Switchgear load sharing for oil field equipment

Information

  • Patent Grant
  • 10686301
  • Patent Number
    10,686,301
  • Date Filed
    Monday, February 12, 2018
    6 years ago
  • Date Issued
    Tuesday, June 16, 2020
    4 years ago
Abstract
A hydraulic fracturing system for fracturing a subterranean formation is disclosed. In an embodiment, the system may include a plurality of electric pumps fluidly connected to a well associated with the subterranean formation and powered by at least one electric motor, and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation; at least one generator electrically coupled to the plurality of electric pumps so as to generate electricity for use by the plurality of electric pumps; and at least one switchgear electrically coupled to the at least one generator and configured to distribute an electrical load between the plurality of electric pumps and the at least one generator.
Description
BACKGROUND
1. Technical Field

This disclosure relates generally to hydraulic fracturing and more particularly to systems and methods for spare turbine power generation, which is sometimes referred to as reserve power.


2. Background

With advancements in technology over the past few decades, the ability to reach unconventional sources of hydrocarbons has tremendously increased. Horizontal drilling and hydraulic fracturing are two such ways that new developments in technology have led to hydrocarbon production from previously unreachable shale formations. Hydraulic fracturing (fracturing) operations typically require powering numerous components in order to recover oil and gas resources from the ground. For example, hydraulic fracturing usually includes pumps that inject fracturing fluid down the wellbore, blenders that mix proppant into the fluid, cranes, wireline units, and many other components that all must perform different functions to carry out fracturing operations.


Usually in fracturing systems the fracturing equipment runs on diesel-generated mechanical power or by other internal combustion engines. Such engines may be very powerful, but have certain disadvantages. Diesel is more expensive, is less environmentally friendly, less safe, and heavier to transport than natural gas. For example, heavy diesel engines may require the use of a large amount of heavy equipment, including trailers and trucks, to transport the engines to and from a wellsite. In addition, such engines are not clean, generating large amounts of exhaust and pollutants that may cause environmental hazards, and are extremely loud, among other problems. Onsite refueling, especially during operations, presents increased risks of fuel leaks, fires, and other accidents. The large amounts of diesel fuel needed to power traditional fracturing operations requires constant transportation and delivery by diesel tankers onto the well site, resulting in significant carbon dioxide emissions.


Some systems have tried to eliminate partial reliance on diesel by creating bi-fuel systems. These systems blend natural gas and diesel, but have not been very successful. It is thus desirable that a natural gas powered fracturing system be used in order to improve safety, save costs, and provide benefits to the environment over diesel powered systems. Turbine use is well known as a power source, but is not typically employed for powering fracturing operations.


Though less expensive to operate, safer, and more environmentally friendly, turbine generators come with their own limitations and difficulties as well. As is well known, turbines generally operate more efficiently at higher loads. Many power plants or industrial plants steadily operate turbines at 98% to 99% of their maximum potential to achieve the greatest efficiency and maintain this level of use without significant difficulty. This is due in part to these plants having a steady power demand that either does not fluctuate (i.e., constant power demand), or having sufficient warning if a load will change (e.g., when shutting down or starting up a factory process).


In hydraulic fracturing, by contrast, the electrical load constantly changes and can be unpredictable. This unpredictability is due to the process of pumping fluid down a wellbore, which can cause wellhead pressure to spike several thousand PSI without warning, or can cause pressure to drop several PSI unexpectedly (sometimes called a “break,” as in the formation broke open somewhere). In order to maintain a consistent pump rate, the pump motors are required to “throttle” up or “throttle” down (applying more or less torque from a variable frequency drive), drawing either more or less electrical power from the turbines with little to no notice in many situations.


Concurrently with pressure variations, fluid rate variations can also occur. At any moment, the contracting customer may ask for an extra 5 barrels per minute (bpm) of pump rate or may request an instantly decreased pump rate with little to no warning. These power demand changes can vary from second to second—unlike industrial power demands, which may vary from hour to hour or day to day, allowing for planning and coordination.


Hydraulic horsepower (HHP) can be calculated with the following relationship:






HHP
=



(

Wellhead





Pressure

)

×

(

Pump





Rate

)


40.8






HHP also directly correlates with the power demand from the turbines, where:

HHP≈Electrical Power Demand

Therefore, if both variables (rate and pressure) are constantly changing, maintaining a steady power demand can be difficult. Due to this, it is impossible to design the equipment and hold the turbine output at 98%-99% of full potential because a minute increase in power demand may shut the turbines down and may result in failure of the fracturing job. To prevent such turbine shutdown from happening, fracturing equipment is designed to only require approximately 70% of the maximum output of the turbine generators during normal and expected operating conditions. This allows the fleet to be able to operate against changing fracturing conditions, including increased fluid rate and increased wellhead pressure.


There are also other small loads which contribute to changing power demand. These include turning on or off small electrical motors for hydraulic pumps, chemical pumps, cooling fans, valve actuators, small fluid pumps, etc., or power for metering instrumentation, communication equipment, and other small electronics. Even lighting or heating can contribute to the fluctuating power load.


Therefore it may be desirable to devise a means by which turbine power generation can be managed at an output usable by fracturing equipment.


SUMMARY

The present disclosure is directed to a method and system for providing electrical load sharing between switchgear trailers acting as power hubs to combine the output of multiple electrical generators.


In accordance with an aspect of the disclosed subject matter, the method and system of the present disclosure provide a hydraulic fracturing system for fracturing a subterranean formation. In an embodiment, the system can include a plurality of electric pumps fluidly connected to the formation and configured to pump fluid into a wellbore at high pressure so that the fluid passes from the wellbore into the formation and fractures the formation; at least one generator electrically coupled to the plurality of electric pumps so as to generate electricity for use by the plurality of electric pumps; and at least one switchgear electrically coupled to the at least one generator and configured to distribute an electrical load between the plurality of electric pumps and the at least one generator.


In an embodiment, the system including the plurality of electric pumps, the at least one generator, and the at least one switchgear can be a single electrical microgrid.


In an embodiment, the system making up the single electrical microgrid can be split into two or more electrical banks. In an embodiment, each of the two or more electrical banks can include at least one generator and at least one switchgear. In an embodiment, when one or more of the two or more electrical banks is shut down, each of the other active electrical banks can be configured to distribute the electrical load between the plurality of electric pumps and the at least one generator associated with each active electrical bank.


In an embodiment, the system can further include at least two switchgear units electrically coupled to the at least one generator, and a tie breaker electrically coupled between each of the at least two switchgear units.


In an embodiment, the tie breaker can be configured to evenly distribute the electrical load between the plurality of electric pumps and the at least one generator when the tie breaker is in a closed position; and isolate one or more of the plurality of electric pumps, the at least one generator, and the at least two switchgear units when the tie breaker is in an open position.


In an embodiment, when the tie breaker is in the closed position, at least one generator is shut down and at least one other generator is active, the electrical load can be evenly distributed among the at least one other active generators.


In an embodiment, the tie breaker can include a long distance transmission line.


In an embodiment, the at least one switchgear can be configured to distribute power among any of one or more transformers, auxiliaries, or other switchgear units, or a combination thereof.


In an embodiment, the one or more auxiliaries can include any of a blender, electric wireline equipment, a water transfer pump, an electric crane, a data van, a work trailer, living quarters, an emergency shower, sand equipment, a turbine inlet chiller, a compressor station, a pumping station, a second fracturing site, a drill rig, or a nitrogen plant, or a combination thereof.


In an embodiment, the at least one generator can be one of a turbine generator or a diesel generator, or a combination thereof.


In an embodiment, the at least one turbine generator can be powered by natural gas.


In an embodiment, wherein each component of the system can be modular and movable to different locations on mobile platforms.


In an embodiment, the system can further include a power connection panel associated with the plurality of electric pumps. In an embodiment, the power connection panel can include a plurality of power connections for each of the plurality of electric pumps, and a system ground connection configured to act as a ground between the plurality of electric pumps and a transformer. In an embodiment, the transformer can be configured to provide power to the plurality of electric pumps.


In an embodiment, the system can further include a variable frequency drive connected to the at least one electric motor to control the speed of the at least one electric motor. In an embodiment, the variable frequency drive can frequently perform electric motor diagnostics to prevent damage to the at least one electric motor.


In accordance with another aspect of the disclosed subject matter, the method and system of the present disclosure provide a hydraulic fracturing system for fracturing a subterranean formation. In an embodiment, the system can include a plurality of electric pumps fluidly connected to the formation and configured to pump fluid into a wellbore at high pressure so that the fluid passes from the wellbore into the formation and fractures the formation; at least one turbine generator electrically coupled to the plurality of electric pumps so as to generate electricity for use by the plurality of electric pumps; at least two switchgear units electrically coupled to the at least one turbine generator and configured to distribute an electrical load between the plurality of electric pumps and the at least one turbine generator; a tie breaker electrically coupled between each of the at least two switchgear units and configured to evenly distribute the electrical load between the plurality of electric pumps and the at least one turbine generator when the tie breaker is in a closed position; and a variable frequency drive connected to the at least one electric motor to control the speed of the at least one electric motor, wherein the variable frequency drive frequently performs electric motor diagnostics to prevent damage to the at least one electric motor.


Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art after reading the detailed description herein and the accompanying figures.





BRIEF DESCRIPTION OF DRAWINGS

Some of the features and benefits of the present disclosure having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic example of a turbine generator in communication with an electronic equipment room, which connects to a switchgear according to an embodiment of the disclosure.



FIG. 2 is a perspective view of an example of a turbine generator and electronic equipment room according to an embodiment of the disclosure.



FIGS. 3A and 3B are perspective views of a switchgear trailer according to an embodiment of the disclosure.



FIG. 4 is a perspective view of cables connecting to a hydraulic fracturing pump trailer according to an embodiment of the disclosure.



FIGS. 5-15 are block diagrams of portions of a microgrid having a plurality of turbine generator sets and switchgear units according to various embodiments.





While the disclosure will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the disclosure to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the disclosure as defined by the appended claims.


DETAILED DESCRIPTION

The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude.


It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.


Described herein is an example of a method and system for providing electrical load sharing between switchgear trailers acting as power hubs to combine the output of multiple electrical generators. Adding a tie breaker between two switchgear trailers can eliminate the need for a third switchgear trailer, while still retaining the ability to evenly distribute power between all of the equipment, and to concurrently evenly distribute the electrical load between a plurality of turbine generator sets.


A feature of the switchgear configurations described herein is the capability to selectively choose between either load sharing, to provide efficiency and flexibility; or having isolated banks of equipment, to provide protection and redundancy. In an embodiment, the switchgear optionally includes a tie breaker. The tie breaker can synchronize three-phase power of a similar voltage and frequency from different sources to act as a common bus, and can evenly distribute the electrical load between a plurality of electric pumps and turbine generators when the tie breaker is in a closed position. The tie breaker will isolate one or more of the plurality of electric pumps, the turbine generator, and the switchgear units when the tie breaker is in an open position. The use of a tie breaker can provide an advantage over previous load sharing systems because use of a tie breaker provides more options for the equipment operators and allows the fleet to be more versatile as to which mode of operation—protection and redundancy, or efficiency and flexibility—is more desirable at any given moment.


Another favorable aspect of load sharing is the ability to shutdown turbines when peak power output is not required. If the power load is distributed evenly between all of the generator sets in the fleet, then it can be possible to shut down unnecessary power generation as long as the remaining generator sets can compensate for the loss and pick up the extra load placed on them. This flexibility for partial shutdown can allow the remaining turbines to operate at a higher efficiency, which can reduce wear on the fleet by not running every turbine continuously, and increase efficiency while reducing emissions by allowing fewer turbines to run in a lower emissions mode. The lower emissions mode is called SoloNox, and can be performed due to load sharing using a switchgear, because the turbines can only operate in this mode while operating above a 50% load. In some embodiments, directly powering fracturing pumps can involve using all turbines regardless of the required power load.


In an embodiment, a variable frequency drive (VFD)—and in some cases, an A/C console used to keep the VFD from overheating—can be utilized to control the speed of an electric motor associated with a pump powered by the turbine(s).


In some examples, certain tasks can be accomplished with fewer turbines. Instead of having redundancy or spare power generation available to isolated power banks, the reserve power generation capability can be consolidated across the entire fleet. Requiring fewer turbine generators means the equipment can now fit on smaller well sites which reduces the need to clear more land and disrupt the surrounding environment to create a larger pad, and reduces the costs associated with such clearing and construction.


The systems described herein are not limited to use in processes involving hydraulic fracturing. For example, the system includes electric fracturing equipment and power generation equipment. The power generation equipment can be used to supply any oilfield equipment including compressor stations, pumping stations, nitrogen plants, CO2 plants, drilling rigs, work-over rigs, barracks, coiled tubing units, refineries, or other systems or applications that do not have access to a utility provided power grid or that have a dynamic power load or low power factor.



FIG. 1 is a block diagram showing the basic components of a hydraulic fracturing well site power generation system 100 for providing electrical load sharing according to an embodiment. A turbine generator 105 can include a natural gas turbine engine coupled to a three-phase, 60 hertz (Hz) electric generator to produce power as the turbine engine rotates. In an alternative, the generator can generate electricity at 50 Hz. or at any other power level useful for hydraulic fracturing fleets. In the illustrated embodiment, the turbine generator 105 is shown being electrically connected to an electronic equipment room (EER) 115, which can house wiring, breakers, controls, monitoring systems, fire suppression support, and a battery bank for secondary power when the turbine is not operating and there is no other power source. In some examples, the battery bank can power lighting, fire suppression, emergency turbine lube pumps, and onboard electronics. The combination of a turbine generator 105 and an EER 115 can be referred to as a generator set. A switchgear trailer 125 can provide power distribution, high voltage breakers, and “lock-out, tag-out” (a safety procedure used to ensure that dangerous machines are properly shut off and not able to be started up again prior to the completion of maintenance or servicing work) capabilities.


Transformers can optionally be included with the equipment of FIG. 1. As illustrated in the embodiment shown in FIG. 1, an air intake filter house 110 can be positioned on top of or adjacent to the turbine generator 105, and a catwalk 120 can connect turbine generator 105 and EER 115 for ease of access. The system 100 as a whole can define an example of an electrical microgrid.



FIG. 2 shows a perspective view of an example system 200 having a single generator set with a turbine generator 205 and an overhanging filter house 210 according to an embodiment. A power cable 206 can connect the turbine generator 205 to an EER 215 with plugs 204-a, 204-b. In some embodiments, plugs 204-a, 204-b are enclosed and concealed while energized. Between turbine 205 and EER 215 is an elevated catwalk 220 with stairs leading to the EER 215 for employee access, in the illustrated embodiment. Turbine 205 can also include maintenance hatches for purposes of employee access. A plug 202 can provide a power cable between the EER 215 and a switchgear trailer (not shown).


An example 300-a of a switchgear trailer 325 is shown in an end perspective view in FIG. 3A. Electrical connections 302 for turbines and an auxiliary trailer are shown in recesses formed on a lateral surface of the trailer 325. A side opposite the lateral side of the trailer 325, as shown in the example 300-b according to an embodiment illustrated in FIG. 3B, can include electrical connections 302 for transformers.



FIG. 3B illustrates in side perspective view a side of the switchgear trailer 325 opposite from that of shown in FIG. 3A. In the illustrated example, switchgear trailer 325 can be an example of a switchgear “B” trailer. Four connections 302 are visible, which are for the 13.8 kV cable that spans between the switchgear and the transformers. Each connection 302 is a cable that contains all three electrical phases, a ground, and a ground check; which is different from the cabling configuration of FIG. 4, which relies on the use of multiple conductors per phase, as discussed below.


The switchgear trailer 325 can house large breakers and fault protection equipment required for safe operations and for “lock-out, tag-out” of power going to selected equipment. The switchgear is optionally rated for 15 kV (13.8 kV), and can be designed or reconfigured for different voltages, such as 138 kV, 4.160 V. or 600 V, or any other voltage suitable for fracturing fleet operations. The switchgear can include ground fault detection, color coordinated cable receptacles, interlock system, and other safety features.


Illustrated in a side perspective view in FIG. 4 is an example 400 of multiple single-conductor cables connecting to a fracturing pump trailer 425, according to an embodiment. In the illustrated example, a 600 V power connection panel 401 contains power connections for two fracturing pumps. Each electrical phase is split into two separate cables. An upper row of plugs 402-a can be used to power one fracturing pump, while a lower row of plugs 402-b can be used to power a second fracturing pump on the same fracturing pump trailer 425.


In the illustrated example, the upper row of plugs 402-a includes six single-phase cable connections, and the lower row of plugs 402-b includes six single-phase cable connections, allowing for two cables per phase. The plugs can be color-coded based on the electrical phase. The power connection panel 401 can also include a control power cable 404 and a system ground cable 406. The system ground cable 406 can act as a ground between the fracturing pump trailer 425 and a 13.8 kV to 600 V transformer (not shown) providing power to the fracturing pump trailer 425. Additional cables can span between the 13.8 kV to 600 V transformer and the fracturing pump trailer 425.



FIG. 5 is a block diagram illustrating one example 500 of a plurality of generator sets 505-a, 505-b, 505-c for use with a system for fracturing a subterranean formation. Each generator set 505-a, 505-b, 505-c can include a turbine engine with sufficient mechanical power to rotate an electric generator with sufficient electrical power to provide electricity to a small, closed circuit, electrical grid. This grid can be considered part of the microgrid.


