across to a secondary side of the output transformer, where the waveforms combine to form the transducer driver signal. The ultrasonic device includes an ultrasonic transducer and a feedback transducer that are operatively coupled to the secondary side of the output transformer. The ultrasonic transducer receives the transducer drive signal from the output transformer and drives the transducer element to deliver the ultrasonic energy. The feedback transducer generates the feedback signal that is coupled to the wave shaping circuit.


In addition, the ultrasonic power amplifier system includes an output control circuit. The output control circuit includes the frequency generating and compensating circuit and the drive circuit. It cooperates with the wave shaping circuit for real time monitoring and control. The reset signal, that is representative of the feedback signal, is received by the frequency generating and compensating circuit for generating a compensated clock circuit. The divider reference signal is compared to the compensated reference signal in real time to control the compensated clock signal for frequency, phase, and/or gain. Additionally, the drive circuit includes a phase delay drive disposed in the driver for additional phase compensation between switched resonant power amplifier input signals. By providing real time monitoring and control of the drive signal to the ultrasonic device, the ultrasonic power amplifier system is capable of automatically monitoring and controlling the output of the ultrasonic device.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the presently disclosed switched resonant ultrasonic power amplifier system are described herein with reference to the drawings, wherein:



FIG. 1 is block diagram of a switched resonant ultrasonic power amplifier system in accordance with an embodiment of the present disclosure; and



FIG. 2 is a schematic diagram of an embodiment of a switched resonant power amplifier of FIG. 1 in accordance with the present disclosure.





DETAILED DESCRIPTION

Embodiments of the presently disclosed switched resonant ultrasonic power amplifier system will now be described in detail with reference to the drawings, in which like reference numerals and characters designate identical or corresponding elements in each of the drawings.


As mentioned above, conventional power amplifier circuits, which supply drive signals to ultrasonic transducers, are typically susceptible to so-called “drift” and “droop” in power delivery and variations in frequency when the ultrasonic transducer is exposed to changing loading conditions. Moreover, conventional power amplifier circuits are typically very complex (e.g., complex circuitry), require a relatively large footprint and are quite burdensome, suffer from efficiency problems, and require a heat sink (or other cooling means) to dissipate heat generated during operation. As a result, placement of conventional power amplifier circuits may be problematic in a medical treatment facility.


Referring to FIG. 1, an exemplary embodiment of the presently disclosed switched resonant ultrasonic power amplifier system 10 is illustrated. Switched resonant ultrasonic power amplifier system 10 is enclosed by box 12 in FIG. 1 and includes a switched resonant power amplifier 100, a wave shaping circuit 125 having a zero crossing detector 130 and a comparator 140, and a frequency generating and compensating circuit 157 having a reference timer 150 and a phase locked loop (“PLL”) 160. The switched resonant ultrasonic power amplifier system 10 further includes a compensated drive circuit 193 having a divider 170, a flip-flop 180, and a driver 190. An ultrasonic device 200 includes an ultrasonic transducer 114 and a feedback transducer 118 (as shown in FIG. 2) for receiving a transducer driver signal 116 that is an output of the switched resonant power amplifier 100. Preferably, driver signal 116 is applied to ultrasonic transducer 114. A feedback signal 120 is generated by the feedback transducer 118 and is communicated to zero crossing detector 130. Feedback signal 120 is proportional to driver signal 116 with substantially similar phase and frequency values and generally lower voltage values.


As shown in FIG. 2, switched resonant power amplifier 100 includes a plurality of switching elements 102A, 102B; a corresponding number of resonant tuning components or elements including a tuning capacitor 104A, 104B and a tuning inductor 106A, 106B; and an output transformer 108. Tuning capacitors 104A, 104B and tuning inductors 106A, 106B form first and second tuning circuits 109A, 109B respectively. Output transformer 108 is operatively coupled to an input of ultrasonic transducer 114. A variety of devices may be used for switching elements 102A, 102B, including relays, metal oxide semiconductor field effect transistors (“MOSFET”), and insulated gate bipolar transistors (“IGBT”).


In operation, driver 190 provides at least one driver output signal 195 that is coupled to the input of at least one switching element 102. Driver output signal 195 includes a corresponding number of input signals 195A, 195B to the number of switching elements 102A, 102B of switched resonant power amplifier 100. Each switching element 102A, 102B is capable of producing an amplified output of the respective input signals 195A, 195B. A supply voltage VDC is supplied through tuning inductors 106A, 106B to switching elements 102A, 102B where tuning inductors 106A, 106B are connected in a series relationship to a supply lead of each switching element 102A, 102B. Tuning capacitors 104A, 104B are connected in a parallel relationship to an output lead of each switching element 102A, 102B.


The amplified output of each switching element 102A, 102B is coupled to the corresponding tuning circuit 109A, 109B. Tuning capacitors 104A, 104B and tuning inductors 106A, 106B are selected to correspond to a particular resonant frequency of input signals 195A, 195B. For example, if the selected transducer driver signal 116 has a frequency of 23 KHz, i.e., a period of 43.5 μs, then the tuned period for each switching element 102A, 102B is 21.75 μs. The tuned period for tuning circuits 109A, 109B is defined by the formula T=π(LC)1/2, where L is the value of tuning inductors 106A, 106B, C is the value of tuning capacitors 104A, 104B, and T is the tuned period.


Output transformer 108, in cooperation with output capacitors 110 couples the amplified output of switching elements 102A, 102B, or driver signal 116, to ultrasonic transducer 114. Output capacitors 110 are connected in a series arrangement with the secondary coil of output transformer 108. Using output capacitors 110 in a series arrangement substantially blocks any residual direct current (“DC”) and passes substantially all the alternating current (“AC”) on the secondary side of output transformer 108. Preferably, output transformer 108 has a ratio of approximately 1:1 while output capacitors 110 have a value of approximately 10 μf.


In a preferred embodiment, a pair of IGBTs, used as switching elements 102A, 102B, is disposed in switched resonant power amplifier 100. Driver 190 provides the pair of input signals 195A, 195B that are coupled to the gates of switching elements 102A, 102B. Input signals 195A, 195B are square waves that are approximately 180° out of phase with respect to each other. Supply voltage VDC is applied to the drains, or collectors, of switching elements 102A, 102B through series connected tuning inductors 106A, 106B. Tuning capacitors 104A, 104B are additionally connected in parallel to the drains, or collectors, thereby defining first and second tuning circuits 109A, 109B. Switching elements 102A, 102B further include sources, or emitters, that are connected to a chassis common. As each input signal 195A, 195B changes in value, a corresponding inverse change in the output of switching elements 102A, 102B occurs.


Each switching element 102A, 102B only conducts when each corresponding input signal 195A, 195B rises above a threshold value. Using a pair of switching elements 102A, 102B permits a first switching element 102A to conduct (e.g., a first input signal 195A is above the threshold value) while a second switching element 102B does not conduct (e.g., a second input signal 195B is at or below the threshold value), since the corresponding first and second input signals 195A, 195B are approximately 180° out of phase with respect to each other. After a period of time, corresponding to the period of first input signal 195A, has elapsed, first input signal 195A is now at or below the threshold value while second input signal 195B is above the threshold value. At this point, first switching element 102A stops conducting while second switching element 102B begins conducting, thereby providing a switching capability of switched resonant power amplifier 100.


Further still, each tuning circuit 109A, 109B is operatively coupled to the primary side of output transformer 108 and connected in a series relationship to the other tuning circuit 109B, 109A respectively. Selecting the values of L and C, for tuning inductors 106A, 106B and tuning capacitors 104A, 104B, respectively, determines the resonant frequency of first and second tuning circuits 109A, 109B, respectively.


In an exemplary embodiment, the resonant frequency of each tuning circuit 109A, 109B is tuned near to the operating frequency of each input signal 195A, 195B. When first switching element 102A is conducting, it generates a first output that is operatively coupled through first tuning circuit 109A. The output of first switching element 102A and its associated first tuning circuit 109A is operatively coupled to the primary side of output transformer 108 and is preferably an AC half sine wave.


Operation of second switching element 102B and tuning circuit 109B is substantially similar to the operation of first switching element 102A and first tuning circuit 109A as described above. Second switching element 102B does not conduct when first switching element 102A conducts, since input signal 195B is approximately 180° out of phase with respect to input signal 195A. Therefore, the output of switching element 102B is essentially an AC half sine waveform that is complementary to the output of switching element 102A and provides a substantially smooth combined sinusoidal output wave at the secondary side of output transformer 108. The output wave has a frequency that is substantially equal to the input frequency of input signals 195A, 195B.


Output transformer 108 is preferably configured for a 1:1 primary to secondary ratio where the output waveform is substantially equivalent in magnitude to the input waveform. Output capacitors 110 are connected to the secondary side of output transformer 108 and generally block any DC component of the output waveform that may be present on the secondary side of output transformer 108. In addition, output capacitors 110 conduct substantially the entire AC component of the output waveform, thereby contributing to the smooth sinusoidal AC output waveform. The downstream side of output capacitors 110 is connected to the ultrasonic transducer 114, which could be magnetostrictive, piezoelectric, or transducer structures as is known in the art.


Ultrasonic device 200 includes feedback transducer 118 for providing feedback signal 120 to wave shaping circuit 125. Output transformer 108 is electrically coupled to ultrasonic device 200 such that electrical power is delivered to ultrasonic transducer 114 as transducer driver signal 116 and converted to ultrasonic power. Furthermore, switched resonant power amplifier 100 generates transducer driver signal 116 with the desired signal characteristics (e.g., wave shape, amplitude, and/or frequency) and communicates it to an input of ultrasonic device 200. In a preferred embodiment, transducer driver signal 116 is a substantially smooth sinusoidal AC waveform with the desired signal characteristics for driving ultrasonic transducer 114.


Feedback transducer 118 is also disposed on the secondary side of output transformer 108 and generates feedback signal 120 that is electrically coupled to zero crossing detector 130. In a preferred embodiment, feedback signal 120 is a sample of transducer driver signal 116 having a waveform with substantially the same frequency and wave shape. Since feedback signal 120 and transducer driver signal 116 are coupled within the ultrasonic device 200, characteristics of feedback signal 120 are related to characteristics of transducer driver signal 116 and reflect changes in the characteristics of the transducer(s) (e.g., ultrasonic transducer 114 and/or feedback transducer 118) of the ultrasonic device 200. For example, if the frequency of transducer driver signal 116 increases with a corresponding decrease in its period, feedback signal 120 has a corresponding increase it its frequency and substantially matches the frequency change of transducer driver signal 116. Changes in other characteristics of transducer driver signal 116 result in corresponding changes to the respective characteristics of feedback signal 120.


Zero crossing detector 130, in cooperation with associated circuitry, modifies feedback signal 120 and provides an output that is substantially a square wave 135. In a preferred embodiment, zero crossing detector 130 includes a comparison circuit, such as an LM393 integrated circuit, having biasing circuitry and a diode coupled to the output of the comparison circuit. Preferably, feedback signal 120 is coupled to the input of the comparison circuit for providing a more stable output square wave 135. As a component of wave shaping circuit 125, zero crossing detector 130 receives an analog input signal (e.g., feedback signal 120) and produces a digital output signal (e.g., square wave 135).


By applying feedback signal 120 to an appropriate input lead of the comparison circuit, zero crossing detector 130 generates square wave 135 having a waveform representative of feedback signal 120. As feedback signal 120 transitions above a predetermined (zero) voltage reference point, thereby becoming more positive, the comparison circuit conducts and provides a positive portion of square wave 135. The output will be of substantially constant amplitude as long as feedback signal 120 is more positive than the zero reference point. When feedback signal 120 is at the zero reference point, there is no difference in voltage on the input leads of the comparison circuit, thereby causing the comparison circuit to stop conducting, and provide a zero output. As a result, the output of the comparison circuit rapidly changes from a constant positive value to zero, thereby providing a substantially instantaneous transition of the output signal.


