Embodiments of the present invention relates to a switchgear for opening and closing an electric circuit and an operation mechanism for the same.
Generally, operation mechanisms for switchgears include those using hydraulic operating power for providing a large output power and those using spring operating force for providing a low to middle output power. The former mechanisms are referred to as hydraulic operation mechanisms, while the latter mechanisms are referred to as spring operation mechanisms. Particularly, arc-extinguishing chambers of arc gas breakers, which are a sort of switchgear, have been downsized in recent years so that accidental electric currents and other fault electric currents can be cut-off with small operating force and hence spring operation mechanisms have been finding applications than ever. High-speed operation capabilities of providing a 2-cycle electric current cut-off effect (cutting an AC within the time of two cycles thereof) are required of gas circuit breakers for ultra-high voltages.
Japanese Patent No. 2,529,264, the entire content of which is incorporated herein by reference, describes a spring operation mechanism that can provide a 2-cycle electric current cut-off effect. The spring operation mechanism is designed to use torsion bars to provide drive force for turning on and off a switch. More specifically, the mechanism is formed as compact one by reciprocating two torsion bars to provide high-speed operation capabilities.
Japanese Patent Application Laid-Open Publication No. 2007-323989, the entire content of which is incorporated herein by reference, describes a spring operation mechanism that can adapt itself not only to 2-cycle electric current cut-off but also to other numbers of cut-off cycles such as 3-cycle cut-off and 5-cycle cut-off.
The above and other features and advantages of the present invention will become apparent from the discussion hereinbelow of specific, illustrative embodiments thereof presented in conjunction with the accompanying drawings, in which:
Spring operation mechanisms disclosed in Japanese Patent No. 2,529,264 and Japanese Patent Application Laid-Open Publication No. 2007-323989 as described above can provide a 2-cycle electric current cut-off effect. Particularly, a spring operation mechanism of Japanese Patent Application Laid-Open Publication No. 2007-323989 can adapt itself to lower speed electric current cut-offs such as 3-cycle electric current cut-off. However, the time to open an electric circuit varies from a spring operation mechanism to another due to dispersions in the characteristics of the component parts of such mechanisms and the influence of friction of link sections and sliding sections thereof so that each spring operation mechanism needs to be finely adjusted to make the time to open an electric circuit of a predetermined value. The spring operation mechanism disclosed in Japanese Patent No. 2,529,264 does not have such a fine adjustment feature. On the other hand, the spring operation mechanism disclosed in Japanese Patent Application Laid-Open Publication No. 2007-323989 requires a cumbersome operation for finely adjusting the magnetic coupling because the tripping operation section thereof needs to be replaced for fine adjustment and, while the spring operation mechanism uses a region having large attraction force of an electromagnetic solenoid for high-speed electric current cut-offs, the movable region of the movable iron core of the solenoid is small and practically provides no range of adjustability because the gap between the movable iron core and the fixed iron core is small.
Additionally, the time to close an electric circuit also can vary from a spring operation mechanism to another due to dispersions in the characteristics of the component parts of such mechanisms and the influence of friction of link sections and sliding sections thereof. For this reason, the time to close a 3-phase electric circuit can vary when the spring operation mechanism is employed for a breaker that can operate for circuits with different phases, although the spring operation mechanism does not have any feature of finely adjusting the time to close a circuit.
In view of the above-identified problems, it is therefore the object of the present invention to provide a switchgear for opening and closing an electric circuit that can be adjusted for at least either the time to open the circuit or the time to close the circuit in a simple and easy manner.