For the sake of discussion herein, certain types of switchgear units have nomenclature based on their application; for example a switchgear “A” can distribute power to other switchgear units, a switchgear “B” can transmit power to transformers and auxiliaries, and a switchgear “C” can transmit power to transformers. However, a switchgear trailer is not limited to the previously stated configurations. It is possible to power more than four transformers from a switchgear “B” or switchgear “C”; and a switchgear “B” can supply more than one auxiliary trailer if needed. Similarly, a switchgear “A” is not limited to connections for only three or four generator sets and only two switchgear trailers. The denotation of A, B, C, A+, B+ and C+ switchgear units does not reflect industry standards, but is a naming convention for use herein.


In the illustrated embodiment, switchgear “A” 525-a is an electrical hub combining the power output of three 5.7 MW natural gas turbine generators from generator sets 505-a, 505-b, 505-c. Further in this example, switchgear “A” 525-a can supply electrical power to two other switchgear units. Switchgear “B” 525-b can receive power from switchgear “A” 525-a and distribute the power to an auxiliary unit and multiple transformers, as shown. Switchgear “C” 525-c can also receive power from switchgear “A” 525-a and distribute the power to one or more transformers, but in the illustrated embodiment does not distribute power to an auxiliary unit.


In this example, the illustrated lines leading between the generator sets 505-a, 505-b. 505-c, switchgear units 525-a, 525-b, 525-c, and auxiliary units and transformers can be 13.800 volt, three-phase, 60 Hz, power lines. This example allows load distribution between all three turbines in generator sets 505-a, 505-b, 505-c through switchgear “A” 525-a. Optionally, the power demand placed on each generator set 505-a, 505-b, 505-c can be equal, and each generator set 505-a, 505-b, 505-c can run at an equal output.



FIG. 6 is a block diagram showing an embodiment 600 illustrating a plurality of generator sets 605-a, 605-b, 605-c for use with a system for fracturing a subterranean formation. Similarly to the example 500 illustrated in FIG. 5, switchgear “A” 625-a is an electrical hub combining the power output of three 5.7 MW natural gas turbine generators from generator sets 605-a, 605-b, 605-c, where switchgear “A” 625-a can supply electrical power to two other switchgear “B” units 625-b-1, 625-b-2. While described as being a 5.7 MW generator, other generator configurations capable of operating at other power outputs are also envisioned. For example, in an embodiment, a 6.5 MW turbine generator can be used.


In contrast to the example provided in FIG. 5, in this example switchgear “C” 525-c is replaced with a second switchgear “B” 625-b-2. Both switchgear “B” units 625-b-1, 625-b-2 couple to and provide power for a secondary auxiliary, which can include any one or more of a secondary blender, electric wireline, water transfer, crane, a second data van, turbine inlet chillers, and the like.



FIG. 7 is a block diagram of another example 700 of a switchgear layout for use with a fracturing system, according to an embodiment. In this example, switchgear “A” 625-a of FIG. 6 is substituted with switchgear “A+” 725-a, allowing for connections and breakers for a fourth generator set 705-d. This configuration allows for powering more equipment for a wider range of applications. Switchgear “A+” 725-a can supply electrical power to two other switchgear “B” units 725-b-1, 725-b-2. In an alternate embodiment, one or more of switchgear “B” units 725-b-1, 725-b-2 can be replaced with a switchgear “B+” unit. This embodiment provides advantages with regard to cost, as existing switchgear trailers can be upgraded or modified accordingly without the need for purchasing new trailers.



FIG. 8 is a block diagram illustrating an alternate example 800 of a plurality of generator sets for use with a system for fracturing a subterranean formation, according to an embodiment. In the illustrated example, the power transmission network is broken into two banks with direct communication between generator sets 805-a, 805-b and switchgear “B” 825-b-1 in the first bank 807-a, and generator sets 805-c, 805-d and switchgear “B” 825-b-2 in the second bank 807-b. Generator sets 805-a, 805-b can be load sharing through one switchgear “B” 825-b-1, and generator sets 805-c, 805-d can be load sharing through another switchgear “B” 825-b-2. Direct communication between generator sets 805-a, 805-b, 805-c, 805-d and switchgear “B” 825-b-1, 825-b-2 can require fewer switchgear trailers, which can save space, decrease equipment costs, and decrease the amount of cables being run, while allowing addition of a fourth generator set 805-d.


Splitting the microgrid into two banks 807-a, 807-b can build redundancy into the system. If a single generator set fails during peak power demand, any other generator set on the same circuit can share the load. If the load is too high, the other turbines will shut down, causing a complete blackout; in hydraulic fracturing, this can result in a “screen out.” During a “screen out,” the fluid in the wellbore is full of sand when the pumps stop, causing the sand to drop out of suspension in the fluid and plug off the well, which is expensive and time consuming to clean out. With two separate electrical banks, a failure in one bank (due to a ground fault, mechanical breakdown, software issue, fuel problem, cable issue, breaker failure, etc.) will not cause a failure in the other bank. The load on the opposite pair of turbines will remain the same, resulting in only a blackout for half of the equipment; operators can flush the well bore with half of the equipment in most situations. Two switchgear units “B” can be used to allow either bank to provide power to a blender, which allows the hydraulic fracturing equipment that is connected to either power bank to be self-sufficient and capable of flushing the well bore in event of a generator failure.


In the example of FIG. 8, if all four turbines 805-a, 805-b, 805-c, 805-d were operating at 50% while configured in pairs on two separate power banks 807-a, 807-b, shutting one turbine down in a given load bank will result in the other turbine in that pair having to pick up the entire power demand for the bank (circuit). This will result in 100% load on a single turbine, and could likely shut down the operating turbine, causing a blackout for half of the equipment. In the summer months when temperatures are elevated, turbine engines cannot reach their maximum potential as power output is derated due to the hot ambient air being less dense. Thus all four turbines may be required to operate despite their load percentage being as low as 35% in certain cases.


Another alternate example 900 of a plurality of generator sets for use with a system for fracturing a subterranean formation is schematically illustrated in FIG. 9. Similarly to the example 800 illustrated in FIG. 8, generator sets 905-a, 905-b and switchgear “B+” 925-b-1 can make up a first bank 907-a, and generator sets 905-c, 905-d and switchgear “B+” 925-b-2 can make up a second bank 907-b. Differently from example 800, however, in the illustrated example 900, the switchgear units 925-b-1, 925-b-2 are able to load share with one another.


Example cables are shown spanning between the two “B+” switchgear units 925-b-1, 925-b-2, which optionally are 13.8 kV cables for a tie breaker 909. Tie breaker 909 can allow for complete load sharing between all four turbines in generator sets 905-a, 905-b, 905-c, 905-d without the need for a switchgear “A,” as illustrated in FIG. 5. A bus tie breaker 909 between switchgear “B+” 925-b-1 and switchgear “B+” 925-b-2 can be used when combining the power output from difference sources, such as in the case of using multiple generator sets 905-a, 905-b, 905-c, 905-d.


In one example of operation of the system of FIG. 9, all four turbines 905-a, 905-b, 905-c, 905-d can continue to operate even at loads below 50%, which can increase fuel consumption and wear on the turbines. For example, if four load sharing turbines were operating at a 50% load, one turbine could be shut down, allowing the other turbines to distribute the power demand, resulting in three turbines running at approximately 67% load. Turbines typically operate more efficiently at higher loads and the turbine generators enter the lean dry fuel ratio mode at above 50% load, allowing them to operate at higher efficiency with lower emissions than normal.


In one example procedure for starting the turbine generators, all breakers (not shown) in each switchgear and EER can be set to an open position such that no electricity passes across the breakers, and generator set 905-b can be started from a black start generator (not shown). Once generator set 905-b is running and operating steadily, generator set 905-b can be connected to the bus on switchgear “B+” 925-b-1 by closing the breakers in each switchgear and EER.


In the described embodiment, generator set 905-a can be started through the power supplied from switchgear “B+” 925-b-1, which can in turn be powered by generator set 905-b. This configuration is commonly known as back-feeding, a process that ensures that the generators are in sync with each other. Operating out of sync, operating with three electrical phases not having identical phase angles, or operating when any two phases are reversed, can each cause catastrophic damage to the system.


Phase synchronization can be controlled by the EER, and may not allow current to flow onto a common power bus between two electrical sources (by keeping breakers open in the EER) until synchronization is complete. A tie breaker can also be used to synchronize the electrical phases so that two separate generator sources can be put on a bus together to provide power to equipment. In some cases, the electrical sources can be the two isolated switchgear units 925-b-1, 925-b-2.


A tie breaker can be installed in each switchgear “B+” 925-b-1, 925-b-2 to allow generator sets 905-a, 905-b, 905-c, 905-d to be synchronized and placed on a single bus together. Thus the two switchgear units “B+” 925-b-1, 925-b-2 can act as a single switchgear to provide load sharing, power transmission, and breaker protection to all four generator sets 905-a, 905-b, 905-c, 905-d. If load sharing is desired, the tie breaker can be used to close the joining breaker 909 between the switchgear “B+” 925-b-1, 925-b-2 trailers, which can allow for electrical current to flow in either direction to balance the load. If having two separate electrical banks 907-a, 907-b is desired, the joining breaker 909 can be kept open, separating the switchgear units “B+” 925-b-1, 925-b-2 from each other electrically.