Once feedback signal 120 transitions below the zero reference point, thereby becoming more negative, the comparison circuit again conducts and provides a negative portion of square wave 135. Zero crossing detector 130 is biased and configured to provide a rapid change from the constant positive amplitude to the constant negative amplitude forming the leading and trailing edges of square wave 135, such that the edges are substantially vertical. Feedback signal 120 and square wave 135 have substantially identical frequencies, even if their respective amplitudes are different.


Square wave 135 is coupled to comparator 140, where square wave 135 is preferably capacitively coupled to comparator 140. Comparator 140 includes a comparison circuit and is preferably coupled to a capacitor coupling circuit that generally blocks any DC component of square wave 135 from being transmitted from zero crossing detector 130 and transmits substantially the entire AC component of square wave 135 to comparator 140. In a preferred embodiment, comparator 140 includes an IC comparator, such as an LM393 along with associated biasing and feedback circuitry.


As the amplitude of square wave 135 goes positive past the zero voltage reference point, it biases comparator 140 such that the output of comparison circuit goes negative, thereby causing the output of comparator 140, a reset signal 145, to become more negative. A portion of reset signal 145 is coupled through the feedback circuitry to another input of the comparison circuit, thereby providing feedback to the comparison circuit to produce a more stable output (e.g., reset signal 145). Preferably, reset signal 145 has a substantially identical frequency to square wave 135 with a waveform that is substantially 180° out-of-phase with respect to square wave 135.


Reset signal 145 is communicated to an input of reference timer 150 for controlling a timing function of reference timer 150. As reset signal 145 drops below a predetermined reset threshold value, it causes reference timer 150 to reset. When reference timer 150 resets, it generates a compensated reference signal 155 having a substantially identical frequency to reset signal 145, square wave 135, and feedback signal 120. Compensated reference signal 155 does not have the same phase characteristics as reset signal 145, but is essentially 180° out-of-phase with respect to reset signal 145 and feedback signal 120. Consequently, compensated reference signal 155 is substantially in phase with square wave 135.


In an exemplary embodiment, reference timer 150 includes an IC timer, such as a 555 precision timer, having associated biasing and feedback circuitry. Reference timer 150 in cooperation with the biasing circuitry is configured for operation as an astable multivibrator that produces a square wave output. Frequency and amplitude characteristics of the square wave are determined by the biasing circuit and the signal applied to a reset input of reference timer 150. According to an exemplary embodiment of the present disclosure, reset signal 145 is applied to a reset input of reference timer 150 to produce compensated reference signal 155. Combining the biasing configuration for the reference timer 150 in cooperation with reset signal 145 yields compensated reference signal 155 that has substantially the same frequency as feedback signal 120.


In a preferred embodiment, the 555 precision timer and the associated biasing circuitry of reference timer 150 are configured to generate compensated reference signal 155 that has a frequency lower than the selected operating frequency of switched resonant ultrasonic power amplifier system 10. More specifically, the 555 precision timer and its associated biasing circuitry are configured so that when the frequency of reset signal 145 is below the frequency of compensated reference signal 155, the biasing circuitry determines (e.g., controls) the frequency value of compensated reference signal 155 for providing compensation. In the situation where reset signal 145 has a higher frequency value than compensated reference signal 155, reset signal 145 acts as a trigger for the 555 precision timer causing a corresponding increase in the frequency of compensated reference signal 155.


An input of PLL 160 is coupled to an output of reference timer 150 for communicating compensated reference signal 155. PLL 160 receives compensated reference signal 155 and compares it to a divider reference signal 177. When reference signal 155 and divider reference signal 177 have substantially identical frequencies, PLL 160 produces a compensated clock signal 165 having a set frequency that corresponds to the frequency of the reference signal 155 and divider reference signal 177. In the situation where compensated reference signal 155 has a higher frequency than divider reference signal 177, PLL 160 lowers the frequency of compensated clock signal 165 as described below. Conversely, when compensated reference signal 155 has a lower frequency than divider reference signal 177, PLL 160 raises the frequency of compensated clock signal 165 as described below.


Advantageously, PLL 160 includes an IC PLL, such as a 4046 PLL IC chip, and associated biasing circuitry. In a preferred embodiment using PLL 160, compensated reference signal 155 is coupled to a signal input of the PLL 160 while divider reference signal 177 is applied to a reference input of PLL 160. Compensated clock signal 165 is generated by a voltage-controlled oscillator internal to PLL 160 chip and tuned to an output frequency. Internally, the frequencies of compensated reference signal 155 and divider reference signal 177 are compared to produce a frequency error signal at a phase comparator output of PLL 160.


This frequency error signal is applied to the voltage controlled oscillator input for adjusting the output frequency of the voltage controlled oscillator. If compensated reference signal 155 has a greater frequency than divider reference signal 177, the frequency error signal applied to the voltage controlled oscillator causes a decrease in the output frequency of compensated clock signal 165. In the situation where compensated reference signal 155 has a lower frequency than divider reference signal 177, the frequency error signal applied to the voltage controlled oscillator results in an increase of the output frequency of compensated clock signal 165.


While the above embodiment provides frequency compensation for compensated clock signal 165, it may also be desirable to provide phase compensation for clock signal 165. Frequency generating and compensating circuit 157 receives reset signal 145, which is representative of the output of ultrasonic device 200. As in the previous embodiment, reset signal 145 controls the generation of compensated reference signal 155 that has substantially the same phase and frequency as feedback signal 120. PLL 160 receives compensated reference signal 155 and compares it to divider reference signal 177, which is representative of compensated clock signal 165, thereby producing a phase error signal. When the phase difference between compensated reference signal 155 and divider reference signal 177 is at a minimum value (e.g., substantially in-phase), the phase error signal will have a low or first value. In situations where the phase difference between the signals is at a maximum value (e.g., substantially out-of-phase), the phase error signal will have a high or second value. If the phase difference between compensated reference signal 155 and divider reference signal 177 is between the maximum and minimum values, the phase error signal will have a value between the first and second values that is representative of the phase difference between the signals.


The phase error signal cooperates with associated circuitry in PLL 160 to adjust the timing of compensated clock signal 165 and thereby its phase relationship to compensated reference signal 155. More particularly, a delay circuit 162, such as that discussed in detail below, is included in PLL 160 to control the timing of compensated clock signal 165 for adjusting the phase timing of compensated clock signal 165 in accordance with the phase error signal. When the phase error signal indicates that compensated reference signal 155 does not have the desired phase relationship to divider reference signal 177, the delay circuit 162 of PLL 160 adjusts the phase timing of compensated clock signal 165 to change the phase relationship between them and preferably synchronize them. Changes to the timing of compensated clock signal 165 are reflected in divider reference signal 177 that is operatively coupled to PLL 160. In preferred embodiments, compensated reference signal 155 and compensated clock signal 165 are substantially in-phase with one another, thereby generating a phase error signal having a minimum value.


The PLL 160 may be configured and adapted to process signals that are analog, digital or a combination thereof. In this configuration, inputs to PLL 160 may be analog signals, digital signals, or a combination of analog and digital signals (e.g., mixed-mode). In the previous embodiment, the inputs were digital signals (e.g., compensated reference signal 155 and divider reference signal 177) that were processed by PLL 160. In the mixed-mode configuration, PLL 160 receives an analog input signal (e.g., feedback signal 120 directly from ultrasonic device 200) and compares it to an analog or digital reference signal, such as divider reference signal 177, as in the previous embodiment, for generating the frequency error signal and/or the phase error signal and adjusting the compensated clock signal accordingly.


In exemplary embodiments of the present disclosure, frequency generating and compensating circuit 157 includes frequency and phase compensation as discussed hereinabove. The frequency and phase compensation may be provided substantially simultaneously. By advantageously providing frequency and/or phase compensation, ultrasonic power amplifier system 10 provides gain compensation for reset signal 145 since the desired frequency and/or phase of compensated clock signal 165 is maintained during operation of ultrasonic power amplifier system 10. Furthermore, power compensation is provided, such as when adjustment and compensation of frequency, gain and/or phase (preferably frequency, gain and phase) is optimized. In addition, compensation for changing tissue loads is advantageously provided, since tissue loading changes the “tune”, i.e., the natural frequency of the transducer system (e.g., ultrasonic transducer 114 and/or feedback transducer 118), which is being adjusted and compensated for by the switched resonant ultrasonic power amplifier system 10.


By way of example only, assume that the desired frequency is 23 KHz and compensated clock signal 165 has a frequency of 1 MHz that is sampled and output from flip-flop 180 as divider reference signal 177. When divider reference signal 177 and compensated reference signal 155 have substantially matching frequencies, the frequency error signal is essentially zero. Therefore, the voltage controlled oscillator continues to generate compensated clock signal 165 at a frequency of 1 MHz. If compensated reference signal 155 has a frequency greater than the 23 KHz of divider reference signal 177, then the frequency error signal causes the voltage-controlled oscillator to decrease the frequency of compensated clock signal 165 below 1 MHz. This decreases the frequency of divider reference signal 177 to match the frequency of compensated reference signal 155, thereby returning switched resonant ultrasonic power amplifier system 10 to a state of equilibrium at the desired frequency. By using PLL 160 to correct changes in frequency as in the above-given example, switched resonant ultrasonic power amplifier system 10 automatically adjusts in real time for frequency variations due to changing load conditions, power supply variations, or other frequency shifting conditions. In a similar manner, PLL 160 automatically adjusts and compensates for phase differences between compensated clock signal 165 and divider reference signal 177.


The output of PLL 160, e.g., compensated clock signal 165, is coupled to an input of compensated drive circuit 193, and preferably, to an input of divider 170 where the frequency of compensated clock signal 165 is stepped-down by divider 170 to a desired counter output signal 175. Divider 170 is configurable, using a plurality of input to output ratios, to step-down compensated clock signal 165 to one of a multitude of different output frequencies. Therefore, switched resonant ultrasonic power amplifier system 10 is adaptable for a number of different applications, devices or systems using different desired frequencies.


In an exemplary embodiment, divider 170 is a 4059 programmable divide-by-n counter chip having associated biasing circuitry. A clock input receives compensated clock signal 165 for processing by divider 170. Biasing circuitry for divider 170 establishes the step-down ratio for divider 170 and reduces the frequency of compensated clock signal 165 to a desired frequency for counter output signal 175.


Advantageously, the associated biasing circuitry is operatively coupled for programming the step-down ratio where the biasing circuitry is controllable by software and/or hardware switches. Hardware switches allow the operator to manually change the step-down ratio of divider 170 and adjust for different frequency outputs of switched resonant power amplifier system 10. Using software switches to control the biasing circuitry allows remote operation of the step-down ratio and further permits automatic control of the biasing circuitry by associated circuitry coupled to switched resonant power amplifier system 10, thereby improving the flexibility and adaptability of switched resonant power amplifier system 10.


Coupled to the output of divider 170 is flip-flop 180 for splitting counter output signal 175 into complementary square waves (e.g., each square wave is substantially 180° out-of-phase with respect to the other square wave) where each square wave has a frequency that is substantially one-half of the frequency of counter output signal 175. A portion or sample of one of the output square waves is diverted to a comparator input of PLL 160 as divider reference signal 177, which is discussed above. Preferably, flip-flop 180 is a quadruple D-type flip-flop with clear, such as a 74HC175 integrated circuit with associated biasing circuitry.


Flip-flop 180 is biased such that when counter output signal 175 is applied to a clock input of flip-flop 180, the flip-flop 180 outputs Q and ^Q, which are substantially 180° out-of-phase with respect to each other. Additionally, the output ^Q is coupled to a data input of flip-flop 180 for biasing flip-flop 180. By using ^Q as the input to the data input, the outputs Q and ^Q are toggled by counter output signal 175 such that each of the outputs Q and ^Q are substantially 180° out-of-phase with respect to each other and substantially one-half of the input frequency of counter output signal 175. Preferably, the output Q is sampled as divider reference signal 177 for supplying a frequency comparison signal to PLL 160 as discussed above.