In order to achieve the object, according to an embodiment of the present invention, there is presented a switchgear operation mechanism for driving a movable contact to reciprocate so as to bring the switchgear from a closed circuit condition to an open circuit condition and vice versa. The mechanism comprises: a circuit opening spring that operates to open a circuit by discharging energy; a circuit opening trigger mechanism that maintains a state of energy accumulation of the circuit opening spring; a circuit opening operation section that releases the circuit opening trigger mechanism from constraint; a circuit closing spring that operates to close the circuit by discharging energy; a circuit closing trigger mechanism that maintains a state of energy accumulation of the circuit closing spring; and a circuit closing operation section that releases the circuit closing trigger mechanism from constraint. At least either the circuit opening operation section or the circuit closing operation section includes: an electromagnetic solenoid having a fitting structure provided with a step; and a solenoid spacer that adjusts a distance between the circuit opening trigger mechanism or the circuit closing trigger mechanism to be operated by the electromagnetic solenoid and the electromagnetic solenoid. The electromagnetic solenoid has: a solenoid housing fixed by way of the solenoid spacer; a plunger slidable relative to the solenoid housing; a plunger return spring urging the plunger in a plunger returning direction; a coil rigidly fitted to the solenoid housing to drive the plunger to slide in a direction of magnetic excitation operation opposite to the plunger returning direction against the urging force of the plunger return spring by generating a magnetically excited state by electric power supplied to the coil; and a stopper fitted to the solenoid housing so as to limit sliding motion of the plunger in the plunger returning direction when no electric power is supplied to the coil, limiting position thereof being adjustable.
In order to achieve the object, according to an embodiment of the present invention, there is presented a switchgear comprising: a movable contact; and a switchgear operation mechanism that drives the movable contact to reciprocate so as to bring the switchgear from a closed circuit condition to an open circuit condition and vice versa. The switchgear operation comprises: a circuit opening spring that operates to open a circuit by discharging energy; a circuit opening trigger mechanism that maintains a state of energy accumulation of the circuit opening spring; a circuit opening operation section that releases the circuit opening trigger mechanism from constraint; a circuit closing spring that operates to close the circuit by discharging energy; a circuit closing trigger mechanism that maintains a state of energy accumulation of the circuit closing spring; and a circuit closing operation section that releases the circuit closing trigger mechanism from constraint. At least either the circuit opening operation section or the circuit closing operation section includes: an electromagnetic solenoid having a fitting structure provided with a step; and a solenoid spacer that adjusts a distance between the circuit opening trigger mechanism or the circuit closing trigger mechanism to be operated by the electromagnetic solenoid and the electromagnetic solenoid. The electromagnetic solenoid has: a solenoid housing fixed by way of the solenoid spacer; a plunger slidable relative to the solenoid housing; a plunger return spring urging the plunger in a plunger returning direction; a coil fixed to the solenoid housing to drive the plunger to slide in a direction of magnetic excitation operation opposite to the plunger returning direction against the urging force of the plunger return spring by generating a magnetically excited state by electric power supplied to the coil; and a stopper fitted to the solenoid housing so as to limit sliding motion of the plunger in the plunger returning direction when no electric power is supplied to the coil, limiting position thereof being adjustable.
Now, embodiments of switchgear operation mechanism according to the present invention will be described by referring to the drawings.
Firstly, the first embodiment of switchgear operation mechanism according to the present invention will be described by referring to
Referring
A circuit opening spring 2 is rigidly fitted at an end thereof to a fitting surface 20a and snugly fitted at the other end thereof into a circuit opening spring receiver 3. A damper 4 is firmly fixed to the circuit opening spring receiver 3. Liquid is sealed in the inside of the damper 4 and a piston 4a is translatably and slidably arranged. The damper 4 is firmly fixed at an end thereof to a circuit opening spring link 5. The circuit opening spring link 5 is rotatably fitted to a pin 11a of the main lever 11.
A sub shaft 30 is rotatably arranged at the frame 20 and a sub lever 31 is firmly fixed to the sub shaft 30. A pin 31a is arranged at the front end of the sub lever 31. A pin 11b is arranged at the sub lever 11 and linked to the pin 31a by means of a main-sub coupling link 6. A latch lever 32 is firmly fixed to the sub shaft 30 and a roller pin 32a is rotatably and snugly fitted to the front end thereof. Additionally, a cam lever 33 is firmly fixed to the sub shaft 30 and a roller 33a is rotatably and snugly fitted to the front end of the cam lever 33.
A circuit closing spring 7 is rigidly fitted at one end thereof to the fitting surface 20a and snugly fitted at the other end thereof into a circuit closing spring receiver 8. A pin 8a is arranged at the circuit closing spring receiver 8. The pin 8a is linked to a pin 12a of a circuit closing lever 12 that is firmly fixed to an end of a circuit closing shaft 10 by way of a circuit closing link 13. A circuit closing cam 14 is firmly fixed to the circuit closing shaft 10 and releasably brought into contact engagement with the roller 33a as the circuit closing shaft is driven to rotate.