This switchgear model example 900 can provide an option to have modular generator sets 905-a, 905-b, 905-c, 905-d. If only two or three generator sets are required, for example due to ambient temperatures or customer requirements, one or more generator sets can be shut down (or not rigged in). In the described configuration, even with one or more generator sets shut down, the system can nevertheless balance the load properly to supply power to the equipment, and to run the remaining turbines at a higher load and efficiency. During startup, the turbine generators can be started by back-feeding from the common bus 909 of the switchgear units “B+” 925-b-1, 925-b-2, as long as one turbine generator is started from the black start generator (not shown).



FIG. 10 is a block diagram illustrating an example 1000 of a portion of a power flow diagram of a microgrid for use with a wellbore fracturing system, which includes electrical connections for 480 V, 600 V, and 13.8 kV, according to an embodiment. Shown are gas compressors 1030-a, 1030-b, which can be powered by electricity in some examples, but can optionally be powered by combusting fuel, such as natural gas, diesel, and the like, in other examples. Fuel gas filtration and heating units 1035-a, 1035-b, 1035-c, 1035-d are also depicted.


A black start generator 1003 is shown in electrical communication with generator sets 1005-b, 1005-c, and can be used to start the turbine generators. In an alternative embodiment, black start generator 1003 can be connected to each generator set 1005-a, 1005-b, 1005-c, 1005-d, or to a single turbine. The black start generator 1003 can initially provide power to equipment operating at 480 V, which can then be handed off to a small 480 V transformer (not shown) located on each generator set 1005-a, 1005-b. 1005-c, 1005-d, once the generator sets 1005-a, 1005-b, 1005-c, 1005-d are operational.


Also shown are 480 V, three-phase, 60 Hz power lines between the compressors 1030-a, 1030-b, generator sets 1005-a, 1005-b, 1005-c, 1005-d, and fuel gas filtration and heating units 1035-a, 1035-b. 1035-c, 1035-d. The power lines can depict the normal flow path of electrical current between the components of the microgrid. A chiller unit 1040 is shown, which can be an option for boosting the output of the turbine generators of generator sets 1005-a, 1005-b, 1005-c, 1005-d to negate the need for a fourth turbine. However, a fourth turbine may be required in some embodiments, or can be used in lieu of an air inlet chiller unit in some embodiments.


Also depicted in the illustrated embodiment is power transmission equipment, which can include switchgear “B+” units 1025-b-1, 1025-b-2, and 13.8 kV, three-phase, 60 Hz power cables. The switchgear “B+” units 1025-b-1, 1025-b-2 can provide power to the 3,500 kVA, 13.8 kV to 600 V step-down transformers 1045-a, 1045-b, 1045-c, 1045-d, 1045-e, 1045-f, 1045-g, 1045-h and auxiliary units 1050-a, 1050-b. The auxiliary units 1050-a, 1050-b can contain a large 13.8 kV to 600 V transformer, and can perform motor control, switching, and further distribution of power to auxiliary equipment and smaller loads. Power cables operating at 600 V, three-phase, 60 Hz are depicted according to a normal current flow path.


The mini-substations 1055-a, 1055-b shown can also be part of the distribution network, receiving power supplied by an auxiliary trailer, and having 120 V and 240 V, single-phase, 60 Hz plugs for power plant lights, heaters, or data vans. Mini-substations 1055-a, 1055-b can also contain 600 V, three-phase, 60 Hz connections as an extra hub to provide power to any extra equipment. Extra equipment can include, for example, water transfer pumps, wireline equipment, electric cranes, work trailers, living quarters, emergency showers, sand equipment, or future additions to the fleet.


The orientations and positions of the equipment in example 900 are for graphical purposes only to illustrate the flow of electricity and interconnections. On a well site, the equipment may be placed in any order or configuration geographically, as long as the electrical schematic does not change.


The example methods of using two “B+” switchgear units to provide power transmission and load sharing advantageously allows for load sharing, while still having the advantage of fewer cables and less equipment. The method of using two “B+” switchgear units enables operation of two separate grids for redundancy or a single load sharing grid for efficiency.


Illustrated in FIG. 11 is a block diagram showing an example 1100 of switchgear load sharing for multiple generator sets 1105-a, 1105-b, 1105-c, 1105-d, 1105-e, 1105-f, according to an embodiment. Here a switchgear “C+” 1125-c is depicted having tie breakers 1109-a, 1109-b for load sharing without provisions for an auxiliary trailer. In some examples, the switchgear “C+” 1125-c trailer and switchgear “B+” 1125-b-1, 1125-b-2 trailers can be interchanged with each other, as some applications may not require auxiliary trailers or their corresponding equipment. Additionally, although three or four turbines are illustrated in many of the examples provided herein, this is not a limitation and alternate configurations having more or fewer turbines are envisioned to provide power for multiple fleets or well sites, including non-hydraulic fracturing applications.


Similarly to FIGS. 8 and 9, the power transmission network can be broken into multiple banks with direct communication between generator sets 1105-a, 1105-b and switchgear “B+” 1125-b-1 in the first bank 1107-a; generator sets 1105-c, 1105-d and switchgear “C+” 1125-c in the second bank 1107-b; and generator sets 1105-e, 1105-f and switchgear “B+” 1125-b-2 in the third bank 1107-c. Generator sets 1105-a, 1105-b can be load sharing through switchgear “B+” 1125-b-1, generator sets 1105-c, 1105-d can be load sharing through switchgear “C+” 1125-c, and generator sets 1105-e, 1105-f can be load sharing through another switchgear “B+” 1125-b-2. Additionally, as in FIG. 9, the switchgear units “B+” 1125-b-1, 1125-b-2 and switchgear “C+” 1125-c are able to load share with one another via tie breakers 1109-a, 1109-b.



FIG. 12 is a block diagram depicting an example 1200 of a switchgear load sharing option for providing power to equipment which is on a different site than the power generation equipment, according to an embodiment. Although illustrated in example 1200 in one configuration, many other switchgear configurations can provide power to equipment located remotely from the power generation equipment.


As shown, a series of four generator sets 1205-a, 1205-b. 1205-c, 1205-d can provide power to switchgear “A” 1225-a-1 at a first location. Power received at switchgear “A” 1225-a-1 can be communicated to switchgear “A” 1225-a-2 at a second location. In the illustrated embodiment, load sharing is handled by switchgear units “A” 1225-a-1, 1225-a-2, such that a tie breaker between two switchgear “B” units 1225-b-1, 1225-b-2 may not be necessary. In one example, the long distance transmission line can be several miles long and can be in the form of overhead or buried power lines. Any distance up to approximately 30 miles is feasible; at further distances, step-up transformers may be used to prevent transmission losses from becoming prohibitive. This approximation can depend on the power generated, the power required, and the power conductors used.


Switchgear “A” 1225-a-2 can supply electrical power to two other switchgear units. Switchgear “B” 1225-b-1 can receive power from switchgear “A” 1225-a-2 and distribute the power to an auxiliary unit and one or more transformers as shown. Switchgear “B” 1225-b-2 can also receive power from switchgear “A” 1225-a-2 and can distribute the power to an auxiliary unit and one or more transformers.



FIG. 13 is a block diagram illustrating an example 1300 of a system that, like the system of FIG. 12, is capable of powering and load sharing from multiple sites and processes, according to an embodiment. Generator sets 1305-a, 1305-b, 1305-c and switchgear “A+” 1325-a-1 can make up a first bank 1307-a, and generator sets 1305-d, 1305-e, 1305-f and switchgear “A+” 1325-a-2 can make up a second bank 1307-b. In the illustrated example 1300, switchgear units “A+” 1325-a-1, 1325-a-2 are able to load share with one another. The switchgear units in this configuration can provide load sharing through their internal electrical bus as well as through external power connections with tie breakers as previously described. Example cables are shown spanning between the two switchgear units “A+” 1325-a-1, 1325-a-2, which optionally are 13.8 kV cables for a tie breaker 1309. Tie breaker 1309 can allow for complete load sharing between all six turbines in generator sets 1305-a, 1305-b. 1305-c, 1305-d, 1305-e, 1305-f.