A driver input signal 185 is the output of flip-flop 180 and is further coupled to an input of driver 190. Driver 190 amplifies driver input signal 185 to supply driver output signal 195 to switched resonant power amplifier 100. Preferably, driver 190 is selected for amplifying driver input signal 185 to match the desired input characteristics for switched resonant power amplifier 100.


In a preferred embodiment, driver 190 includes a CMOS MOSFET driver such as the MIC4424 along with associated biasing circuitry. Driver 190 has electronic characteristics that are preferred for use with the switching elements 102A, 102B (e.g., IGBTs) of switched resonant power amplifier 100. Driver input signal 185 includes the outputs Q and ^Q that are coupled to inputs A and B, respectively, of the driver 190 as shown in FIG. 2. Driver 190, in cooperation with its biasing circuitry, amplifies the components (Q and ^Q) of driver input signal 185 and communicates the amplified signals to outputs A and B as driver signals. The amplified signals substantially maintain their frequency and phase characteristics during the amplification process. Outputs A and B are combined to form driver output signal 195 and are coupled to the inputs of switched resonant power amplifier 100 as input signals 195A, 195B.


Additional frequency stability is provided by combining wave shaping circuit 125 with frequency generating and compensating circuit 157 to provide a desired frequency and/or phase compensated input signal to driver 190. By advantageously matching driver 190 to switched resonant power amplifier 100, proper coupling between driver input signal 185 and switched resonant power amplifier input signals 195A, 195B is obtained thereby effecting the desired amplification by switched resonant power amplifier 100.


In another preferred embodiment, driver 190 includes one or more components and/or circuits to form a phase delay circuit 192 as are known in the art. One such circuit includes two 555 timers (not shown) connected in series and associated biasing components. Alternatively, the 555 timers may be replaced by a 556 timer, which includes two 555 timers. Another example of a delay circuit includes two 74121 integrated circuits and associated biasing components. Preferably, the biasing circuitry in phase delay circuit 192 includes components that are adjustable by the system and/or the operator for adjusting the phase relationship between switched resonant power amplifier input signals 195A, 195B and/or the pulse widths of the input signals 195A, 195B. Advantageously, the above-mentioned delay circuits are capable of producing an output signal that is time delayed with respect to the input signal. In addition, each of the above-mention circuits is capable of producing an output signal that has a width that is less than, greater than, or equal to the input signal's width.


Phase delay circuit 192 advantageously cooperates with driver 190 for controlling the phase relationship between switched resonant power amplifier input signals 195A, 195B and for controlling their respective pulse widths. In the previous embodiment, switched resonant power amplifier input signals 195A, 195B were substantially 180° out-of-phase with respect to each other. However, by adding phase delay circuit 192 to driver 190, the timing and the pulse widths of each of the switched resonant power amplifier input signals 195A, 195B is controllable. In preferred embodiments, the phase relationship between switched resonant power amplifier input signals 195A and 195B is variable between about 0° to a value about 360°, while the pulse widths of the input signals 195A and 195B are substantially equal to one another. By adjusting the phase relationship and the pulse widths, ultrasonic power amplifier system 10 regulates an output from ultrasonic device 200 having the desired characteristics for a particular procedure.


When the phase relationship between switched resonant power amplifier input signals 195A and 195B is modified, drive signal 116 is pulsed and the ultrasonic power amplifier system 10, in turn, produces a pulsed output from ultrasonic device 200 rather than a substantially continuous output, where the time delay between the output pulses is proportional to the phase relationship. The duration of pulses output by ultrasonic device 200 is adjustable by changing the pulse widths of input signals 195A, 195B. Numerous advantageous combinations of pulse width and phase relationship may be used in ultrasonic power amplifier system 10 depending on the particular procedure.


Additionally, driver 190 in cooperation with phase delay drive 192 provides phase correlation between switched resonant power amplifier input signals 195A, 195B. Since the desired phase relationship is established and maintained between the input signals 195A and 195B by phase delay circuit 192, random or undesirable phase relationships between the input signals is significantly minimized.


Changes in the loading characteristics of transducer driver signal 116 caused by changes in the loading of ultrasonic device 200 are fed back to zero crossing detector 130 as changes in feedback signal 120. By way of example only, if ultrasonic device 200 is rapidly unloaded, its operating frequency rises and is reflected as a frequency rise in feedback signal 120. This increase in the operating frequency of ultrasonic device 200 is communicated to feedback transducer 118 with a corresponding frequency increase in feedback signal 120. As discussed in detail hereinabove, as feedback signal 120 increases in frequency, zero crossing detector 130 generates square wave 135 having a corresponding increase in frequency. The increased frequency of square wave 135 is capacitively coupled to comparator 140 for generating reset signal 145 that reflects the frequency increase in feedback signal 120. In cooperation with reference timer 150, the increased frequency of reset signal 145 raises the frequency of compensated reference signal 155 that is communicated to PLL 160.


An increased frequency input to PLL 160, as evidenced by the increased frequency of compensated reference signal 155, causes PLL 160 to raise compensated clock signal 165. A higher frequency of compensated clock signal 165 is transferred to an input of divider 170 thereby causing a corresponding increase in the frequency of counter output signal 175 that is communicated to flip-flop 180. Output from flip-flop 180 is supplied as driver input signal 185 and as driver reference signal 177, both signals having increased frequency. The resulting increase in the frequency of driver input signal 185 is applied to driver 190 and raises the frequency of driver output signal 195. By raising the frequency of driver output signal 195, switched resonant power amplifier 100 produces a higher frequency transducer driver signal 116 in response. Preferably, the higher frequency of transducer driver signal 116 is substantially identical to the frequency of frequency feedback signal 120, thereby returning power amplifier 10 to a steady-state equilibrium condition where transducer driver signal 116 and feedback signal 120 are at the substantially identical frequency.


By actively monitoring the output of ultrasonic device 200 through feedback signal 120 and adjusting driver signal 116 in response thereto, ultrasonic power amplifier system 10 automatically adjusts the output of ultrasonic device 200 in response to changes in operating parameters in real time. More specifically, ultrasonic power amplifier system 10 includes an output control circuit 197 that includes frequency generating and compensating circuit 157 and drive circuit 193. Output control circuit 197 receives reset signal 145 and generates switched resonant power amplifier input signals 195A, 195B having the desired frequency, phase, and/or gain compensation as discussed in detail above.


By advantageously selecting and using solid-state and/or semi-conductor components, switched resonant power amplifier system 10 can be made to have a smaller footprint, or size, than a conventional power amplifier circuit for a comparable output. In addition, switched resonant power amplifier system 10 produces less heat and is more efficient than prior art systems due to the use of solid-state and/or semi-conductor components in the system.


Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, it is to be understood that the disclosure is not limited to those precise embodiments, and that various other changes and modifications may be affected therein by one skilled in the art without departing from the scope or spirit of the disclosure. All such changes and modifications are intended to be included within the scope of the disclosure.

Claims
  • 1. A method for controlling an output of an ultrasonic device, the method comprising: processing first and second input signals at a phase locked loop to generate a compensated clock signal adjusted for at least one of phase or frequency difference between the first and second input signals;generating a counter output signal based on the compensated clock signal;splitting the counter output signal into first and second complementary square waves;measuring at least one of the first and second complementary square waves to obtain the second input signal; andamplifying the first and second complementary square waves to generate a driver output signal to control an ultrasonic transducer.
  • 2. The method according to claim 1, further comprising: receiving and processing a feedback signal related to the output of the ultrasonic transducer to generate a corresponding square wave signal; andcomparing the corresponding square wave signal to a reference signal and generating a reset signal having substantially the same frequency to the feedback signal.
  • 3. The method according to claim 2, wherein the feedback signal is indicative of the output of the ultrasonic transducer.
  • 4. The method according to claim 2, further comprising: receiving and processing the reset signal to generate a compensated reference signal having a frequency that is substantially 180° out-of-phase with respect to the reset signal.
  • 5. The method according to claim 4, wherein the first input signal is the compensated reference signal and the second input signal is a divider reference signal.
  • 6. The method according to claim 1, wherein generating the counter output signal further includes stepping down frequency of the compensated clock signal to generate the counter output signal.
  • 7. The method according to claim 1, further comprising: selectively adjusting at least one of a phase relationship between the first and second complementary signals or pulse width of pulses of the first and second complementary signals.
  • 8. A method for controlling an output of an ultrasonic device, the method comprising: supplying a driver output signal to an ultrasonic transducer;processing first and second input signals at a phase locked loop to generate a compensated clock signal adjusted for at least one of phase or frequency difference between the first and second input signals;generating a counter output signal based on the compensated clock signal;splitting the counter output signal into first and second complementary square waves;measuring at least one of the first and second complementary square waves to obtain the second input signal; andamplifying the first and second complementary square waves to generate the driver output signal.
  • 9. The method according to claim 8, further comprising: receiving and processing a feedback signal related to the output of the ultrasonic transducer to generate a corresponding square wave signal; andcomparing the corresponding square wave signal to a reference signal and generating a reset signal having substantially the same frequency to the feedback signal.
  • 10. The method according to claim 9, further comprising: receiving and processing the reset signal to generate a compensated reference signal having a frequency that is substantially 180° out-of-phase with respect to the reset signal.
  • 11. The method according to claim 10, wherein the first input signal is the compensated reference signal and the second input signal is a divider reference signal.
  • 12. The method according to claim 9, wherein the feedback signal is indicative of the output of the ultrasonic transducer.
  • 13. The method according to claim 8, wherein generating the counter output signal further includes stepping down frequency of the compensated clock signal to generate the counter output signal.
  • 14. The method according to claim 8, further comprising: selectively adjusting at least one of a phase relationship between the first and second complementary signals or pulse width of pulses of the first and second complementary signals.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation application of U.S. patent application Ser. No. 13/943,518 filed on Jul. 16, 2013, now U.S. Pat. No. 8,966,981, which is a continuation application of U.S. patent application Ser. No. 13/350,877 filed on Jan. 16, 2012, now U.S. Pat. No. 8,485,993, which is a continuation application of U.S. patent application Ser. No. 12/163,408 filed on Jun. 27, 2008, now U.S. Pat. No. 8,096,961, which is a continuation application of U.S. patent application Ser. No. 10/974,332 filed on Oct. 27, 2004, now U.S. Pat. No. 7,396,336 which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 60/538,202 filed on Jan. 22, 2004, U.S. Provisional Patent Application Ser. No. 60/527,812 filed on Dec. 8, 2003, and U.S. Provisional Patent Application Ser. No. 60/515,826 filed on Oct. 30, 2003, the entire contents of which is incorporated by reference herein.