As shown in
A circuit opening trigger mechanism 201 is formed by a latch 41, a latch return spring 42, a pin 40b, a tripping link 43, a tripping lever 44, a tripping lever return spring 45 and a tripping lever stop pin 22. The latch 41 is arranged so as to be rotatable around a latch shaft pin 40c fixed to an end of the lock lever 40. A latch return spring 42 is arranged between the lock lever 40 and the latch 41. The latch return spring 42 is engaged at an end thereof with the pin 40b that is firmly fixed to the lock lever 40. The latch return spring 42 constantly generates torque for driving the latch to rotate clockwise. A front end 41a of the latch 41 is formed as a flat surface or as a convex circular arc surface of revolution (that is as a convex circular cylindrical surface) and the circular arc surface of revolution is so formed as that the center position thereof substantially falls on the straight line connecting the center of the roller pin 32a in a closed circuit condition and the center of the latch shaft pin 40c.
In the closed circuit condition shown in
As shown in
The circuit opening operation section 202 is formed by: a circuit opening electromagnetic solenoid 60 having a fitting structure that is provided with a step, a solenoid spacer 62, and a stopper 63. The solenoid spacer 62 is arranged between the frame 20 and the circuit opening electromagnetic solenoid 60. The position of the circuit opening solenoid 60 can arbitrarily be determined by varying the thickness of the solenoid spacer 62.
A through hole that is provided with a female screw is bored at an end portion of a solenoid housing 60h of the circuit opening electromagnetic solenoid 60. A stopper 63 on which a male screw is threaded so as to be screwed into the female screw is fitted to the solenoid housing 60h. A nut 64 is arranged so as to be screwed onto the male screw. Thus, the position of the stopper 63 can be fixed by tightening the nut 64.
The front end of the plunger 60a of the circuit opening electromagnetic solenoid 60 is releasably brought into contact engagement with the tripping lever 44. As circuit opening command is input, the front end of the plunger 60a of the circuit opening electromagnetic solenoid 60 pushes the tripping lever 44 and drives the tripping lever 44 to rotate counterclockwise.
As shown in
The circuit closing lock lever return spring 51 is arranged at an end of the circuit closing lock lever 50, and the other end of the circuit closing lock lever return spring 51 is fixed to the frame 20. The circuit closing lock lever return spring 51 is a compression spring and constantly exerts torque for driving the circuit closing lock lever 50 to rotate clockwise. However, the rotary motion of the circuit closing lock lever 50 is restricted, since the circuit closing lock lever stop pin 23 that is firmly fixed to the frame 20 is engaged with it.
Like the circuit opening operation section 202, the circuit closing operation section 302 is formed by: a circuit opening electromagnetic solenoid 61 having a fitting structure that has a step, a solenoid spacer 62, and a stopper 63. The solenoid spacer 62 is arranged between the frame 20 and the circuit opening electromagnetic solenoid 61. The position of the circuit opening solenoid 61 can arbitrarily be determined by varying the thickness of the solenoid spacer 62. The circuit closing electromagnetic solenoid 61 is provided at an end thereof with a stopper 63 for determining the position of the plunger 61a of the circuit closing electromagnetic solenoid 61 in an magnetically unexcited state. The position of the stopper 63 can be arbitrarily determined.
Referring to
As shown in
The circuit opening electromagnetic solenoid 60 has a fitting structure that has a step.
More specifically, the plunger 60a has a circularly cylindrical plunger main body 60f, and a circularly cylindrical step section 60g having a diameter smaller than the plunger main body 60f. The step section 60g is fixed to the end facet of the plunger 60a of the plunger main body 60f at the front end side thereof. The plunger return spring 60c is held in contact with and pushes the end facet of the step section 60g.
The plunger 60a and the plunger return spring 60c are supported by a solenoid housing 60h. The solenoid housing 60h can be separated into a base 60e and a housing main body 60i. A coil 60j is arranged at a position in the housing main body 60i located facing to the plunger 60a so as to surround the outer periphery of the plunger 60a. The circuit opening electromagnetic solenoid 60 is magnetically excited as electric power is supplied to the coil 60j.
Both the housing main body 60i and the base 60e are fitted to the frame 20 by way of the solenoid spacer 62.