Each switchgear “C” 1325-c-1, 1325-c-2 can be used to power sites like drilling rigs, compressor stations, nitrogen plants, “man camps,” pumping stations, a second fracturing site (e.g., for pump-down operations, injections tests, low rate jobs, or to power third party equipment), etc. The switchgear units “B” 1325-b-1, 1325-b-2 combined can power a single hydraulic fracturing fleet. As previously described, the lines from switchgear units “A+” 1325-a-1, 1325-a-2 to switchgear units “C” 1325-c-1, 1325-c-2 and switchgear units “B” 1325-b-1, 1325-b-2 can be representative of power transmission lines and can be as long as 30 miles in this configuration. The lines from switchgear units “C” 1325-c-1, 1325-c-2 and switchgear units “B” 1325-b-1, 1325-b-2 can be representative of diesel locomotive cables (“DLO”) which, when laid out on the ground between the equipment, may span about one mile in distance. In other embodiments the distances can be about 25 feet to about 200 feet. Buried or suspended cables can also be used if desired or required.



FIG. 14 illustrates an example 1400 of a configuration for load sharing with a utility grid, according to an embodiment. In the illustrated example, the power transmission network is broken into two banks with direct communication between generator sets 1405-a, 1405-b and switchgear “B+” 1425-b in the first bank 1407-a, and generator sets 1405-c, 1405-d and switchgear “C+” 1425-c in the second bank 1407-b. In alternate embodiments, generator sets 1405-c, 1405-d can optionally be excluded.


In an example of operation, the transformer 1445 can convert the grid voltage to the power generation voltage, and tie breakers 1409-a, 1409-b can enable the switchgear units “B+” 1425-b and “C+” 1425-c to load share between the generator sets 1405-a, 1405-b, 1405-c, 1405-d and the utility grid. For example, if the utility grid is transmitting power at 69 kV, the transformer 1445 can step down the 69 kV voltage to 13.8 kV for use by the microgrid. In this configuration, power can be either provided to the grid or supplemented from the utility grid during times of peak power demand.


Depicted in FIG. 15 is another example 1500 for load sharing with a utility grid, according to an embodiment. Multiple transformers 1545-a, 1545-b are shown to depict the replacement of generator sets (e.g., generator sets 1405-c, 1405-d as illustrated in the embodiment shown in FIG. 14) with grid power. In the illustrated embodiment, multiple cables can be used to share the power load to allow for smaller cable sizes and transformers. In this embodiment, switchgear “A+” 1525-a can be used for load sharing, and tie breakers 1509-a. 1509-b can be located at each connection point with utility grid on switchgear “A+” 1525-a. Switchgear “A+” 1525-a can also supply electrical power to two other switchgear “B” units 1525-b-1, 1525-b-2.


In some embodiments, a small, diesel-fueled piston engine generator (not shown) can be used in lieu of an extra turbine generator for providing electrical power to transmission and distribution systems, which can add an extra megawatt of power if peak demand cannot be met with the existing turbine generators. An inability to meet peak demand could be due to hot weather, turbine dc-rate, long transmission distance, or extra power demand from a user. These systems of switchgear load sharing by using either tie breakers or a hierarchy of switchgear units supplying power to each other can be used with any method of power generation. Power generation can be provided from turbine generators, piston engine generators, rotary engine generators, solar power cells, wind turbine power, utility grid power, or any other method of electricity generation. Switchgear trailers can be positioned on mobile trailers in some embodiments, or can be body-load or skid mounted units in other embodiments.


Examples of microgrid designs use 13.8 kV for transmission stepped down to 600 V for equipment, and in some cases 480 V for distribution to equipment. It is possible to use different voltages and to design or refit the switchgear trailers accordingly. The principles of power load sharing, transmission, and distribution can remain the same regardless of the generated voltage. Voltage levels such as 138 kV, 69 kV, 50 kV, 12 kV, 4.160 V, 1,380 V, 600 V, or 480 V can be used for transmission or power distribution. These voltages are based on a small sample of the many common methods used in the national power grids; technically, any voltage can be specified and used.


The type of power conductor used can be dependent on the current equipment requirements, customer requirements, and method of power transmission and distribution. In one embodiment, power transmission between generator sets and switchgear units employs a single large cable per connection, each cable containing conductors for all three power phases, ground, and ground check. Power distribution between transformers and fracturing equipment can include diesel locomotive (DLO) cable, which can lie on the ground between the equipment. Two cables can be used for each power phase, totaling six power cables (three-phase power, with two cables per phase). This practice allows cables to be smaller, lighter, and easier to manage. Also an equipment ground spanning between the transformers and equipment can be used, which in one example can bring the power cable requirement to seven single conductor DLO cables per fracturing pump. However, many possible cable configurations exist. In some embodiments a single cable per phase can be used, or three or more cables per phase can also be used. The method of using multiple single-conductor cables can also be used for 13.8 kV transmission between switchgear units.


It is also possible to use multi-conductor cables for 600 V power distribution; these cables can be similar to those used for 13.8 kV transmission, and can contain all three phases and a ground inside the cable. A single multi-conductor cable can be used in some embodiments, or several multi-conductor cables can be used to split the power load so that the cable can be lighter and smaller in other embodiments. These multi-conductor cables can have an internal ground and ground check in some embodiments, or the grounds can be external in other embodiments. These power cables can simply lie on the ground in between the equipment. The cables can also be suspended like power transmission lines, in which case non-insulated cables could be used. Alternatively the cables can also be buried underground to be out of sight and to avoid trip hazards.


The present disclosure described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the disclosure has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present disclosure disclosed herein and the scope of the appended claims.

Claims
  • 1. A hydraulic fracturing system for fracturing a subterranean formation comprising: a plurality of electric pumps fluidly connected to a well associated with the subterranean formation and powered by at least one electric motor, and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation; andtwo or more electrical banks, each of the two or more electrical banks comprising: at least one generator electrically coupled to the plurality of electric pumps so as to generate electricity for use by the plurality of electric pumps, andat least one switchgear electrically coupled to the at least one generator and configured to distribute an electrical load between the plurality of electric pumps and the at least one generator,wherein when one or more of the two or more electrical banks is shut down, each of the other active electrical banks is configured to distribute the electrical load between the plurality of electric pumps and the at least one generator associated with each active electrical bank.
  • 2. The system of claim 1, wherein the system comprising the plurality of electric pumps, the at least one generator, and the at least one switchgear comprises a single electrical microgrid.
  • 3. The system of claim 1, further comprising: at least two switchgear units electrically coupled to the at least one generator; anda tie breaker electrically coupled between each of the at least two switchgear units.
  • 4. The system of claim 3, wherein the tie breaker is configured to: evenly distribute the electrical load between the plurality of electric pumps and the at least one generator when the tie breaker is in a closed position; andisolate one or more of the plurality of electric pumps, the at least one generator, and the at least two switchgear units when the tie breaker is in an open position.
  • 5. The system of claim 4, wherein: the tie breaker is in the closed position, andat least one generator is shut down and at least one other generator is active,wherein the electrical load is evenly distributed among the at least one other active generators.
  • 6. The system of claim 3, wherein the tie breaker comprises a long distance transmission line.
  • 7. The system of claim 1, wherein the at least one switchgear is configured to distribute power among any of one or more transformers, auxiliaries, or other switchgear units, or a combination thereof.
  • 8. The system of claim 7, wherein the one or more auxiliaries comprise any of a blender, electric wireline equipment, a water transfer pump, an electric crane, a data van, a work trailer, living quarters, an emergency shower, sand equipment, a turbine inlet chiller, a compressor station, a pumping station, a second fracturing site, a drill rig, or a nitrogen plant, or a combination thereof.
  • 9. The system of claim 1, wherein the at least one generator comprises one of a turbine generator or a diesel generator, or a combination thereof.
  • 10. The system of claim 9, wherein the at least one turbine generator is powered by natural gas.
  • 11. The system of claim 1, wherein each component of the system is modular and movable to different locations on mobile platforms.
  • 12. The system of claim 1, further comprising: a power connection panel associated with the plurality of electric pumps, wherein the power connection panel comprises: a plurality of power connections for each of the plurality of electric pumps; anda system ground connection configured to act as a ground between the plurality of electric pumps and a transformer, wherein the transformer is configured to provide power to the plurality of electric pumps.
  • 13. The system of claim 1, further comprising: a variable frequency drive connected to the at least one electric motor to control the speed of the at least one electric motor, wherein the variable frequency drive frequently performs electric motor diagnostics to prevent damage to the at least one electric motor.
  • 14. A hydraulic fracturing system for fracturing a subterranean formation comprising: a plurality of electric pumps fluidly connected to a well associated with the subterranean formation and powered by at least one electric motor, and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation;two or more electrical banks, each of the two or more electrical banks comprising: at least one turbine generator electrically coupled to the plurality of electric pumps so as to generate electricity for use by the plurality of electric pumps; andat least two switchgear units electrically coupled to the at least one turbine generator and configured to distribute an electrical load between the plurality of electric pumps and the at least one turbine generator;a tie breaker electrically coupled between each of the at least two switchgear units and configured to evenly distribute the electrical load between the plurality of electric pumps and the at least one turbine generator when the tie breaker is in a closed position; anda variable frequency drive connected to the at least one electric motor to control the speed of the at least one electric motor, wherein the variable frequency drive frequently performs electric motor diagnostics to prevent damage to the at least one electric motor,wherein when one or more of the two or more electrical banks is shut down, each of the other active electrical banks is configured to distribute the electrical load between the plurality of electric pumps and the at least one generator associated with each active electrical bank.
  • 15. The system of claim 14, wherein the system comprising the plurality of electric pumps, the at least one turbine generator, the at least two switchgear units, the tie breaker, and the variable frequency drive comprises a single electrical microgrid.
  • 16. The system of claim 14, wherein the tie breaker is further configured to: isolate one or more of the plurality of electric pumps, the at least one turbine generator, and the at least two switchgear units when the tie breaker is in an open position.
  • 17. The system of claim 16, wherein: the tie breaker is in the closed position, andat least one turbine generator is shut down and at least one other turbine generator is active,wherein the electrical load is evenly distributed among the at least one other active turbine generators.
  • 18. The system of claim 14, wherein the tie breaker comprises a long distance transmission line.
  • 19. The system of claim 14, wherein the at least two switchgear units are configured to distribute power among any of one or more transformers, auxiliaries, or other switchgear units, or a combination thereof.
  • 20. The system of claim 19, wherein the one or more auxiliaries comprise any of a blender, electric wireline equipment, a water transfer pump, an electric crane, a data van, a work trailer, living quarters, an emergency shower, sand equipment, a turbine inlet chiller, a compressor station, a pumping station, a second fracturing site, a drill rig, or a nitrogen plant, or a combination thereof.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/487,694, filed Apr. 14, 2017, and claims priority to and the benefit of U.S. Provisional Application Ser. No. 62/323,168, filed Apr. 15, 2016, and is a continuation-in-part of, and claims priority to and the benefit of, co-pending U.S. application Ser. No. 15/235,788, filed Aug. 12, 2016, which is in turn a continuation-in-part of, and claims priority to and the benefit of, co-pending U.S. application Ser. No. 15/202,085, filed Jul. 5, 2016, which is a continuation of, and claims priority to and the benefit of, U.S. Pat. No. 9,410,410, filed Nov. 16, 2012, and is further a continuation-in-part of, and claims priority to and the benefit of, co-pending U.S. application Ser. No. 15/145,491, filed on May 3, 2016, which is a continuation-in-part of, and claims priority to and the benefit of, U.S. Pat. No. 9,410,410, filed Nov. 16, 2012, the full disclosures of which are hereby incorporated by reference herein for all purposes.

