The above and other features and advantages of the present invention will become apparent from the discussion hereinbelow of specific, illustrative embodiments thereof presented in conjunction with the accompanying drawings, in which:
Embodiments of an operating mechanism of a switchgear according to the present invention will be described below with reference to the accompanying drawings.
First, with reference to
In
A opening spring 12 has one end fixed to an attachment surface 10d of the frame 14 and the other end fitted to a opening spring receiver 16. A damper 17 is fixed to the opening spring receiver 16. In the damper 17, a fluid is encapsulated and a piston 17a is provided so as to translationally slide. One end of the damper 17 is fixed to a opening spring link 15, which is rotatably attached to a pin 11a of the main lever 11.
A sub-shaft 70 is rotatably disposed relative to the frame 14, and a sub-lever 71 is fixed to the sub-shaft 70. A pin 71a is disposed at the leading end of the sub-lever 71. A pin lid disposed in the main lever 11 and the pin 71 a are connected by a main-sub connection link 80. A latch lever 72 is fixed to the sub-shaft 70, and a roller 72a is rotatably fitted to the leading end of the latch lever 72. Further, a cam lever 73 is fixed to the sub-shaft 70, and a roller 73a is rotatably fitted to the leading end of the cam lever 73.
A closing spring 13 has one end fixed to the attachment surface 10d of the frame 14 and the other end fixed to a closing spring receiver 18. A pin 18a is disposed in the closing spring receiver 18. The pin 18a is connected to a pin 82a of a closing lever 82 which is fixed to the end portion of the closing shaft 81 through a closing link 83. A closing cam 84 is fixed to the closing shaft 81 and releasably engaged with the roller 73a in accordance with the rotation of the closing shaft 81.
A tab 82b is disposed at one end of the closing lever 82 and is releasably engaged with a half-column portion 62a provided in an anchoring lever 62 for closing which is rotatably disposed relative to the frame 14. Further, a return spring 62b is disposed at one end of the anchoring lever 62 for closing. The other end of the return spring 62b is fixed to the frame 14. The return spring 62b is a compression spring and the spring force thereof always acts on the anchoring lever 62 for closing as a clockwise torque. However, the rotation of the anchoring lever 62 is restricted by an engagement between a plunger 22a of an electromagnetic solenoid 22 for closing which is fixed to the frame 14 and the anchoring lever 62 for closing.
In the open state shown in
A two-forked support portion 90b is formed at the leading end of an anchoring lever 90. The support portion 90b is engaged with a pin 14b which is fixed to the frame 14, which fixes the position of the anchoring lever 90 relative to the frame 14.
A latch 91 is rotatably disposed around a latch shaft pin 100 which is fixed to the end portion of the anchoring lever 90. A latch return spring 91a is disposed between the anchoring lever 90 and the latch 91. The latch return spring 91a always generates a clockwise torque for the latch 91. The clockwise rotation of the latch 91 is restricted by an abutment between a stopper pin (or a stopper) 90a disposed on the anchoring lever 90 and the latch 91. A leading end 102 of the latch 91 is formed by substantially a cylindrical surface, and the center position of the cylindrical surface substantially coincides with the rotation center of the latch 91, i.e., center axis of the latch shaft pin 100 or falls within the radius of the latch shaft pin 100.
A kick lever 51 is an L-like shaped plate. One end of the L-shape is rotatably disposed relative to the anchoring lever 90 so as to be positioned around the stopper pin 90a. The other end of the L-shape of the kick lever 51 is a protrusion portion 51c to be described later. A connection pin 51a is disposed at the curved (or turning) portion of the L-shape of the kick lever 51 and, through the connection pin 51a, the kick lever 51 and a lock lever 52 are rotatably engaged with each other. A pin 52a is disposed at the end portion opposite to the connection pin 51a and, through the pin 52a, the lock lever 52 and the latch 91 are rotatably engaged with each other.
A clockwise torque of a lock lever/kick lever return spring 51b always acts on the kick lever 51. This torque is received when an abutment surface 52b disposed on the lock lever 52 is engaged with the latch 91. A cushioning member 52c is fixed to the abutment surface 52b, which reduces a vibration generated when the lock lever 52 is engaged with the latch 91.