US Referenced Citations (1160)
Number Name Date Kind
1787709 Wappler Jan 1931 A
1813902 Bovie Jul 1931 A
1841968 Lowry Jan 1932 A
1863118 Liebel Jun 1932 A
1945867 Rawls Feb 1934 A
2693106 Henry Jun 1951 A
2827056 Degelman Mar 1958 A
2849611 Adams Aug 1958 A
2883198 Narumi Apr 1959 A
2982881 Reich May 1961 A
3001132 Britt Sep 1961 A
3058470 Seeliger et al. Oct 1962 A
3089496 Degelman May 1963 A
3154365 Crimmins Oct 1964 A
3163165 Islikawa Dec 1964 A
3252052 Nash May 1966 A
3391351 Trent Jul 1968 A
3402326 Guasco et al. Sep 1968 A
3413480 Biard et al. Nov 1968 A
3436563 Regitz Apr 1969 A
3439253 Piteo Apr 1969 A
3439680 Thomas, Jr. Apr 1969 A
3461874 Martinez Aug 1969 A
3471770 Haire Oct 1969 A
3478744 Leiter Nov 1969 A
3486115 Anderson Dec 1969 A
3495584 Schwalm Feb 1970 A
3513353 Lansch May 1970 A
3514689 Giannamore May 1970 A
3515943 Warrington Jun 1970 A
3551786 Van Gulik Dec 1970 A
3562623 Farnsworth Feb 1971 A
3571644 Jakoubovitch Mar 1971 A
3589363 Banko et al. Jun 1971 A
3595221 Blackett Jul 1971 A
3601126 Estes Aug 1971 A
3611053 Rowell Oct 1971 A
3641422 Farnsworth et al. Feb 1972 A
3642008 Bolduc Feb 1972 A
3662151 Haffey May 1972 A
3675655 Sittner Jul 1972 A
3683923 Anderson Aug 1972 A
3693613 Kelman Sep 1972 A
3697808 Lee Oct 1972 A
3699967 Anderson Oct 1972 A
3720896 Beierlein Mar 1973 A
3743918 Maitre Jul 1973 A
3766434 Sherman Oct 1973 A
3768019 Podowski Oct 1973 A
3768482 Shaw Oct 1973 A
3783340 Becker Jan 1974 A
3784842 Kremer Jan 1974 A
3801766 Morrison, Jr. Apr 1974 A
3801800 Newton Apr 1974 A
3812858 Oringer May 1974 A
3815015 Swin et al. Jun 1974 A
3826263 Cage et al. Jul 1974 A
3828768 Douglas Aug 1974 A
3848600 Patrick, Jr. et al. Nov 1974 A
3870047 Gonser Mar 1975 A
3875945 Friedman Apr 1975 A
3885569 Judson May 1975 A
3897787 Ikuno et al. Aug 1975 A
3897788 Newton Aug 1975 A
3898554 Knudsen Aug 1975 A
3900823 Sokal Aug 1975 A
3901216 Felger Aug 1975 A
3905373 Gonser Sep 1975 A
3908176 De Boer et al. Sep 1975 A
3913583 Bross Oct 1975 A
3923063 Andrews et al. Dec 1975 A
3933157 Bjurwill et al. Jan 1976 A
3938072 Baird et al. Feb 1976 A
3944936 Pryor Mar 1976 A
3946738 Newton et al. Mar 1976 A
3952748 Kaliher et al. Apr 1976 A
3963030 Newton Jun 1976 A
3964487 Judson Jun 1976 A
3971365 Smith Jul 1976 A
3978393 Wisner et al. Aug 1976 A
3980085 Ikuno Sep 1976 A
3998538 Urso et al. Dec 1976 A
4005714 Hiltebrandt Feb 1977 A
4024467 Andrews et al. May 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4051855 Schneiderman Oct 1977 A
4063557 Wuchinich et al. Dec 1977 A
4074719 Semm Feb 1978 A
4092986 Schneiderman Jun 1978 A
4094320 Newton et al. Jun 1978 A
4097773 Lindmark Jun 1978 A
4102341 Ikuno et al. Jul 1978 A
4114623 Meinke et al. Sep 1978 A
4121590 Gonser Oct 1978 A
4123673 Gonser Oct 1978 A
4126137 Archibald Nov 1978 A
4145636 Doi Mar 1979 A
4153880 Navratil May 1979 A
4171700 Farin Oct 1979 A
4188927 Harris Feb 1980 A
4191188 Belt et al. Mar 1980 A
4196734 Harris Apr 1980 A
4200104 Harris Apr 1980 A
4200105 Gonser Apr 1980 A
4204549 Paglione May 1980 A
4209018 Meinke et al. Jun 1980 A
4228809 Paglione Oct 1980 A
4229714 Yu Oct 1980 A
4231372 Newton Nov 1980 A
4232676 Herczog Nov 1980 A
4237887 Gonser Dec 1980 A
4237891 DuBose et al. Dec 1980 A
4247815 Larsen et al. Jan 1981 A
4271837 Schuler Jun 1981 A
4277710 Harwood et al. Jul 1981 A
4281373 Mabille Jul 1981 A
4287557 Brehse Sep 1981 A
4296413 Milkovic Oct 1981 A
4302728 Nakamura Nov 1981 A
4303073 Archibald Dec 1981 A
4311154 Sterzer et al. Jan 1982 A
4314559 Allen Feb 1982 A
4321926 Roge Mar 1982 A
4334539 Childs et al. Jun 1982 A
4343308 Gross Aug 1982 A
4359626 Potter Nov 1982 A
4372315 Shapiro et al. Feb 1983 A
4376263 Pittroff et al. Mar 1983 A
4378801 Oosten Apr 1983 A
4384582 Watt May 1983 A
4395665 Buchas Jul 1983 A
4397314 Vaguine Aug 1983 A
4407272 Yamaguchi Oct 1983 A
4411266 Cosman Oct 1983 A
4416276 Newton et al. Nov 1983 A
4416277 Newton et al. Nov 1983 A
4429694 McGreevy Feb 1984 A
4430625 Yokoyama Feb 1984 A
4436091 Banko Mar 1984 A
4437464 Crow Mar 1984 A
4438766 Bowers Mar 1984 A
4452546 Hiltebrandt et al. Jun 1984 A
4463759 Garito et al. Aug 1984 A
4470414 Imagawa et al. Sep 1984 A
4472661 Culver Sep 1984 A
4474179 Koch Oct 1984 A
4492231 Auth Jan 1985 A
4492832 Taylor Jan 1985 A
4494541 Archibald Jan 1985 A
4514619 Kugelman Apr 1985 A
4520818 Mickiewicz Jun 1985 A
4532924 Auth et al. Aug 1985 A
4559496 Harnden, Jr. et al. Dec 1985 A
4559943 Bowers Dec 1985 A
4565200 Cosman Jan 1986 A
4566454 Mehl et al. Jan 1986 A
4569345 Manes Feb 1986 A
4572190 Azam et al. Feb 1986 A
4576177 Webster, Jr. Mar 1986 A
4580575 Birnbaum et al. Apr 1986 A
4582057 Auth et al. Apr 1986 A
4586120 Malik et al. Apr 1986 A
4590934 Malis et al. May 1986 A
4595248 Brown Jun 1986 A
4608977 Brown Sep 1986 A
4615330 Nagasaki et al. Oct 1986 A
4630218 Hurley Dec 1986 A
4632109 Paterson Dec 1986 A
4644955 Mioduski Feb 1987 A
4646222 Okado et al. Feb 1987 A
4651264 Shiao-Chung Hu Mar 1987 A
4651280 Chang et al. Mar 1987 A
4657015 Irnich Apr 1987 A
4658815 Farin et al. Apr 1987 A
4658819 Harris et al. Apr 1987 A
4658820 Klicek Apr 1987 A
4662383 Sogawa et al. May 1987 A
4691703 Auth et al. Sep 1987 A
4712559 Turner Dec 1987 A
4727874 Bowers et al. Mar 1988 A
4735204 Sussman et al. Apr 1988 A
4739759 Rexroth et al. Apr 1988 A
4741334 Irnich May 1988 A
4741348 Kikuchi et al. May 1988 A
4744372 Kikuchi et al. May 1988 A
4754757 Feucht Jul 1988 A
4767999 VerPlanck Aug 1988 A
4768969 Bauer et al. Sep 1988 A
4785829 Convert et al. Nov 1988 A
4788634 Schlecht et al. Nov 1988 A
4805621 Heinze et al. Feb 1989 A
4818954 Flachenecker et al. Apr 1989 A
4827911 Broadwin et al. May 1989 A
4827927 Newton May 1989 A
4832024 Boussignac et al. May 1989 A
4848335 Manes Jul 1989 A
4848355 Nakamura et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4862889 Feucht Sep 1989 A
4880719 Murofushi et al. Nov 1989 A
4887199 Whittle Dec 1989 A
4890610 Kirwan, Sr. et al. Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4907589 Cosman Mar 1990 A
4922210 Flachenecker et al. May 1990 A
4925089 Chaparro et al. May 1990 A
4931047 Broadwin et al. Jun 1990 A
4931717 Gray et al. Jun 1990 A
4938761 Ensslin Jul 1990 A
4942313 Kinzel Jul 1990 A
4959606 Forge Sep 1990 A
4961047 Carder Oct 1990 A
4961435 Kitagawa et al. Oct 1990 A
4966597 Cosman Oct 1990 A
RE33420 Sussman et al. Nov 1990 E
4969885 Farin Nov 1990 A
4973876 Roberts Nov 1990 A
4992719 Harvey Feb 1991 A
4993430 Shimoyama et al. Feb 1991 A
4995877 Ams et al. Feb 1991 A
5015227 Broadwin et al. May 1991 A
5019176 Brandhorst, Jr. et al. May 1991 A
5024668 Peters et al. Jun 1991 A
5029588 Yock et al. Jul 1991 A
5044977 Vindigni Sep 1991 A
5057105 Malone et al. Oct 1991 A
5067953 Feucht Nov 1991 A
5075839 Fisher et al. Dec 1991 A
5078153 Nordlander et al. Jan 1992 A
5087257 Farin et al. Feb 1992 A
5099840 Goble et al. Mar 1992 A
5103804 Abele et al. Apr 1992 A
5108389 Cosmescu Apr 1992 A
5108391 Flachenecker et al. Apr 1992 A
5113116 Wilson May 1992 A
5119284 Fisher et al. Jun 1992 A
5122137 Lennox Jun 1992 A
5133711 Hagen Jul 1992 A
5151085 Sakurai et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5152762 McElhenney Oct 1992 A
5157603 Scheller et al. Oct 1992 A
5160334 Billings et al. Nov 1992 A
5161893 Shigezawa et al. Nov 1992 A
5162217 Hartman et al. Nov 1992 A
5167658 Ensslin Dec 1992 A
5167659 Ohtomo et al. Dec 1992 A
5190517 Zieve et al. Mar 1993 A
5196008 Kuenecke et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5216338 Wilson Jun 1993 A
5230623 Guthrie et al. Jul 1993 A
5233515 Cosman Aug 1993 A
5234427 Ohtomo et al. Aug 1993 A
5244462 Delahuerga et al. Sep 1993 A
5249121 Baum et al. Sep 1993 A
5249585 Turner et al. Oct 1993 A
5254117 Rigby et al. Oct 1993 A
RE34432 Bertrand Nov 1993 E
5267994 Gentelia et al. Dec 1993 A
5267997 Farin et al. Dec 1993 A
5269780 Roos Dec 1993 A
5271413 Dalamagas et al. Dec 1993 A
5281213 Milder et al. Jan 1994 A
5282840 Hudrlik Feb 1994 A
5290283 Suda Mar 1994 A
5295857 Toly Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5300070 Gentelia et al. Apr 1994 A
5304917 Somerville Apr 1994 A
5318563 Malis et al. Jun 1994 A
5323778 Kandarpa et al. Jun 1994 A
5324283 Heckele Jun 1994 A
5330518 Neilson et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5342357 Nardella Aug 1994 A
5342409 Mullett Aug 1994 A
5346406 Hoffman et al. Sep 1994 A
5346491 Oertli Sep 1994 A
5348554 Imran et al. Sep 1994 A
5354325 Chive et al. Oct 1994 A
5364392 Warner et al. Nov 1994 A
5369567 Furuta et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5370672 Fowler et al. Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5383874 Jackson et al. Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5396062 Eisentraut et al. Mar 1995 A
5396194 Williamson et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5409000 Imran Apr 1995 A
5409006 Buchholtz et al. Apr 1995 A
5409485 Suda Apr 1995 A
5413573 Koivukangas May 1995 A
5414238 Steigerwald et al. May 1995 A
5417719 Hull et al. May 1995 A
5422567 Matsunaga Jun 1995 A
5422926 Smith et al. Jun 1995 A
5423808 Edwards et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423810 Goble et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5425704 Sakurai et al. Jun 1995 A
5429596 Arias et al. Jul 1995 A
5430434 Lederer et al. Jul 1995 A
5432459 Thompson et al. Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5434398 Goldberg Jul 1995 A
5436566 Thompson et al. Jul 1995 A
5438302 Goble Aug 1995 A
5443462 Hannant Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445635 Denen et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5448466 Erckert Sep 1995 A
5451224 Goble et al. Sep 1995 A
5452725 Martenson Sep 1995 A
5454809 Janssen Oct 1995 A
5458597 Edwards et al. Oct 1995 A
5462521 Brucker et al. Oct 1995 A
5472441 Edwards et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5474464 Drewnicki Dec 1995 A
5478303 Foley-Nolan et al. Dec 1995 A
5480399 Hebborn Jan 1996 A
5483952 Aranyi Jan 1996 A
5490850 Ellman et al. Feb 1996 A
5496312 Klicek Mar 1996 A
5496313 Gentelia et al. Mar 1996 A
5496314 Eggers Mar 1996 A