US Referenced Citations (378)
Number Name Date Kind
1656861 Leonard Jan 1928 A
1671436 Melott May 1928 A
2004077 McCartney Jun 1935 A
2183364 Bailey Dec 1939 A
2220622 Aitken Nov 1940 A
2248051 Armstrong Jul 1941 A
2407796 Page Sep 1946 A
2416848 Rothery Mar 1947 A
2753940 Bonner Jul 1956 A
3061039 Peters Oct 1962 A
3066503 Fleming Dec 1962 A
3302069 Webster Jan 1967 A
3334495 Jensen Aug 1967 A
3722595 Kiel Mar 1973 A
3764233 Strickland Oct 1973 A
3773140 Mahajan Nov 1973 A
3837179 Barth Sep 1974 A
3849662 Blaskowski Nov 1974 A
3881551 Terry May 1975 A
4037431 Sugimoto Jul 1977 A
4100822 Rosman Jul 1978 A
4151575 Hogue Apr 1979 A
4226299 Hansen Oct 1980 A
4265266 Kierbow et al. May 1981 A
4432064 Barker Feb 1984 A
4442665 Fick et al. Apr 1984 A
4456092 Kubozuka Jun 1984 A
4506982 Smithers et al. Mar 1985 A
4512387 Rodriguez Apr 1985 A
4529887 Johnson Jul 1985 A
4538916 Zimmerman Sep 1985 A
4676063 Goebel et al. Jun 1987 A
4759674 Schroder Jul 1988 A
4793386 Sloan Dec 1988 A
4845981 Pearson Jul 1989 A
4922463 Del Zotto et al. May 1990 A
5006044 Walker, Sr. Apr 1991 A
5025861 Huber et al. Jun 1991 A
5050673 Baldridge Sep 1991 A
5130628 Owen Jul 1992 A
5131472 Dees et al. Jul 1992 A
5172009 Mohan Dec 1992 A
5189388 Mosley Feb 1993 A
5366324 Arlt Nov 1994 A
5422550 McClanahan Jun 1995 A
5548093 Sato Aug 1996 A
5590976 Kilheffer et al. Jan 1997 A
5655361 Kishi Aug 1997 A
5736838 Dove et al. Apr 1998 A
5755096 Holleyman May 1998 A
5790972 Kohlenberger Aug 1998 A
5865247 Paterson Feb 1999 A
5879137 Yie Mar 1999 A
5894888 Wiemers Apr 1999 A
5907970 Havlovick et al. Jun 1999 A
6138764 Scarsdale et al. Oct 2000 A
6142878 Barin Nov 2000 A
6164910 Mayleben Dec 2000 A
6202702 Ohira Mar 2001 B1
6208098 Kume Mar 2001 B1
6254462 Kelton Jul 2001 B1
6271637 Kushion Aug 2001 B1
6273193 Hermann Aug 2001 B1
6315523 Mills Nov 2001 B1
6477852 Dodo Nov 2002 B2
6484490 Olsen Nov 2002 B1
6491098 Dallas Dec 2002 B1
6529135 Bowers et al. Mar 2003 B1
6776227 Beida Aug 2004 B2
6802690 Han Oct 2004 B2
6808303 Fisher Oct 2004 B2
6931310 Shimizu et al. Aug 2005 B2
6936947 Leijon Aug 2005 B1
7082993 Ayoub Aug 2006 B2
7104233 Ryczek et al. Sep 2006 B2
7170262 Pettigrew Jan 2007 B2
7173399 Sihler Feb 2007 B2
7308933 Mayfield Dec 2007 B1
7312593 Streicher et al. Dec 2007 B1
7336514 Amarillas Feb 2008 B2
7445041 O'Brien Nov 2008 B2
7494263 Dykstra et al. Feb 2009 B2
7500642 Cunningham Mar 2009 B2
7525264 Dodge Apr 2009 B2
7563076 Brunet Jul 2009 B2
7581379 Yoshida Sep 2009 B2
7675189 Grenier Mar 2010 B2
7683499 Saucier Mar 2010 B2
7717193 Egilsson et al. May 2010 B2
7755310 West et al. Jul 2010 B2
7807048 Collette Oct 2010 B2
7835140 Mori Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7926562 Poitzsch Apr 2011 B2
7894757 Keast Jul 2011 B2
7977824 Halen et al. Jul 2011 B2
8037936 Neuroth Oct 2011 B2
8054084 Schulz et al. Nov 2011 B2
8083504 Williams Dec 2011 B2
8096354 Poitzsch Jan 2012 B2
8096891 Lochtefeld Jan 2012 B2
8139383 Efraimsson Mar 2012 B2
8146665 Neal Apr 2012 B2
8154419 Daussin et al. Apr 2012 B2
8232892 Overholt et al. Jul 2012 B2
8261528 Chillar Sep 2012 B2
8272439 Strickland Sep 2012 B2
8310272 Quarto Nov 2012 B2
8354817 Yeh et al. Jan 2013 B2
8474521 Kajaria Jul 2013 B2
8534235 Chandler Sep 2013 B2
8573303 Kerfoot Nov 2013 B2
8596056 Woodmansee Dec 2013 B2
8616005 Cousino Dec 2013 B1
8616274 Belcher et al. Dec 2013 B2
8646521 Bowen Feb 2014 B2
8692408 Zhang et al. Apr 2014 B2
8727068 Bruin May 2014 B2
8760657 Pope Jun 2014 B2
8774972 Rusnak et al. Jul 2014 B2
8789601 Broussard Jul 2014 B2
8800652 Bartko Aug 2014 B2
8807960 Stephenson Aug 2014 B2
8838341 Kumano Sep 2014 B2
8851860 Mail Oct 2014 B1
8857506 Stone, Jr. Oct 2014 B2
8899940 Laugemors Dec 2014 B2
8905056 Kendrick Dec 2014 B2
8905138 Lundstedt et al. Dec 2014 B2
8997904 Cryer Apr 2015 B2
9018881 Mao et al. Apr 2015 B2
9051822 Ayan Jun 2015 B2
9067182 Nichols Jun 2015 B2
9103193 Coli Aug 2015 B2
9119326 McDonnell Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9160168 Chapel Oct 2015 B2
9175554 Watson Nov 2015 B1
9206684 Parra Dec 2015 B2
9322239 Angeles Boza et al. Apr 2016 B2
9366114 Coli et al. Jun 2016 B2
9410410 Broussard et al. Aug 2016 B2
9450385 Kristensen Sep 2016 B2
9458687 Hallundbaek Oct 2016 B2
9475020 Coli et al. Oct 2016 B2
9475021 Coli et al. Oct 2016 B2
9534473 Morris et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9650871 Oehring et al. May 2017 B2
9650879 Broussard et al. May 2017 B2
9728354 Skolozdra Aug 2017 B2
9738461 DeGaray Aug 2017 B2
9745840 Oehring et al. Aug 2017 B2
9840901 Oehring et al. Dec 2017 B2
9863228 Shampine et al. Jan 2018 B2
9893500 Oehring Feb 2018 B2
9915128 Hunter Mar 2018 B2
9932799 Symchuk Apr 2018 B2
9963961 Hardin May 2018 B2
9976351 Randall May 2018 B2
10008880 Vicknair Jun 2018 B2
10196878 Hunter Feb 2019 B2
10227854 Glass Mar 2019 B2
10232332 Oehring Mar 2019 B2
10246984 Payne Apr 2019 B2
10254732 Oehring Apr 2019 B2
10260327 Kajaria Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287873 Filas May 2019 B2
10309205 Randall Jun 2019 B2
10371012 Davis Aug 2019 B2
10378326 Morris Aug 2019 B2
10393108 Chong Aug 2019 B2
10407990 Oehring Sep 2019 B2
10436026 Ounadjela Oct 2019 B2
20020169523 Ross et al. Nov 2002 A1
20030056514 Lohn Mar 2003 A1
20030138327 Jones et al. Jul 2003 A1
20040040746 Niedermayr Mar 2004 A1
20040102109 Cratty et al. May 2004 A1
20040167738 Miller Aug 2004 A1
20050061548 Hooper Mar 2005 A1
20050116541 Seiver Jun 2005 A1
20050274508 Folk Dec 2005 A1
20060052903 Bassett Mar 2006 A1
20060260331 Andreychuk Nov 2006 A1
20070131410 Hill Jun 2007 A1
20070187163 Cone Aug 2007 A1
20070201305 Heilman et al. Aug 2007 A1
20070226089 DeGaray et al. Sep 2007 A1
20070277982 Shampine Dec 2007 A1
20070278140 Mallet et al. Dec 2007 A1
20080017369 Sarada Jan 2008 A1
20080041596 Blount Feb 2008 A1
20080112802 Orlando May 2008 A1
20080137266 Jensen Jun 2008 A1
20080208478 Ella et al. Aug 2008 A1
20080217024 Moore Sep 2008 A1
20080236818 Dykstra Oct 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264640 Eslinger Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20090045782 Datta Feb 2009 A1
20090065299 Vito Mar 2009 A1
20090078410 Krenek et al. Mar 2009 A1
20090090504 Weightman Apr 2009 A1
20090093317 Kajiwara et al. Apr 2009 A1
20090095482 Surjaatmadja Apr 2009 A1
20090145611 Pallini, Jr. Jun 2009 A1
20090153354 Daussin et al. Jun 2009 A1
20090188181 Forbis Jul 2009 A1
20090200035 Bjerkreim et al. Aug 2009 A1