In the closed state shown in
A pull-off link mechanism has a pull-off link 53 and a pull-off lever 54 rotatably engaged with one end of the pull-off link 53. The pull-off link 53 has an elongated hole 53a at its end portion on the side opposite to the engagement portion with the pull-off lever 54. A lock lever pin 52d is disposed at substantially the intermediate portion between the connection pin 51a and the pin 52a on the lock lever 52. The lock lever pin 52d is engaged with the elongated hole 53a, allowing the lock lever 52 and pull-off link to be moved and rotated relative to each other within the range of the elongated hole 53a. The pull-off lever 54 is rotatably disposed relative to the frame 14 and always receives a clockwise torque by a pull-off return spring 54a.
The leading end of a plunger 21a of an electromagnetic solenoid 21 for opening which is fixed to the frame 14 is releasably engaged with the pull-off lever 54. Upon input of an opening command, the pull-off lever 54 is rotated in the counterclockwise direction.
In the closed state, the main lever 11 always receives a clockwise torque by a tensile spring force of the opening spring 12. The force transmitted to the main lever 11 is then transmitted to the sub-lever 71 through the main-sub connection link 80. The transmitted force becomes a torque for always rotating the sub-lever 71 in the counterclockwise direction. This counterclockwise torque is supplied also to the latch lever 72. However, in the closed state, the leading end 102 of the latch 91 and the roller 72a are engaged with each other to restrict the counterclockwise rotation of the latch lever 72. Accordingly, the subsequent members from the sub-lever 71 to the opening spring 12 maintain their static state.
In the present embodiment, the rotation shafts, such as the closing shaft 81 and sub-shaft 70, and axes of the respective pins are parallel to each other.
(Opening Operation)
In the present embodiment having the configuration described above, a opening operation from the closed state shown in
The pull-off link 53 rotates the latch 91 in the counterclockwise direction through the lock lever 52, which releases an engagement between the roller 72a and the leading end 102 of the latch 91. The latch lever 72 receives a counterclockwise torque from the opening spring 12, so that it is rotated in the counterclockwise direction while pushing the latch 91. At this time, the lock lever pin 52d is moved along the elongated hole 53a independently of operation of the pull-off link 53. In this state, the protrusion portion 51c of the kick lever 51 has been moved from the latch 91 side to the pull-off lever 54 side, so that it is not engaged with the roller 72a. This state is shown in
When an engagement between the latch 91 and the roller 72a is released in
When the opening spring 12 is displaced by a given distance, the piston 17a is brought into contact with the stopper 14a fixed to the frame 14 to generate a braking power of the damper 17 to thereby stop the movement of the opening spring 12. The movements of the link levers connected to the opening spring 12 are accordingly stopped, thereby completing the opening operation. This state is shown in
(Closing Operation)
Next, a closing operation from the open state shown in
When the rotation of the sub-lever 71 is transmitted to the main lever 11, the main lever 11 is rotated in the counterclockwise direction (denoted by an arrow N). Then, the link mechanism 6 and movable contact 200 connected to the link mechanism 6 are moved to the left to start the closing operation. The opening spring 12 is compressed in association with the rotation of the main lever 11 to accumulate energy to establish an engagement between the roller 72a and the latch 91 once again, thereby completing the closing operation.
When the latch lever 72 is rotated in the clockwise direction in a state where the operation is shifted from the open state shown in
When an engagement between the closing cam 84 and the roller 73a is released, the roller 72a is engaged with the leading end 102 of the latch 91 once again by the tension force of the opening spring 12. At this reengagement operation, a force acting from the roller 72a to the latch 91 is directed to substantially the rotation center of the latch 91. This is because that the leading end 102 of the latch 91 is formed by substantially a cylindrical surface, and the center position of the cylindrical surface substantially coincides with the rotation center of the latch 91 (i.e., center axis of the latch shaft pin 100). However, there is a possibility that the latch 91 is rotated in the counterclockwise direction due to lack of accuracy in the engagement surface, deformation of the engagement surface, or impact force at the time of engagement, to release the roller 72a from the latch 91. At this time, however, a pressing state between the kick lever 51 and the lock lever 52 have already been established by the lock lever/kick lever return spring 51b, which functions as a malfunction preventing mechanism to prevent the counterclockwise rotation of the latch 91.
According to the present embodiment, after the electromagnetic solenoid 21 for opening is excited upon input of an opening command, the opening operation is completed by two operation steps: a first operation step in which the latch 91 is directly driven through the pull-off lever 54 and pull-off link 53 to release an engagement between the latch 91 and the roller 72a; and a second operation step in which the opening spring 12 operates. As described above, the number of operations steps for completing the opening operation is reduced from three (in the case of conventional spring operating mechanism) to two, thereby significantly reducing the opening operation time. This means that T2 is removed from the expression (1) representing the contact parting time, so that it is possible to reduce the contact parting time.