5498261 Strul Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5500616 Ochi Mar 1996 A
5511993 Yamada et al. Apr 1996 A
5514129 Smith May 1996 A
5520684 Imran May 1996 A
5531774 Schulman et al. Jul 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540677 Sinofsky Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540682 Gardner et al. Jul 1996 A
5540683 Ichikawa et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540724 Cox Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5545161 Imran Aug 1996 A
5554172 Horner et al. Sep 1996 A
5556396 Cohen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5559688 Pringle Sep 1996 A
5562720 Stern et al. Oct 1996 A
5569242 Lax et al. Oct 1996 A
5571147 Sluijter et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5594636 Schauder Jan 1997 A
5596466 Ochi Jan 1997 A
5596995 Sherman et al. Jan 1997 A
5599344 Paterson Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5599348 Gentelia et al. Feb 1997 A
5605150 Radons et al. Feb 1997 A
5609560 Ichikawa et al. Mar 1997 A
5613966 Makower et al. Mar 1997 A
5613996 Lindsay Mar 1997 A
5620481 Desai et al. Apr 1997 A
5625370 D'Hont Apr 1997 A
5626575 Crenner May 1997 A
5628745 Bek May 1997 A
5628771 Mizukawa et al. May 1997 A
5633578 Eggers et al. May 1997 A
5640113 Hu Jun 1997 A
5643330 Holsheimer et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5658322 Fleming Aug 1997 A
5660567 Nierlich et al. Aug 1997 A
5664953 Reylek Sep 1997 A
5674217 Wahlstrom et al. Oct 1997 A
5675609 Johnson Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5681307 McMahan Oct 1997 A
5685840 Schechter et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5690692 Fleming Nov 1997 A
5693042 Boiarski et al. Dec 1997 A
5693078 Desai et al. Dec 1997 A
5694304 Telefus et al. Dec 1997 A
5695494 Becker Dec 1997 A
5696351 Benn et al. Dec 1997 A
5696441 Mak et al. Dec 1997 A
5697925 Taylor Dec 1997 A
5697927 Imran et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702429 King Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5712772 Telefus et al. Jan 1998 A
5713896 Nardella Feb 1998 A
5718246 Vona Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722975 Edwards et al. Mar 1998 A
5729448 Haynie et al. Mar 1998 A
5733281 Nardella Mar 1998 A
5735846 Panescu et al. Apr 1998 A
5738683 Osypka Apr 1998 A
5743900 Hara Apr 1998 A
5743903 Stern et al. Apr 1998 A
5749869 Lindenmeier et al. May 1998 A
5749871 Hood et al. May 1998 A
5755715 Stern et al. May 1998 A
5762609 Benaron et al. Jun 1998 A
5766153 Eggers et al. Jun 1998 A
5766165 Gentelia et al. Jun 1998 A
5769847 Panescu et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5777519 Simopoulos Jul 1998 A
5788688 Bauer et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5797802 Nowak et al. Aug 1998 A
5797902 Netherly Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5807253 Dumoulin et al. Sep 1998 A
5810804 Gough et al. Sep 1998 A
5814092 King Sep 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5820568 Willis Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5830212 Cartmell et al. Nov 1998 A
5831166 Kozuka et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5843075 Taylor Dec 1998 A
5846236 Lindenmeier et al. Dec 1998 A
5849010 Wurzer et al. Dec 1998 A
5853409 Swanson et al. Dec 1998 A
5860832 Wayt et al. Jan 1999 A
5865788 Edwards et al. Feb 1999 A
5868737 Taylor et al. Feb 1999 A
5868739 Lindenmeier et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871481 Kannenberg et al. Feb 1999 A
5891142 Eggers et al. Apr 1999 A
5893848 Negus et al. Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5906614 Stern et al. May 1999 A
5908444 Azure Jun 1999 A
5913882 King Jun 1999 A
5921982 Lesh et al. Jul 1999 A
5925070 King et al. Jul 1999 A
5931836 Hatta et al. Aug 1999 A
5935124 Klumb et al. Aug 1999 A
5938690 Law et al. Aug 1999 A
5944553 Yasui et al. Aug 1999 A
5948007 Starkebaum et al. Sep 1999 A
5951545 Schilling et al. Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954686 Garito et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954719 Chen et al. Sep 1999 A
5957961 Maguire et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5959253 Shinchi Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5961871 Bible et al. Oct 1999 A
5964746 McCary Oct 1999 A
5971980 Sherman Oct 1999 A
5971981 Hill et al. Oct 1999 A
5976128 Schilling et al. Nov 1999 A
5983141 Sluijter et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
6007532 Netherly Dec 1999 A
6010499 Cobb Jan 2000 A
6013074 Taylor Jan 2000 A
6014581 Whayne et al. Jan 2000 A
6017338 Brucker et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6022346 Panescu et al. Feb 2000 A
6022347 Lindenmeier et al. Feb 2000 A
6033399 Gines Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6039732 Ichikawa et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6053910 Fleenor Apr 2000 A
6053912 Panescu et al. Apr 2000 A
6055458 Cochran et al. Apr 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble et al. May 2000 A
6059780 Gough et al. May 2000 A
6059781 Yamanashi et al. May 2000 A
6063075 Mihori May 2000 A
6063078 Wittkampf May 2000 A
6066137 Greep May 2000 A
6068627 Orszulak et al. May 2000 A
6074089 Hollander et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074388 Tockweiler et al. Jun 2000 A
6080149 Huang et al. Jun 2000 A
6088614 Swanson Jul 2000 A
6089864 Buckner et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6093186 Goble Jul 2000 A
6102497 Ehr et al. Aug 2000 A
6102907 Smethers et al. Aug 2000 A
6104248 Carver Aug 2000 A
6106524 Eggers et al. Aug 2000 A
RE36871 Epstein et al. Sep 2000 E
6113591 Whayne et al. Sep 2000 A
6113592 Taylor Sep 2000 A
6113593 Tu et al. Sep 2000 A
6113596 Hooven et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6132429 Baker Oct 2000 A
6139349 Wright Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6155975 Urich et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6162217 Kannenberg et al. Dec 2000 A
6165169 Panescu et al. Dec 2000 A
6165173 Kamdar et al. Dec 2000 A
6171304 Netherly et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6186147 Cobb Feb 2001 B1
6188211 Rincon-Mora et al. Feb 2001 B1
6193713 Geistert et al. Feb 2001 B1
6197023 Muntermann Mar 2001 B1
6203541 Keppel Mar 2001 B1
6210403 Klicek Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6222356 Taghizadeh-Kaschani Apr 2001 B1
6228078 Eggers et al. May 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6231569 Bek et al. May 2001 B1
6232556 Daugherty et al. May 2001 B1
6235020 Cheng et al. May 2001 B1
6235022 Hallock et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238388 Ellman et al. May 2001 B1
6241723 Heim et al. Jun 2001 B1
6241725 Cosman Jun 2001 B1
6243654 Johnson et al. Jun 2001 B1
6245061 Panescu et al. Jun 2001 B1
6245063 Uphoff Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6251106 Becker et al. Jun 2001 B1
6254422 Feye-Hohmann Jul 2001 B1
6258085 Eggleston Jul 2001 B1
6259937 Schulman et al. Jul 2001 B1
6261285 Novak et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6267760 Swanson Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6273886 Edwards et al. Aug 2001 B1
6275786 Daners Aug 2001 B1
6287304 Eggers et al. Sep 2001 B1
6293941 Strul et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6304138 Johnson Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6309386 Bek Oct 2001 B1
6322558 Taylor et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6329778 Culp et al. Dec 2001 B1
6337998 Behl et al. Jan 2002 B1
6338657 Harper et al. Jan 2002 B1
6341981 Gorman Jan 2002 B1
6350262 Ashley Feb 2002 B1
6358245 Edwards et al. Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6370408 Merchant et al. Apr 2002 B1
6371963 Nishtala et al. Apr 2002 B1
6383183 Sekino et al. May 2002 B1
6387092 Burnside et al. May 2002 B1
6391024 Sun et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6402741 Keppel et al. Jun 2002 B1
6402742 Blewett et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6413256 Truckai et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6422896 Aoki et al. Jul 2002 B2
6423057 He et al. Jul 2002 B1
6424186 Quimby et al. Jul 2002 B1
6426886 Goder Jul 2002 B1
6428537 Swanson et al. Aug 2002 B1
6436096 Hareyama Aug 2002 B1
6440157 Shigezawa et al. Aug 2002 B1
6451015 Rittman, III et al. Sep 2002 B1
6454594 Sawayanagi Sep 2002 B2
6458121 Rosenstock et al. Oct 2002 B1
6458122 Pozzato Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464696 Oyama et al. Oct 2002 B1
6468270 Hovda et al. Oct 2002 B1
6468273 Leveen et al. Oct 2002 B1
6469481 Tateishi Oct 2002 B1
6482201 Olsen et al. Nov 2002 B1
6488678 Sherman Dec 2002 B2
6494880 Swanson et al. Dec 2002 B1
6497659 Rafert Dec 2002 B1
6498466 Edwards Dec 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6511476 Hareyama Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6517538 Jacob et al. Feb 2003 B1
6522931 Manker et al. Feb 2003 B2
6524308 Muller et al. Feb 2003 B1
6537272 Christopherson et al. Mar 2003 B2
6544258 Fleenor et al. Apr 2003 B2
6544260 Markel et al. Apr 2003 B1
6546270 Goldin et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6557559 Eggers et al. May 2003 B1
6558376 Bishop May 2003 B2
6558377 Lee et al. May 2003 B2
6560470 Pologe May 2003 B1
6562037 Paton et al. May 2003 B2
6565559 Eggleston May 2003 B2
6565562 Shah et al. May 2003 B1
6573248 Ramasamy et al. Jun 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6578579 Burnside et al. Jun 2003 B2
6579288 Swanson et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6602243 Noda Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6620157 Dabney et al. Sep 2003 B1
6620189 Machold et al. Sep 2003 B1
6623423 Sakurai et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6629973 Wårdell et al. Oct 2003 B1
6629974 Penny et al. Oct 2003 B2
6632193 Davison et al. Oct 2003 B1
6635056 Kadhiresan et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6645198 Bommannan et al. Nov 2003 B1
6648883 Francischelli et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652514 Ellman et al. Nov 2003 B2
6653569 Sung Nov 2003 B1
