The field of the invention is control systems for subsurface safety valves (SSV) and more particularly a device that allows changeover to a redundant system while isolating a closure spring from the hydrostatic pressure effects of one of the control lines from the surface to the SSV.
SSVs are used in production strings to control the well. They are mounted in the string and are hydraulically controlled from the surface. Typically a control line runs parallel to the production string and is connected to the SSV housing. Applying pressure moves a piston that is connected to a flow tube. The flow tube is pushed against a closure spring by the piston. The flow tube also engages a flapper to rotate it 90 degrees so that the flow tube can advance as the open flapper is now outside the flow tube. The housing has a seat and the flapper is biased by a torsion spring against the seat. The movement of the piston to urge the flow tube to move winds the torsion spring and compresses the closure spring at the same time. When pressure is removed or lost from the control line, the closure spring pushes the flow tube and interconnected operating piston against the hydrostatic pressure in the control line so that as the flow tube rises the torsion spring is enabled to rotate the flapper into contact with the seat.
If a problem occurs within the SSV it usually means that it has to be pulled with the production string. Variations involving balance control lines or pressurized chambers in the SSV housing have been developed to allow offsetting of hydrostatic pressure since the hydrostatic pressure in the main control line is offset and that allows a smaller closure spring to close the valve without having to also overcome the hydrostatic pressure in the control line.
Problems could occur in the hydraulic actuation system such as a control line leak or an operating piston seal leak, for example. Dual operating control systems have been developed so that one operates the SSV while the other system is isolated until needed. In these systems, each control system had its own control line and operating piston where both operating pistons were engaged to the flow tube. In order not to burden the single closure spring with the added hydrostatic pressure from two parallel control lines the system that is offline is isolated with a rupture disc so that the hydrostatic pressure above the disc is not felt by the closure spring until the disc is broken, generally by raising tubing pressure.
However, in subsea systems the delivered pressures are controlled and can't be arbitrarily raised to affect a switch to the backup control system by raising the pressure in the system above the normal operating range. This condition in subsea systems has been addressed by the present invention. There are the two control lines each going to a discrete independent operating piston. Each piston is coupled to a rod and the two rods interact. The rod associated with the piston where control line pressure is applied is free to move to operate the SSV in the normal manner. The movement of the first piston and its associated rod results in support for the other rod in a variety of ways explained below. The result is that the rod associated with the non-pressurized system has the hydrostatic pressure in its control line isolated from the closure spring. Removing applied pressure from the control lines lets the system go back to neutral so that either of the two redundant systems can be thereafter activated. Those skilled in the art will gain a better understanding of the invention from the description of the preferred embodiment with the associated drawings that appear below with the understanding that the claims define the full scope of the invention.
A system is provided for switching between redundant control systems for a subsurface safety valve (SSV) while being able to isolate the closure spring from hydrostatic pressure in the control line of the system that is not being used. There are two control lines that connect to discrete operating pistons that are both coupled to the flow tube. Each operating piston is connected to a control rod with the control rods terminating near opposed ends of a pivoting member. Pushing down on one rod pushes up on the other rod so that the other rod is held supported and the hydrostatic pressure in its associated control line doesn't materially affect the force needed by the closure spring to close the SSV. Releasing control line pressure puts the system in neutral to allow either of the systems to be reselected.
For clarity, most of the common components of SSVs are omitted from the FIGS. Instead the focus is on showing the flow tube and operating pistons that are attached to it. Those skilled in the art will know that a closure spring is below the flow tube and is compressed when the flow tube is forced down by the operating piston. In turn, pressure in a control line is delivered to an operating piston that can be of an annular or rod shape and is sealed in a bore in the SSV housing. Of course, the flow tube rotates the flapper when moved down and the torsion spring on the flapper pivot rotates the flapper to its seat when the closure spring pushes up the flow tube.
With all that as an introduction to typical components in a SSV, the drawings will show how those systems interact when redundant systems are provided and there is a need to be able to switch between them as well as to isolate hydrostatic pressure from the control line associated with the system that is not in use.
Mounted within the housing 14 is a pivoting member 28 on which rests the lower ends 30 and 32 of rods 34 and 36 respectively. Rod 34 is clamped to piston 18 and rod 36 is clamped to piston 20 respectively by clamps 22 and 24 for tandem movement. Shown illustratively on rod 36 but also useful on rod 34 is a wear pad 38 that gives lateral support to the rod 36 when pivoting member 28 is rotated against it, as shown in
What is illustrated in
While motion of the components in one direction and a return to the neutral position has been described, those skilled in the art will appreciate that with a redundant system available, either one can be actuated first and the difference is simply the pivot direction of member 28 or 28′. Thus, the advantage of isolating hydrostatic pressure from one of the surface control lines from the flow tube is simply accomplished in either embodiment particularly in a situation where the hydraulic system is regulated not to exceed the normal range of operating pressures. Additionally, the illustrated systems offer an advantage over rupture disc isolation in that they are cycle independent as compared to a rupture disc system which works once and is disabled. Further, the use of a rupture disc for an isolator carries additional risks of fragments breaking off the disc when it is deliberately broken and causing the piston below to jam or its seals to leak. Either event will normally require pulling a string with the SSV at significant cost. While a variety of solutions to a changeover from one redundant system to another have been illustrated, those skilled in the art will appreciate that the invention encompasses redundant systems that allow for changeover any number of times while isolating the closure spring from hydrostatic of any redundant line(s). While one backup system has been illustrated, more than one backup system can be integrated into a SSV.
While clamped rods have been illustrated in conjunction with pivoting member 28, those skilled in the art will appreciate that such rods can be eliminated for protruding structures directly from a piston. In
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below.
Number | Name | Date | Kind |
---|---|---|---|
4838355 | Leismer et al. | Jun 1989 | A |
4951753 | Eriksen | Aug 1990 | A |
6109351 | Beall | Aug 2000 | A |
6158714 | Lembcke et al. | Dec 2000 | A |
6877564 | Layton et al. | Apr 2005 | B2 |
6902006 | Myerley et al. | Jun 2005 | B2 |
Number | Date | Country |
---|---|---|
2006069247 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090050327 A1 | Feb 2009 | US |