As shown in
The propelling force that is obtained when the plunger 60a and the tripping lever 44 are engaged with each other can be changed by shifting the position of the plunger 60a by means of the stopper and also by shifting the position of the circuit opening electromagnetic solenoid 60 by varying the thickness of the solenoid spacer 62. Then, as a result, it is possible to change the timing of releasing the circuit opening trigger mechanism 201 from constraint. The thickness of the solenoid spacer 62 can be varied by selectively using solenoid spacers 62 having different thicknesses or by using a variable number of solenoid spacers 62.
The circuit closing operation section 302 has a structure similar to that of the circuit opening operation section 202. Therefore, the propelling force that is obtained when the plunger 61a and the circuit closing lock lever 50 are engaged with each other can be changed by shifting the position of the plunger 61a of the circuit closing electromagnetic solenoid 61 by means of the stopper 63 and also by shifting the position of the circuit closing electromagnetic solenoid 61 by varying the thickness of the solenoid spacer 62. Then, as a result, it is possible to change the timing of releasing the circuit closing trigger mechanism 301 from constraint.
Since the structure of the circuit closing electromagnetic solenoid 61 is similar to that of the circuit opening electromagnetic solenoid 60 shown in
In an open circuit condition as shown in
In a closed circuit condition as shown in
In the illustrated embodiment, the axes of rotation of the circuit closing shaft 10, the sub shaft 30 and so on and the axes of the pins run in parallel with one another.
(Circuit Opening Operation)
Now, the circuit opening operation of this embodiment, which has the above-described configuration, from a closed circuit condition shown in
Firstly, as a circuit opening command is externally input in a closed circuit condition as shown in
The tripping lever 44 is driven to rotate counterclockwise because it is engaged with the plunger 60a. Then, the tripping link 43 is driven to move rightward, while being held in engagement with the latch pin 41b, in an interlocked manner to consequently drive the latch 41 to rotate counterclockwise. As a result of this operation, the front end 41a of the latch 41 is disengaged from the roller pin 32a.
Since counterclockwise rotational force is applied to the latch lever 32 by the circuit opening spring 2, it rotates counterclockwise, pushing away the latch 41. As this time, since the tripping link 43 moves, holding its oblong hole 43a in engagement with the tripping lever pin 44a, it moves independently from the tripping lever 44.
Referring to
When the circuit opening spring 2 is displaced by a certain distance, the piston 4a contacts the stopper 20b firmly fixed to the frame 20, and the damper 4 generates braking force to stop the motion of the circuit opening spring 2 and also the motions of the link levers coupled to it to complete the circuit opening operation.
(Circuit Closing Operation)
Now, the circuit closing operation from the state of completion of an energy accumulation process of the circuit closing spring 7 in an open circuit condition as shown in
Referring to
The rotational motion of the sub lever 31 is transmitted to the main lever 11 and the main lever 11 is driven to rotate counterclockwise (in the direction of arrow L). Then, the link mechanism 1 and the movable contact 100 linked to it are driven to move leftward to execute a circuit closing operation. As the main lever 11 is driven to rotate, the circuit opening spring 2 is compressed to accumulate energy and the roller pin 32a becomes engaged with the latch 41 once again to complete the circuit closing operation.
Thus, this embodiment can change the time period to open a circuit and/or the time period to close a circuit by means of a simple and easy adjustment method, and hence it can adapt itself with ease not only to 2-cycle electric current cut-off but also to other numbers of cut-off cycles such as 3-cycle cut-off and 5-cycle cut-off. Additionally, if there is a time lag to close a 3-phase electric circuit, it can be corrected with ease.
In this embodiment, the stopper 63 as shown in
A housing through hole is bored through an end portion of the solenoid housing 60h of circuit opening electromagnetic solenoid 60 and a housing female screw is formed at the housing through hole. A guide male screw formed on the outer periphery of the stopper guide 65 is screwed and inserted into the housing female screw. A stopper guide 65 is provided with a guide through hole and a stopper pin 66 is slidably arranged in the guide through hole. A projecting section 66a of the stopper pin 66 is formed in the solenoid housing 60h and the projecting section 66a is engaged with the stopper guide 65. The position of the stopper pin 66 is fixed as the guide male screw section formed on the outer periphery of the stopper guide 65 is screwed into a nut 67.