6656177 Truckai et al. Dec 2003 B2
6663623 Oyama et al. Dec 2003 B1
6663624 Edwards et al. Dec 2003 B2
6663627 Francischelli et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6672151 Schultz et al. Jan 2004 B1
6679875 Honda et al. Jan 2004 B2
6682527 Strul Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689131 McClurken Feb 2004 B2
6692489 Heim et al. Feb 2004 B1
6693782 Lash Feb 2004 B1
6695837 Howell Feb 2004 B2
6696844 Taylor et al. Feb 2004 B2
6712813 Ellman et al. Mar 2004 B2
6723091 Goble et al. Apr 2004 B2
6730078 Simpson et al. May 2004 B2
6730079 Lovewell May 2004 B2
6730080 Harano et al. May 2004 B2
6733495 Bek et al. May 2004 B1
6733498 Paton et al. May 2004 B2
6740079 Eggers et al. May 2004 B1
6740085 Hareyama et al. May 2004 B2
6743225 Sanchez et al. Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6749624 Knowlton Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761716 Kadhiresan et al. Jul 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6778044 Fehrenbach et al. Aug 2004 B2
6783523 Qin et al. Aug 2004 B2
6784405 Flugstad et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6792390 Burnside et al. Sep 2004 B1
6796980 Hall Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6809508 Donofrio Oct 2004 B2
6818000 Muller et al. Nov 2004 B2
6819027 Saraf Nov 2004 B2
6824539 Novak Nov 2004 B2
6830569 Thompson et al. Dec 2004 B2
6837888 Ciarrocca et al. Jan 2005 B2
6843682 Matsuda et al. Jan 2005 B2
6843789 Goble Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6855141 Lovewell Feb 2005 B2
6855142 Harano et al. Feb 2005 B2
6860881 Sturm et al. Mar 2005 B2
6864686 Novak et al. Mar 2005 B2
6875210 Refior et al. Apr 2005 B2
6887240 Lands et al. May 2005 B1
6890331 Kristensen May 2005 B2
6893435 Goble May 2005 B2
6899538 Matoba May 2005 B2
6923804 Eggers et al. Aug 2005 B2
6929641 Goble et al. Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6939344 Kreindel Sep 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6939347 Thompson Sep 2005 B2
6942660 Pantera et al. Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958064 Rioux et al. Oct 2005 B2
6962587 Johnson et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6970752 Lim et al. Nov 2005 B1
6974453 Woloszko et al. Dec 2005 B2
6974463 Magers et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979329 Burnside et al. Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6994704 Qin et al. Feb 2006 B2
6994707 Ellman et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7004174 Eggers et al. Feb 2006 B2
7008369 Cuppen Mar 2006 B2
7008417 Eick Mar 2006 B2
7008421 Daniel et al. Mar 2006 B2
7025764 Paton et al. Apr 2006 B2
7033351 Howell Apr 2006 B2
7041096 Malis et al. May 2006 B2
7044948 Keppel May 2006 B2
7044949 Orszulak et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
7058372 Pardoen et al. Jun 2006 B1
7060063 Marion et al. Jun 2006 B2
7062331 Zarinetchi et al. Jun 2006 B2
7063692 Sakurai et al. Jun 2006 B2
7066933 Hagg Jun 2006 B2
7074217 Strul et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7094231 Ellman et al. Aug 2006 B1
7104834 Robinson et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
7115121 Novak Oct 2006 B2
7115124 Xiao Oct 2006 B1
7118564 Ritchie et al. Oct 2006 B2
7122031 Edwards et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7131860 Sartor et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7146210 Palti Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7151964 Desai et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7156842 Sartor et al. Jan 2007 B2
7156844 Reschke et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160293 Sturm et al. Jan 2007 B2
7163536 Godara Jan 2007 B2
7166986 Kendall Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172591 Harano et al. Feb 2007 B2
7175618 Dabney et al. Feb 2007 B2
7175621 Heim et al. Feb 2007 B2
7184820 Jersey-Willuhn et al. Feb 2007 B2
7190933 De Ruijter et al. Mar 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7200010 Broman et al. Apr 2007 B2
7203556 Daners Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7211081 Goble May 2007 B2
7214224 Goble May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7221216 Nguyen May 2007 B2
7223264 Daniel et al. May 2007 B2
7226447 Uchida et al. Jun 2007 B2
7229469 Witzel et al. Jun 2007 B1
7232437 Berman et al. Jun 2007 B2
7233278 Eriksson Jun 2007 B2
7238181 Daners et al. Jul 2007 B2
7238183 Kreindel Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7244255 Daners et al. Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7250048 Francischelli et al. Jul 2007 B2
7250746 Oswald et al. Jul 2007 B2
7255694 Keppel Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7269034 Schlecht Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7282048 Goble et al. Oct 2007 B2
7282049 Orszulak et al. Oct 2007 B2
7285117 Krueger et al. Oct 2007 B2
7294127 Leung et al. Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300437 Pozzato Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7305311 van Zyl Dec 2007 B2
7311703 Turovskiy et al. Dec 2007 B2
7316682 Konesky Jan 2008 B2
7317954 McGreevy Jan 2008 B2
7317955 McGreevy Jan 2008 B2
7324357 Miura et al. Jan 2008 B2
7333859 Rinaldi et al. Feb 2008 B2
7341586 Daniel et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354436 Rioux et al. Apr 2008 B2
7357800 Swanson Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7364578 Francischelli et al. Apr 2008 B2
7364972 Ono et al. Apr 2008 B2
7367972 Francischelli et al. May 2008 B2
RE40388 Gines Jun 2008 E
7396336 Orszulak et al. Jul 2008 B2
7402754 Kirwan, Jr. et al. Jul 2008 B2
D574323 Waaler Aug 2008 S
7407502 Strul et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
7416549 Young et al. Aug 2008 B2
7422582 Malackowski et al. Sep 2008 B2
7422586 Morris et al. Sep 2008 B2
7425835 Eisele Sep 2008 B2
7465302 Odell et al. Dec 2008 B2
7470272 Mulier et al. Dec 2008 B2
7477080 Fest Jan 2009 B1
7479140 Ellman et al. Jan 2009 B2
7491199 Goble Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7503917 Sartor et al. Mar 2009 B2
7511472 Xia et al. Mar 2009 B1
7513896 Orszulak Apr 2009 B2
7517351 Culp et al. Apr 2009 B2
7525398 Nishimura et al. Apr 2009 B2
7568619 Todd et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7621041 Banerji et al. Nov 2009 B2
7628786 Plaven et al. Dec 2009 B2
7648499 Orszulak et al. Jan 2010 B2
7651492 Wham Jan 2010 B2
7651493 Arts et al. Jan 2010 B2
7655003 Lorang et al. Feb 2010 B2
7666182 Klett et al. Feb 2010 B2
7675429 Cernasov Mar 2010 B2
7678105 McGreevy et al. Mar 2010 B2
7722601 Wham et al. May 2010 B2
7731717 Odom et al. Jun 2010 B2
7736358 Shores et al. Jun 2010 B2
7744593 Mihori Jun 2010 B2
7749217 Podhajsky Jul 2010 B2
7766693 Sartor et al. Aug 2010 B2
7766905 Paterson et al. Aug 2010 B2
7780662 Bahney Aug 2010 B2
7780764 Baksh Aug 2010 B2
7794457 McPherson et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7824400 Keppel Nov 2010 B2
7834484 Sartor Nov 2010 B2
7863841 Menegoli et al. Jan 2011 B2
7864129 Konishi Jan 2011 B2
7879033 Sartor et al. Feb 2011 B2
7901400 Wham et al. Mar 2011 B2
7927328 Orszulak et al. Apr 2011 B2
7947039 Sartor May 2011 B2
7956620 Gilbert Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972332 Arts et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
8004121 Sartor Aug 2011 B2
8012150 Wham et al. Sep 2011 B2
8025660 Plaven et al. Sep 2011 B2
8034049 Odom et al. Oct 2011 B2
8038676 Fischer Oct 2011 B2
8080008 Wham et al. Dec 2011 B2
8096961 Orszulak et al. Jan 2012 B2
8104596 Kim et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8113057 Orszulak et al. Feb 2012 B2
8133218 Daw et al. Mar 2012 B2
8133222 Ormsby Mar 2012 B2
8147485 Wham et al. Apr 2012 B2
8152800 Behnke Apr 2012 B2
8152801 Goldberg et al. Apr 2012 B2
8152802 Podhajsky et al. Apr 2012 B2
8162932 Podhajsky et al. Apr 2012 B2
8167875 Podhajsky et al. May 2012 B2
8485993 Orszulak et al. Jul 2013 B2
8653994 Smith Feb 2014 B2
8664934 Krapohl Mar 2014 B2
8745846 Behnke, II et al. Jun 2014 B2
8932291 Orszulak Jan 2015 B2
8966981 Orszulak et al. Mar 2015 B2
8968293 Gilbert Mar 2015 B2
8968297 Collins Mar 2015 B2
20010014804 Goble et al. Aug 2001 A1
20010029315 Sakurai et al. Oct 2001 A1
20010031962 Eggleston Oct 2001 A1
20020029036 Goble et al. Mar 2002 A1
20020035363 Edwards et al. Mar 2002 A1
20020035364 Schoenman et al. Mar 2002 A1
20020052599 Goble May 2002 A1
20020068932 Edwards et al. Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020151889 Swanson et al. Oct 2002 A1
20020193787 Qin et al. Dec 2002 A1
20030004510 Wham et al. Jan 2003 A1
20030060818 Kannenberg et al. Mar 2003 A1
20030078572 Pearson et al. Apr 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030153908 Goble et al. Aug 2003 A1
20030163123 Goble et al. Aug 2003 A1
20030163124 Goble Aug 2003 A1
20030171745 Francischelli et al. Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030199863 Swanson et al. Oct 2003 A1
20030225401 Eggers et al. Dec 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040002745 Fleming et al. Jan 2004 A1
20040015159 Slater et al. Jan 2004 A1
20040015163 Buysse et al. Jan 2004 A1
20040015216 DeSisto Jan 2004 A1
20040019347 Sakurai et al. Jan 2004 A1
20040024395 Ellman et al. Feb 2004 A1
20040030328 Eggers et al. Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040044339 Beller et al. Mar 2004 A1
20040049179 Francischelli et al. Mar 2004 A1
20040054365 Goble Mar 2004 A1
20040059323 Sturm et al. Mar 2004 A1
20040068304 Paton et al. Apr 2004 A1
20040082946 Malis et al. Apr 2004 A1
20040095100 Thompson May 2004 A1
20040097912 Gonnering May 2004 A1
20040097914 Pantera et al. May 2004 A1
20040097915 Refior et al. May 2004 A1
20040116919 Heim et al. Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040138653 Dabney et al. Jul 2004 A1
20040138654 Goble Jul 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147918 Keppel Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040172016 Bek et al. Sep 2004 A1
20040193021 Zdeblick et al. Sep 2004 A1
20040193148 Wham et al. Sep 2004 A1
20040230189 Keppel Nov 2004 A1
20040243120 Orszulak et al. Dec 2004 A1