20090260826 Sherwood Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100000508 Chandler Jan 2010 A1
20100019574 Baldassarre et al. Jan 2010 A1
20100038907 Hunt Feb 2010 A1
20100045109 Arnold Feb 2010 A1
20100051272 Loree et al. Mar 2010 A1
20100101785 Khvoshchev Apr 2010 A1
20100132949 DeFosse et al. Jun 2010 A1
20100146981 Motakef Jun 2010 A1
20100172202 Borgstadt Jul 2010 A1
20100200224 Nguete Aug 2010 A1
20100250139 Hobbs et al. Sep 2010 A1
20100293973 Erickson Nov 2010 A1
20100303655 Scekic Dec 2010 A1
20100322802 Kugelev Dec 2010 A1
20110005757 Hebert Jan 2011 A1
20110017468 Birch et al. Jan 2011 A1
20110061855 Case et al. Mar 2011 A1
20110085924 Shampine Apr 2011 A1
20110166046 Weaver Jul 2011 A1
20110247878 Rasheed Oct 2011 A1
20110272158 Neal Nov 2011 A1
20120018016 Gibson Jan 2012 A1
20120049625 Hopwood Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120127635 Grindeland May 2012 A1
20120205301 McGuire et al. Aug 2012 A1
20120205400 DeGaray et al. Aug 2012 A1
20120222865 Larson Sep 2012 A1
20120232728 Karimi et al. Sep 2012 A1
20120247783 Berner, Jr. Oct 2012 A1
20120255734 Coli et al. Oct 2012 A1
20130009469 Gillett Jan 2013 A1
20130025706 DeGaray et al. Jan 2013 A1
20130175038 Conrad Jul 2013 A1
20130175039 Guidry Jul 2013 A1
20130199617 DeGaray et al. Aug 2013 A1
20130233542 Shampine Sep 2013 A1
20130306322 Sanborn et al. Nov 2013 A1
20130341029 Roberts et al. Dec 2013 A1
20130343858 Flusche Dec 2013 A1
20140000899 Nevison Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140054965 Jain Feb 2014 A1
20140060658 Hains Mar 2014 A1
20140095114 Thomeer Apr 2014 A1
20140096974 Coli Apr 2014 A1
20140124162 Leavitt May 2014 A1
20140138079 Broussard et al. May 2014 A1
20140174717 Broussard et al. Jun 2014 A1
20140219824 Burnette Aug 2014 A1
20140246211 Guidry et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140255214 Burnette Sep 2014 A1
20140277772 Lopez Sep 2014 A1
20140290768 Randle Oct 2014 A1
20140379300 Devine Dec 2014 A1
20150027712 Vicknair Jan 2015 A1
20150053426 Smith Feb 2015 A1
20150068724 Coli et al. Mar 2015 A1
20150068754 Coli et al. Mar 2015 A1
20150075778 Walters Mar 2015 A1
20150083426 Lesko Mar 2015 A1
20150097504 Lamascus Apr 2015 A1
20150114652 Lestz Apr 2015 A1
20150136043 Shaaban May 2015 A1
20150144336 Hardin et al. May 2015 A1
20150159911 Holt Jun 2015 A1
20150175013 Cryer et al. Jun 2015 A1
20150176386 Castillo et al. Jun 2015 A1
20150211512 Wiegman Jul 2015 A1
20150211524 Broussard Jul 2015 A1
20150217672 Shampine Aug 2015 A1
20150225113 Lungu Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150300145 Coli et al. Oct 2015 A1
20150314225 Coli et al. Nov 2015 A1
20150330172 Allmaras Nov 2015 A1
20150354322 Vicknair Dec 2015 A1
20160032703 Broussard et al. Feb 2016 A1
20160102537 Lopez Apr 2016 A1
20160105022 Oehring Apr 2016 A1
20160208592 Oehring Apr 2016 A1
20160160889 Hoffman et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177678 Morris Jun 2016 A1
20160186531 Harkless et al. Jun 2016 A1
20160208593 Coli et al. Jul 2016 A1
20160208594 Coli et al. Jul 2016 A1
20160208595 Tang Jul 2016 A1
20160221220 Paige Aug 2016 A1
20160230524 Dumoit Aug 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160258267 Payne et al. Sep 2016 A1
20160265457 Stephenson Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160281484 Lestz Sep 2016 A1
20160290114 Oehring Oct 2016 A1
20160290563 Diggins Oct 2016 A1
20160312108 Lestz et al. Oct 2016 A1
20160319650 Oehring Nov 2016 A1
20160326854 Broussard Nov 2016 A1
20160326855 Coli et al. Nov 2016 A1
20160341281 Brunvold et al. Nov 2016 A1
20160348479 Oehring Dec 2016 A1
20160349728 Oehring Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170016433 Chong Jan 2017 A1
20170021318 McIver et al. Jan 2017 A1
20170022788 Oehring et al. Jan 2017 A1
20170022807 Dursun Jan 2017 A1
20170028368 Oehring et al. Feb 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170030178 Oehring et al. Feb 2017 A1
20170036178 Coli et al. Feb 2017 A1
20170036872 Wallace et al. Feb 2017 A1
20170037717 Oehring Feb 2017 A1
20170037718 Coli et al. Feb 2017 A1
20170051732 Hemandez et al. Feb 2017 A1
20170096885 Oehring Apr 2017 A1
20170104389 Morris et al. Apr 2017 A1
20170114625 Norris Apr 2017 A1
20170146189 Herman May 2017 A1
20170159570 Bickert Jun 2017 A1
20170218727 Oehring Aug 2017 A1
20170218843 Oehring et al. Aug 2017 A1
20170222409 Oehring et al. Aug 2017 A1
20170226842 Omont Aug 2017 A1
20170234250 Janik Aug 2017 A1
20170241221 Seshadri Aug 2017 A1
20170259227 Morris et al. Sep 2017 A1
20170292513 Haddad Oct 2017 A1
20170313499 Hughes et al. Nov 2017 A1
20170314380 Oehring Nov 2017 A1
20170314979 Ye Nov 2017 A1
20170328179 Dykstra Nov 2017 A1
20170369258 DeGaray Dec 2017 A1
20180028992 Stegemoeller Feb 2018 A1
20180038216 Zhang Feb 2018 A1
20180216455 Andreychuk Aug 2018 A1
20180245428 Richards Aug 2018 A1
20180320483 Zhang Nov 2018 A1
20180363437 Coli et al. Dec 2018 A1
20190003329 Morris Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190063309 Davis Feb 2019 A1
20190100989 Stewart Apr 2019 A1
20190112910 Oehring Apr 2019 A1
20190120024 Oehring Apr 2019 A1
20190128080 Ross May 2019 A1
20190162061 Stephenson May 2019 A1
20190169971 Oehring Jun 2019 A1
20190178057 Hunter Jun 2019 A1
20190178235 Coskrey Jun 2019 A1
20190203567 Ross Jul 2019 A1
20190203572 Morris Jul 2019 A1
20190211661 Reckels Jul 2019 A1
20190226317 Payne Jul 2019 A1
20190245348 Hinderliter Aug 2019 A1
20190292866 Ross Sep 2019 A1
20190292891 Kajaria Sep 2019 A1
20190316447 Oehring Oct 2019 A1
Foreign Referenced Citations (27)
Number Date Country
2007340913 Jul 2008 AU
2406801 Nov 2001 CA
2707269 Dec 2010 CA
2482943 May 2011 CA
3050131 Nov 2011 CA
2955706 Oct 2012 CA
2966672 Oct 2012 CA
3000322 Apr 2013 CA
2787814 Feb 2014 CA
2833711 May 2014 CA
2978706 Sep 2016 CA
2944980 Feb 2017 CA
3006422 Jun 2017 CA
3018485 Aug 2017 CA
2964593 Oct 2017 CA
2849825 Jul 2018 CA
2919649 Feb 2019 CA
2919666 Jul 2019 CA
2797081 Sep 2019 CA
2945579 Oct 2019 CA
201687513 Dec 2010 CN
101977016 Feb 2011 CN
202023547 Nov 2011 CN
102602322 Jul 2012 CN
2004264589 Sep 2004 JP
2016144939 Sep 2016 WO
2016160458 Oct 2016 WO
Non-Patent Literature Citations (76)
Entry
Non-Final Office Action dated Feb. 12, 2019 in related U.S. Appl. No. 16/170,695.
International Search Report and Written Opinion dated Feb. 15, 2019 in related PCT Application No. PCT/US18/63977.
Non-Final Office Action dated Feb. 25, 2019 in related U.S. Appl. No. 16/210,749.