In this embodiment having the above-described configuration, the circuit opening trigger mechanism 201 and the circuit closing trigger mechanism 301 can be released from constraint by a simple manual operation of pushing the stopper pin 66 without requiring any additional manual operation section. Thus, space-saving is achieved by this embodiment.
Additionally, the circuit closing operation section 302 can be made to have a structure similar to that of the circuit opening operation section 202 to provide similar advantages.
As seen from
Additionally, the circuit closing electromagnetic solenoid can be made to have a similar structure. Thus, the timing of releasing the circuit opening trigger mechanism 301 from constraint can be changed, so that the time to open an electric circuit can be altered in a simple manner.
Note that the components of this embodiment same as or similar to those of the first embodiment are respectively denoted by the same reference symbols and will not be described repeatedly.
In this embodiment, the circuit closing lock lever stop pin 23 shown in
With this embodiment having the above-described configuration, the engaging side shaft 24a of the eccentric pin 24 becomes eccentric and driven to rotate as the anchoring side shaft 24 rotates so that the circuit closing lock lever 50 is also driven to rotate to consequently change the range of engagement between the semicircular cylindrical section 50a of the circuit closing lock lever 50 and the ratchet pawl 12b of the circuit closing lever 12.
Thus, the timing of releasing the circuit closing trigger mechanism 301 from constraint and the time to close a circuit can be changed by a simple and easy adjustment method of fixing the eccentric pin 24 at an arbitrarily selected angle by means of the nut 25.
Advantages similar to those of the eccentric pin of the circuit closing trigger mechanism 301 can be obtained at the circuit opening trigger mechanism 201 by using an eccentric pin for the tripping lever stop pin 22 that is engaged with the tripping lever 44.
Similar advantages can also be obtained by changing the diameter of the tripping lever stop pin 22 or the circuit closing lock lever stop pin 23.
While the present invention is described above by way of several embodiments, these embodiments are described only as exemplary embodiments and do not limit the scope of the present invention by any means. Furthermore, the present invention can be embodied in various different ways and such embodiments can be subjected to various omissions, replacements and alterations without departing from the spirit and scope of the present invention. Thus, such embodiments and their modifications are equally within the spirit and scope of the present invention, particularly as defined in the appended claims and their equivalents.
For example, while compression springs are employed for the circuit opening spring 2 and the circuit closing spring 7 in each of the above-described embodiments, they may be replaced by some other elastic elements such as torsion coil springs, disc springs, spiral springs, leaf springs, air springs or extension springs. Additionally, while coil springs or torsion coil springs are employed for the latch return spring 42, the tripping lever return spring 45, the circuit closing lock lever return spring 51 and the plunger return spring 60c provided for the latch 41, the tripping lever 44, the closing circuit lock lever 50 and the circuit opening electromagnetic solenoid 60, they may be replaced by some other elastic elements such as disc springs, spiral springs or leaf springs.
Furthermore, the above statement is applicable to operation devices having a plurality of circuit opening springs and those having a plurality of circuit closing springs.
Since the lock lever is fixed to the frame 20, the lock lever may be omitted and the pin 40b may be directly fixed to the frame 20. Alternatively, the pin 40b may be integrally formed with the lock lever 40 or the frame 20.
Although the solenoid spacers 62 of the circuit opening operation section 202 and the solenoid spacers 62 of the circuit closing operation section 302 are denoted by the same reference symbols of “62”, spacers having different thicknesses may be employed depending on the required operation time.
The timing of releasing the circuit opening trigger mechanism 201 and that of releasing the circuit closing trigger mechanism 301 can be changed to change the time to open a circuit and the time to close a circuit respectively by altering the mass of the plunger 60a and that of the plunger 61a.
Number | Date | Country | Kind |
---|---|---|---|
2011-174045 | Aug 2011 | JP | national |
This application is a continuation-in-part (CIP) application based upon the International Application PCT/JP2012/005054, the International Filing Date of which is Aug. 8, 2012, the entire content of which is incorporated herein by reference, and claims the benefit of priority from the prior Japanese Patent Application No. 2011-174045, filed in the Japanese Patent Office on Aug. 9, 2011, the entire content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2012/005054 | Aug 2012 | US |
Child | 14070859 | US |