20040249318 Tanaka Dec 2004 A1
20040260279 Goble et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050004634 Ricart et al. Jan 2005 A1
20050021020 Blaha Jan 2005 A1
20050021022 Sturm et al. Jan 2005 A1
20050101949 Harano et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050109111 Manlove et al. May 2005 A1
20050109935 Manlove et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050149151 Orszulak et al. Jul 2005 A1
20050182398 Paterson Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20060015095 Desinger et al. Jan 2006 A1
20060025760 Podhajsky Feb 2006 A1
20060079774 Anderson Apr 2006 A1
20060079871 Plaven et al. Apr 2006 A1
20060111711 Goble May 2006 A1
20060155270 Hancock et al. Jul 2006 A1
20060161148 Behnke Jul 2006 A1
20060178664 Keppel Aug 2006 A1
20060191926 Ray et al. Aug 2006 A1
20060224053 Black et al. Oct 2006 A1
20060224152 Behnke et al. Oct 2006 A1
20060281360 Sartor et al. Dec 2006 A1
20060291178 Shih Dec 2006 A1
20070038209 Buysse et al. Feb 2007 A1
20070088413 Weber et al. Apr 2007 A1
20070093800 Wham et al. Apr 2007 A1
20070093801 Behnke Apr 2007 A1
20070135812 Sartor Jun 2007 A1
20070173802 Keppel Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173804 Wham et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070173806 Orszulak et al. Jul 2007 A1
20070173810 Orszulak Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070203481 Gregg et al. Aug 2007 A1
20070208339 Arts et al. Sep 2007 A1
20070225698 Orszulak et al. Sep 2007 A1
20070250052 Wham Oct 2007 A1
20070265612 Behnke et al. Nov 2007 A1
20070282320 Buysse et al. Dec 2007 A1
20080004619 Malis et al. Jan 2008 A1
20080015563 Hoey et al. Jan 2008 A1
20080015564 Wham et al. Jan 2008 A1
20080015570 Ormsby et al. Jan 2008 A1
20080039831 Odom et al. Feb 2008 A1
20080039836 Odom et al. Feb 2008 A1
20080071257 Kotmel et al. Mar 2008 A1
20080071260 Shores Mar 2008 A1
20080082094 McPherson et al. Apr 2008 A1
20080119843 Morris May 2008 A1
20080125767 Blaha May 2008 A1
20080132893 D'Amelio et al. Jun 2008 A1
20080177199 Podhajsky Jul 2008 A1
20080203997 Foran et al. Aug 2008 A1
20080234574 Hancock et al. Sep 2008 A1
20080248685 Sartor et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080281311 Dunning et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080281316 Carlton et al. Nov 2008 A1
20080287791 Orszulak et al. Nov 2008 A1
20080287838 Orszulak et al. Nov 2008 A1
20080287943 Weber et al. Nov 2008 A1
20090018536 Behnke Jan 2009 A1
20090024120 Sartor Jan 2009 A1
20090036883 Behnke Feb 2009 A1
20090069801 Jensen et al. Mar 2009 A1
20090082765 Collins et al. Mar 2009 A1
20090146635 Qiu et al. Jun 2009 A1
20090157071 Wham et al. Jun 2009 A1
20090157072 Wham et al. Jun 2009 A1
20090157073 Orszulak Jun 2009 A1
20090157075 Wham et al. Jun 2009 A1
20090234350 Behnke et al. Sep 2009 A1
20090237169 Orszulak Sep 2009 A1
20090240244 Malis et al. Sep 2009 A1
20090248003 Orszulak Oct 2009 A1
20090248006 Paulus et al. Oct 2009 A1
20090248007 Falkenstein et al. Oct 2009 A1
20090254077 Craig Oct 2009 A1
20090259224 Wham et al. Oct 2009 A1
20090292283 Odom Nov 2009 A1
20090306648 Podhajsky et al. Dec 2009 A1
20100030210 Paulus Feb 2010 A1
20100042093 Wham et al. Feb 2010 A9
20100057076 Behnke et al. Mar 2010 A1
20100063494 Orszulak Mar 2010 A1
20100063497 Orszulak Mar 2010 A1
20100076424 Carr Mar 2010 A1
20100079215 Brannan et al. Apr 2010 A1
20100082022 Haley et al. Apr 2010 A1
20100082023 Brannan et al. Apr 2010 A1
20100082024 Brannan et al. Apr 2010 A1
20100082025 Brannan et al. Apr 2010 A1
20100082083 Brannan et al. Apr 2010 A1
20100082084 Brannan et al. Apr 2010 A1
20100094271 Ward et al. Apr 2010 A1
20100094275 Wham Apr 2010 A1
20100094288 Kerr Apr 2010 A1
20100114090 Hosier May 2010 A1
20100168730 Hancock et al. Jul 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100179533 Podhajsky Jul 2010 A1
20100179536 Podhajsky et al. Jul 2010 A1
20100179538 Podhajsky Jul 2010 A1
20100179541 Joseph et al. Jul 2010 A1
20100179542 Joseph et al. Jul 2010 A1
20100191233 Wham et al. Jul 2010 A1
20100211063 Wham et al. Aug 2010 A1
20100217258 Floume et al. Aug 2010 A1
20100217264 Odom et al. Aug 2010 A1
20100318079 McPherson et al. Dec 2010 A1
20100318080 Keppel Dec 2010 A1
20110028963 Gilbert Feb 2011 A1
20110054460 Gilbert Mar 2011 A1
20110060329 Gilbert et al. Mar 2011 A1
20110071516 Gregg Mar 2011 A1
20110071521 Gilbert Mar 2011 A1
20110077631 Keller Mar 2011 A1
20110112530 Keller May 2011 A1
20110115562 Gilbert May 2011 A1
20110144635 Harper et al. Jun 2011 A1
20110178516 Orszulak et al. Jul 2011 A1
20110202056 Sartor Aug 2011 A1
20110204903 Gilbert Aug 2011 A1
20110208179 Prakash et al. Aug 2011 A1
20110213354 Smith Sep 2011 A1
20110213355 Behnke, II Sep 2011 A1
20110301607 Couture Dec 2011 A1
20110318948 Plaven et al. Dec 2011 A1
20110319881 Johnston Dec 2011 A1
20120004703 Deborski et al. Jan 2012 A1
20120010610 Keppel Jan 2012 A1
20120022521 Odom et al. Jan 2012 A1
20120029515 Couture Feb 2012 A1
20120089139 Wham et al. Apr 2012 A1
20120101491 Blaha Apr 2012 A1
20120116268 Orszulak et al. May 2012 A1
20120130256 Buysse et al. May 2012 A1
20120150170 Buysse et al. Jun 2012 A1
20120172866 Behnke, II Jul 2012 A1
20120179156 Behnke, II Jul 2012 A1
20120220997 Johnston Aug 2012 A1
20120239020 Cunningham Sep 2012 A1
20120239025 Smith Sep 2012 A1
20120239026 Orszulak et al. Sep 2012 A1
20120265194 Podhajsky Oct 2012 A1
20120265195 Gilbert Oct 2012 A1
20120310241 Orszulak Dec 2012 A1
20130023867 Collins Jan 2013 A1
20130023870 Collins Jan 2013 A1
20130023871 Collins Jan 2013 A1
20130035679 Orszulak Feb 2013 A1
20130053840 Krapohl et al. Feb 2013 A1
20130066311 Smith et al. Mar 2013 A1
20130067725 Behnke, II et al. Mar 2013 A1
20130072920 Behnke, II et al. Mar 2013 A1
20130072921 Behnke, II et al. Mar 2013 A1
20130072922 Behnke, II et al. Mar 2013 A1
20130072923 Behnke, II et al. Mar 2013 A1
20130079763 Heckel et al. Mar 2013 A1
20130190751 Brannan Jul 2013 A1
20130193952 Krapohl Aug 2013 A1
20130249721 Smith Sep 2013 A1
20130267944 Krapohl Oct 2013 A1
20130304049 Behnke, II et al. Nov 2013 A1
Foreign Referenced Citations (187)
Number Date Country
179607 Mar 1905 DE
390937 Mar 1924 DE
1099658 Feb 1961 DE
1139927 Nov 1962 DE
1149832 Jun 1963 DE
439302 Jan 1969 DE
2439587 Feb 1975 DE
2455174 May 1975 DE
2407559 Aug 1975 DE
2602517 Jul 1976 DE
2504280 Aug 1976 DE
2540968 Mar 1977 DE
2820908 Nov 1978 DE
2803275 Aug 1979 DE
2823291 Nov 1979 DE
2946728 May 1981 DE
3143421 May 1982 DE
3045996 Jul 1982 DE
3120102 Dec 1982 DE
3510586 Oct 1986 DE
3604823 Aug 1987 DE
3904558 Aug 1990 DE
3942998 Jul 1991 DE
4206433 Sep 1993 DE
4339049 May 1995 DE
19506363 Aug 1996 DE
19717411 Nov 1998 DE
19848540 May 2000 DE
10 2008058737 Apr 2010 DE
10200805873 Apr 2010 DE
0 246 350 Nov 1987 EP
267403 May 1988 EP
296777 Dec 1988 EP
310431 Apr 1989 EP
325456 Jul 1989 EP
336742 Oct 1989 EP
390937 Oct 1990 EP
0 556 705 Aug 1993 EP
569130 Nov 1993 EP
608609 Aug 1994 EP
617925 Oct 1994 EP
694291 Jan 1996 EP
0 836 868 Apr 1998 EP
870473 Oct 1998 EP
0878169 Nov 1998 EP
880220 Nov 1998 EP
0 882 955 Dec 1998 EP
0640317 Sep 1999 EP
1051948 Nov 2000 EP
1053720 Nov 2000 EP
1067690 Jan 2001 EP
1146827 Oct 2001 EP
1151725 Nov 2001 EP
1263181 Dec 2002 EP
1278007 Jan 2003 EP
1293171 Mar 2003 EP
1366724 Dec 2003 EP
1472984 Nov 2004 EP
1495712 Jan 2005 EP
1500378 Jan 2005 EP
1535581 Jun 2005 EP
1594392 Nov 2005 EP
1609430 Dec 2005 EP
1645235 Apr 2006 EP
1681026 Jul 2006 EP
1707143 Oct 2006 EP
1707144 Oct 2006 EP
1744354 Jan 2007 EP
1776929 Apr 2007 EP
1810628 Jul 2007 EP
1810630 Jul 2007 EP
1810631 Jul 2007 EP
1810632 Jul 2007 EP
1810633 Jul 2007 EP
1810634 Jul 2007 EP
1849425 Oct 2007 EP
1854423 Nov 2007 EP
1862137 Dec 2007 EP
1994904 Nov 2008 EP
2025297 Feb 2009 EP
2100566 Sep 2009 EP
2111812 Oct 2009 EP
2253286 Nov 2010 EP
1 275 415 Nov 1961 FR
1 347 865 Jan 1964 FR
2 313 708 Dec 1976 FR
2364461 Apr 1978 FR
2 502 935 Oct 1982 FR
2 517 953 Jun 1983 FR
2 573 301 May 1986 FR
607850 Sep 1948 GB
702510 Jan 1954 GB
855459 Nov 1960 GB
902775 Aug 1962 GB
1290304 Sep 1972 GB
2154881 Sep 1985 GB
2164473 Mar 1986 GB
2214430 Sep 1989 GB
2331247 May 1999 GB
2358934 Aug 2001 GB
2434872 Aug 2007 GB
63 005876 Jan 1988 JP
2000-324860 Nov 2000 JP
2001-128471 May 2001 JP
2003-021780 Jan 2003 JP
166452 Nov 1964 SU
727201 Apr 1980 SU
WO9711648 Apr 1997 WF
WO2008110756 Sep 2008 WF
9206642 Apr 1992 WO
9207622 May 1992 WO
9324066 Dec 1993 WO
9410922 May 1994 WO
9424949 Nov 1994 WO
9428809 Dec 1994 WO
9509577 Apr 1995 WO
9518575 Jul 1995 WO
9519148 Jul 1995 WO
9525471 Sep 1995 WO
9525472 Sep 1995 WO
9602180 Feb 1996 WO
9604860 Feb 1996 WO
9608794 Mar 1996 WO
9618349 Jun 1996 WO
9629946 Oct 1996 WO
9639085 Dec 1996 WO
9639086 Dec 1996 WO
9639088 Dec 1996 WO
9639914 Dec 1996 WO
9706739 Feb 1997 WO
9706740 Feb 1997 WO
9706855 Feb 1997 WO
9710763 Mar 1997 WO
9711648 Apr 1997 WO
9717029 May 1997 WO
9743971 Nov 1997 WO
9807378 Feb 1998 WO
9818395 May 1998 WO
9827880 Jul 1998 WO
9912607 Mar 1999 WO
9956647 Nov 1999 WO
0048672 Aug 2000 WO
0054683 Sep 2000 WO
0101847 Jan 2001 WO
0200129 Jan 2002 WO
0211634 Feb 2002 WO
0232333 Apr 2002 WO
0232335 Apr 2002 WO
0245589 Jun 2002 WO
0247565 Jun 2002 WO
02053048 Jul 2002 WO
02088128 Nov 2002 WO
02097967 Dec 2002 WO
03047446 Jun 2003 WO
03090635 Nov 2003 WO
03092520 Nov 2003 WO
03090630 Apr 2004 WO
2004028385 Apr 2004 WO
2004043240 May 2004 WO
2004052182 Jun 2004 WO
2004047659 Jun 2004 WO
2004073488 Sep 2004 WO
2004098385 Nov 2004 WO
2004103156 Dec 2004 WO
2005046496 May 2005 WO
2005048809 Jun 2005 WO
2005050151 Jun 2005 WO
2005060365 Jul 2005 WO
2005060849 Jul 2005 WO
2005115235 Dec 2005 WO
2005117735 Dec 2005 WO
2006050888 May 2006 WO
2006105121 Oct 2006 WO
2007055491 May 2007 WO
2007067522 Jun 2007 WO
2007105963 Sep 2007 WO
2008003058 Jan 2008 WO
2008002517 Jan 2008 WO
2008011575 Jan 2008 WO
2008043999 Apr 2008 WO
2008044013 Apr 2008 WO
2008044000 Apr 2008 WO
2008053532 May 2008 WO
2008070562 Jun 2008 WO
2008071914 Jun 2008 WO
2008101356 Aug 2008 WO
2008110756 Sep 2008 WO
Non-Patent Literature Citations (137)
Entry
US 6,878,148, 04/2005, Goble et al. (withdrawn)