Further, the lock lever 52 and the kick lever 51 can prevent a disengagement of the latch 91 due to an external vibration or a change in the retention direction resulting from deformation of the leading end 102 of the latch 91, thereby increasing operational reliability of the spring operating mechanism.
Further, the engagement surface of the leading end 102 of the latch 91 is formed by substantially a cylindrical surface, and the center position of the cylindrical surface substantially coincides with the rotation center of the latch 91 (i.e., center axis of the latch shaft pin 100), so that a torque of the roller 72a does not act on the latch 91 in the closed state. This allows miniaturization of the latch 91 to thereby minimize a force required for releasing the engagement between the latch 91 and the roller 72a, which can minimize the size of the electromagnetic solenoid.
Further, in the closed state, the connection pin 51a, which serves as the center axis of the rotation connection between the lock lever 52 and kick lever 51, is disposed on a line connecting the pin 52a and stopper pin 90a, so that the rotation of the latch can be stopped with a simple structure, contributing to miniaturization of the latch 91.
Further, by forming the protrusion portion 51c in the kick lever 51 and engaging the protrusion portion 51c with the roller 72a at the time of the closing, it is possible to realize an action for easily releasing a pressing state between the kick lever 51 and the lock lever 52 with a simple structure, contributing to miniaturization of the latch 91.
The elongated hole 53a is disposed at one end of the pull-off link 53, and the lock lever pin 52d disposed in the lock lever 52 and the elongated hole 53 are engaged with each other. This configuration simplifies the operation of the pull-off link 53. That is, it is only necessary for the pull-off link 53 to move the latch 91 until the engagement between the latch 91 and the roller 72a is released. Subsequent movement of the latch 91 is realized by the lock lever pin 52d moving the elongated hole 53a. As a result, it is possible to minimize the weight of the movable portion of the latch 91 to thereby reduce the time required for the latch 91 to return to the position of the closed state, enabling high speed operation.
By disposing the cushioning member 52c in the portion at which the lock lever 52 and the latch 91 are engaged with each other, it is possible to reduce a vibration generated when the lock lever 52 returns to the closed state. As a result, stable operation can be realized to increase operational stability and reliability of the operating mechanism.
Next, with reference to
The present embodiment is obtained by partly modifying the lock lever 52 and kick lever 51 of
As in the case of
The roller 72a is engaged with the protrusion portion 52e in the closing operation so as to release a pressing state between the kick lever 51 and lock lever 52.
The second embodiment having the above configuration can obtain the same effect as the first embodiment.
Next, with reference to
The present embodiment is obtained by modifying the first embodiment such that the functions of the connection pin 51a and the lock lever pin 52d of
The third embodiment having the above configuration can obtain the same effect as the first embodiment. Further, since applying a force to the connection portion between the kick lever 51 and the lock lever 52 is most effective way for reducing a force required for releasing the pressing state between the kick lever 51 and the lock lever 52, the configuration of the third embodiment enables a reduction in the output power of the electromagnet solenoid 21 for opening and a reduction in the size thereof.
The embodiments described above are merely given as examples, and it should be understood that the present invention is not limited thereto. For example, although compression coil springs are used as the opening spring 12 and the closing spring 13 in the above embodiments, other elastic bodies, such as torsion coil springs, disc springs, spiral springs, plate springs, air springs, and tension springs may be used alternatively. Further, although a coil spring or torsion coil spring is used as the return springs 91a, 51b, and 54a provided in the latch 91, the kick lever 51, and the pull-off lever 54, other elastic bodies such as disc springs, spiral springs, or plate springs may used alternatively.
The present invention can also be applied to an apparatus having a plurality of opening springs or plurality of the closing springs.
Further, although the stopper pin 90a for restricting the rotation of the latch 91 also serves as the rotation axis of the kick lever 51 in the above embodiments, the above functions may be provided separately.
Further, the anchoring lever 90 may be omitted. In this case, the stopper pin 90a or the like is directly fixed to the frame 14. Further, the stopper pin 90a may be integrated with the anchoring lever 90 or the frame 14.
Number | Date | Country | Kind |
---|---|---|---|
2006-268504 | Sep 2006 | JP | national |