International Search Report and Written Opinion dated Mar. 5, 2019 in related PCT Application No. PCT/US18/63970.
Non-Final Office Action dated Mar. 6, 2019 in related U.S. Appl. No. 15/183,387.
Office Action dated Mar. 1, 2019 in related Canadian Patent Application No. 2,943,275.
Office Action dated Jan. 30, 2019 in related Canadian Patent Application No. 2,936,997.
UK Power Networks—Transformers to Supply Heat to Tate Modern—from Press Releases May 16, 2013.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/293,681 dated Feb. 16, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Mar. 14, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Jan. 20, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,443 dated Feb. 7, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 15/217,040 dated Mar. 28, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 14/622,532 dated Mar. 27, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/291,842 dated Jan. 6, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 7, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated May 17, 2016.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 21, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Aug. 5, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 12, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/217,040 dated Nov. 29, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/235,788 dated Dec. 14, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated May 15, 2017.
International Search Report and Written Opinion dated Apr. 10, 2019 in corresponding PCT Application No. PCT/US2019/016635.
Notice of Allowance dated Apr. 23, 2019 in corresponding U.S. Appl. No. 15/635,028.
Schlumberger, “Jet Manual 23, Fracturing Pump Units, SPF/SPS-343, Version 1.0,” Jan. 31, 2007, 68 pages.
Stewart & Stevenson, “Stimulation Systems,” 2007, 20 pages.
Luis Gamboa, “Variable Frequency Drives in Oil and Gas Pumping Systems,” Dec. 17, 2011, 5 pages.
“Griswold Model 811 Pumps: Installation, Operation and Maintenance Manual, ANSI Process Pump,” 2010, 60 pages.
Office Action dated Dec. 12, 2018 in related U.S. Appl. No. 16/160,708.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54542.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54548.
International Search Report and Written Opinion dated Dec. 31, 2018 in related PCT Patent Application No. PCT/US18/55913.
International Search Report and Written Opinion dated Jan. 4, 2019 in related PCT Patent Application No. PCT/US18/57539.
Canadian Office Action dated Jun. 22, 2018 in related Canadian Patent Application No. 2,886,697.
Office Action dated Jul. 25, 2018 in related U.S. Appl. No. 15/644,487.
Canadian Office Action dated Mar. 2, 2018 in related Canadian Patent Application No. 2,833,711.
Office Action dated Apr. 10, 2018 in related U.S. Appl. No. 15/294,349.
Office Action dated Apr. 2, 2018 in related U.S. Appl. No. 15/183,387.
Office Action dated May 29, 2018 in related U.S. Appl. No. 15/235,716.
Canadian Office Action dated Apr. 18, 2018 in related Canadian Patent Application No. 2,928,711.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/486,970 dated Jun. 22, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,656 dated Jun. 23, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,694 dated Jun. 26, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Jul. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/884,363 dated Sep. 5, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,535 dated Oct. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,414 dated Nov. 29, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/644,487 dated Nov. 13, 2017.
Non-Final Office Action dated Oct. 4, 2018 in related U.S. Appl. No. 15/217,081.
International Search Report and Written Opinion dated Sep. 19, 2018 in related PCT Patent Application No. PCT/US2018/040683.
Canadian Office Action dated Sep. 28, 2018 in related Canadian Patent Application No. 2,945,281.
International Search Report and Written Opinion dated Jul. 9, 2019 in corresponding PCT Application No. PCT/US2019/027584.
Office Action dated Jun. 11, 2019 in corresponding U.S. Appl. No. 16/210,749.
Office Action dated May 10, 2019 in corresponding U.S. Appl. No. 16/268,030.
Canadian Office Action dated May 30, 2019 in corresponding CA Application No. 2,833,711.
Canadian Office Action dated Jun. 20, 2019 in corresponding CA Application No. 2,964,597.
Office Action dated Jun. 7, 2019 in corresponding U.S. Appl. No. 16/268,030.
International Search Report and Written Opinion dated Sep. 11, 2019 in related PCT Application No. PCT/US2019/037493.
Office Action dated Aug. 19, 2019 in related U.S. Appl. No. 15/356,436.
Office Action dated Oct. 2, 2019 in related U.S. Appl. No. 16/152,732.
Office Action dated Sep. 11, 2019 in related US. Appl. No. 16/268,030.
Office Action dated Oct. 11, 2019 in related US. Appl. No. 16/385,070.
Office Action dated Sep. 3, 2019 in related U.S. Appl. No. 15/994,772.
Office Action dated Sep. 20, 2019 in related U.S. Appl. No. 16/443,273.
Canadian Office Action dated Oct. 1, 2019 in related Canadian Patent Application No. 2,936,997.
International Search Report and Written Opinion dated Jan. 2, 2020 in related PCT Application No. PCT/US19/55325.
Notice of Allowance dated Jan. 9, 2020 in related U.S. Appl. No. 16/570,331.
Non-Final Office Action dated Dec. 23, 2019 in related U.S. Appl. No. 16/597,008.
Non-Final Office Action dated Jan. 10, 2020 in related U.S. Appl. No. 16/597,014.
Non-Final Office Action dated Dec. 6, 2019 in related U.S. Appl. No. 16/564,186.
International Search Report and Written Opinion dated Nov. 26, 2019 in related PCT Application No. PCT/US19/51018.
International Search Report and Written Opinion dated Feb. 11, 2020 in related PCT Application No. PCT/US2019/055323.
Non-Final Office Action issued in U.S. Appl. No. 16/152,695 dated Mar. 3, 2020.
International Search Report and Written Opinion issued in Application No. PCT/US2019/055323 dated Feb. 11, 2020.
Related Publications (1)
Number Date Country
20180183219 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
62323168 Apr 2016 US
Continuations (2)
Number Date Country
Parent 15487694 Apr 2017 US
Child 15893766 US
Parent 13679689 Nov 2012 US
Child 15202085 US
Continuation in Parts (4)
Number Date Country
Parent 15235788 Aug 2016 US
Child 15487694 US
Parent 15202085 Jul 2016 US
Child 15235788 US
Parent 15145491 May 2016 US
Child 13679689 US
Parent 13679689 Nov 2012 US
Child 15145491 US