International Search Report EP 07001494.9 extended dated Mar. 7, 2011.
International Search Report EP 07001527.6 dated May 9, 2007.
International Search Report EP 07004355.9 dated May 21, 2007.
International Search Report EP 07008207.8 dated Sep. 13, 2007.
International Search Report EP 07009322.4 dated Jan. 14, 2008.
International Search Report EP 07010673.7 dated Sep. 24, 2007.
International Search Report EP 07015601.3 dated Jan. 4, 2008.
International Search Report EP 07015602.1 dated Dec. 20, 2007.
International Search Report EP 07019174.7 dated Jan. 29, 2008.
International Search Report EP08004667.5 dated Jun. 3, 2008.
International Search Report EP08006733.3 dated Jul. 28, 2008.
International Search Report EP08012503 dated Sep. 19, 2008.
International Search Report EP08013605 dated Feb. 25, 2009.
International Search Report EP08015601.1 dated Dec. 5, 2008.
International Search Report EP08155780 dated Jan. 19, 2009.
International Search Report EP08016540.0 dated Feb. 25, 2009.
International Search Report EP08166208.2 dated Dec. 1, 2008.
International Search Report EP09003678.1 dated Aug. 7, 2009.
International Search Report EP09004250.8 dated Aug. 2, 2010.
International Search Report EP09005160.8 dated Aug. 27, 2009.
International Search Report EP09009860 dated Dec. 8, 2009.
International Search Report EP09012386 dated Apr. 1, 2010.
International Search Report EP09012388.6 dated Apr. 13, 2010.
International Search Report EP09012389.4 dated Jul. 6, 2010.
International Search Report EP09012391.0 dated Apr. 19, 2010.
International Search Report EP09012392 dated Mar. 30, 2010.
International Search Report EP09012396 dated Apr. 7, 2010.
International Search Report EP09012400.9 dated Apr. 13, 2010.
International Search Report EP09156861.8 dated Jul. 14, 2009.
International Search Report EP09158915 dated Jul. 14, 2009.
International Search Report EP09164754.5 dated Aug. 21, 2009.
International Search Report EP09169377.0 dated Dec. 15, 2009.
International Search Report EP09169588.2 dated Mar. 2, 2010.
International Search Report EP09169589.0 dated Mar. 2, 2010.
International Search Report EP09172749.5 dated Dec. 4, 2009.
International Search Report EP09763515.5 dated Nov. 29, 2011.
International Search Report EP10001808.4 dated Jun. 21, 2010.
International Search Report EP10150563.4 dated Jun. 10, 2010.
International Search Report EP10150564.2 dated Mar. 29, 2010.
International Search Report EP10150565.9 dated Mar. 12, 2010.
International Search Report EP10150566.7 dated Jun. 10, 2010.
International Search Report EP10150567.5 dated Jun. 10, 2010.
International Search Report EP10164740.2 dated Aug. 3, 2010.
International Search Report EP10171787.4 dated Nov. 18, 2010.
International Search Report EP10172636.2 dated Dec. 6, 2010.
International Search Report EP10174476.1 dated Nov. 12, 2010.
International Search Report EP10178287.8 dated Dec. 14, 2010.
International Search Report EP10179305.7 dated Aug. 23, 2011.
International Search Report EP10179321.4 dated Mar. 18, 2011.
International Search Report EP10179353.7 dated Dec. 21, 2010.
European Office Action for EP 04025791.7 dated Sep. 21, 2015.
International Search Report EP10179363.6 dated Jan. 12, 2011.
International Search Report EP10180004.3 dated Jan. 5, 2011.
International Search Report EP10180964.8 dated Dec. 22, 2010.
International Search Report EP10180965.5 dated Jan. 26, 2011.
International Search Report EP10181018.2 dated Jan. 26, 2011.
International Search Report EP10181060.4 dated Jan. 26, 2011.
International Search Report EP10182003.3 dated Dec. 28, 2010.
International Search Report EP10182005.8 dated Jan. 5, 2011.
International Search Report EP10188190.2 dated Nov. 22, 2010.
International Search Report EP10191319.2 dated Feb. 22, 2011.
International Search Report EP10195393.3 dated Apr. 11, 2011.
International Search Report EP11006233.8 dated Feb. 2, 2012.
International Search Report EP11155959.7 dated Jun. 30, 2011.
International Search Report EP11155960.5 dated Jun. 10, 2011.
International Search Report EP11168660 dated Sep. 28, 2011.
International Search Report EP11170959.8 dated Dec. 9, 2011.
International Search Report EP11173562.7 dated Nov. 24, 2011.
International Search Report EP11182150.0 dated Nov. 17, 2011.
International Search Report EP11188798.0 dated Dec. 27, 2011.
International Search Report PCT/US03/33711 dated Jul. 16, 2004.
International Search Report PCT/US03/33832 dated Jun. 17, 2004.
International Search Report PCT/US03/37110 dated Jul. 25, 2005.
International Search Report PCT/US03/37310 dated Aug. 13, 2004.
International Search Report PCT/US04/02961 dated Aug. 2, 2005.
International Search Report PCT/US04/13443 dated Dec. 10, 2004.
International Search Report PCT/US08/052460 dated Apr. 24, 2008.
International Search Report PCT/US09/46870 dated Jul. 21, 2009.
Medtrex Brochure “The O.R. Pro 300” 1 p. Sep. 1998.
Muller et al. “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work; Sep. 1999.
International Search Report EP 07008207.8 dated Sep. 5, 2007.
International Search Report EP08013605 dated Nov. 17, 2008.
Examination Report for Australian Appln. No. 2004224955, May 4, 2010.
Ni W et al: “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences—Yingyong Kexue Xuebao, Shanghai CN, vol. 23 No. 2;(Mar. 2005); 160-164.
Bergdahl et al. “Studies on Coagulation and Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Geddes et al., “The Measurement of Physiologica Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27.
European Search Report No. 04025791.7 dated Feb. 24, 2015, 3 pages.
US. Appl. No. 10/406,690, filed Apr. 2003, Robert J. Behnke, II.
U.S. Appl. No. 10/573,713, filed Mar. 2006, Robert H. Wham.
U.S. Appl. No. 11/242,458, filed Oct. 2005, Daniel J. Becker.
Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921.
Vallfors et al., “Automatically Controlled Bipolar Electrosoagulation—‘COA-CCOMP’” Neurosurgical Review 7:2-3 (1984) pp. 187-190.
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779.
Prutchi et al. “Design and Development of Medical Electronic Instrumentation”, John Wiley & Sons, Inc. 2005.
Momozaki et al. “Electrical Breakdown Experiments with Application to Alkali Metal Thermal-to-Electric Converters”, Energy conversion and Management; Elsevier Science Publishers, Oxford, GB; vol. 44, No. 6, Apr. 1, 2003 pp. 819-843.
Muller et al. “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work; Company Newsletter; Sep. 1999.
Ogden Goertzel Alternative to the Fourier Transform: Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG vol. 99, No. 9. 1687.
Hadley I C D et al., “Inexpensive Digital Thermometer for Measurements on Semiconductors” International Journal of Electronics; Taylor and Francis. Ltd.; London, GB; vol. 70, No. 6 Jun. 1, 1991; pp. 1155-1162.
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pp. Jan. 1989.
Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics, 9 (3), May/Jun. 1982.
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy” Journal Neurosurgery, 83; (1995) pp. 271-276.
Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27.
Cosman et al., “Methods of Making Nervous System Lesions” in William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499.
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994) pp. 297-307.
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Cosman et al., “Radiofrequency Lesion Generation and Its Effect on Tissue Impedance” Applied Neurophysiology 51: (1988) pp. 230-242.
Zlatanovic M., “Sensors in Diffusion Plasma Processing” Microelectronics 1995; Proceedings 1995; 20.sup.th International Conference CE on Nis, Serbia Sep. 12-14, 1995; New York, NY vol. 2 pp. 565-570.
Ni W. et al. “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences-Yingyong Kexue Xuebao, Shangha CN, vol. 23 No. 2;(Mar. 2005); pp. 160-164.
Chicharo et al. “A Sliding Goertzel Algorith” Aug. 1996, pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL vol. 52 No. 3.
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1, (Jul. 1991) pp. 148-151.
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone” Neurosurgery 15: (1984) pp. 945-950.
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404.
Medtrex Brochure—Total Control at Full Speed, “The O.R. Pro 300” 1 p. Sep. 1998.
Valleylab Brochure “Valleylab Electroshield Monitoring System” 2 pp. Nov. 1995.
International Search Report EP 98300964.8 dated Dec. 4, 2000.
International Search Report EP 04009964 dated Jul. 13, 2004.
International Search Report EP 04011375 dated Sep. 10, 2004.
International Search Report EP 04015981.6 dated Sep. 29, 2004.
International Search Report EP04707738 dated Jul. 4, 2007.
International Search Report EP 05002769.7 dated Jun. 9, 2006.
International Search Report EP 05014156.3 dated Dec. 28, 2005.
International Search Report EP 05021944.3 dated Jan. 18, 2006.
International Search Report EP 05022350.2 dated Jan. 18, 2006.
International Search Report EP 06000708.5 dated Apr. 21, 2006.
International Search Report—extended EP 06000708.5 dated Aug. 22, 2006.
International Search Report EP 06006717.0 dated Aug. 7, 2006.
International Search Report EP 06010499.9 dated Jan. 29, 2008.
International Search Report EP 06022028.2 dated Feb. 5, 2007.
International Search Report EP 06025700.3 dated Apr. 12, 2007.
International Search Report EP 07001481.6 dated Apr. 23, 2007.
International Search Report EP 07001484.0 dated Jun. 14, 2010.
International Search Report EP 07001485.7 dated May 15, 2007.
International Search Report EP 07001489.9 dated Dec. 20, 2007.
International Search Report EP 07001491 dated Jun. 6, 2007.
International Search Report EP 07001494.9 dated Aug. 25, 2010.
Related Publications (1)
Number Date Country
20150130374 A1 May 2015 US
Provisional Applications (3)
Number Date Country
60538202 Jan 2004 US
60527812 Dec 2003 US
60515826 Oct 2003 US
Continuations (4)
Number Date Country
Parent 13943518 Jul 2013 US
Child 14604452 US
Parent 13350877 Jan 2012 US
Child 13943518 US
Parent 12163408 Jun 2008 US
Child 13350877 US
Parent 10974332 Oct 2004 US
Child 12163408 US