The present disclosure generally relates to the technical field of gas cookers, and in particular to a switching assembly of an ignition circuit in a gas cooker and a switching mechanism including the switching assembly.
This section provides background information related to the present disclosure which may not constitute the prior art.
A gas cooker generally includes a switching mechanism manually operable by an operator. The switching mechanism generally includes a gas valve structure for leading through and cutoff of gas and an ignition circuit for a spark plug. The gas valve structure and the ignition circuit can cooperate to ignite the gas cooker. The prior switch structure for switching on and off the ignition circuit is generally a mechanical switch structure, which generally includes two elastic metal sheets and an actuation member for actuating the two elastic metal sheets such that the two metal sheets is interconnected or disconnected, so as to switch on or switch off the ignition circuit.
However, water, oil stains, or other foreign substances may enter into the switching mechanism in use, which may results in jamming of a plunger of the gas valve structure, jamming and rusting of components of the mechanical switch structure, causing the ignition circuit to fail to ignite normally, and even causing the entire switching mechanism to fail to work properly.
Therefore, it is necessary to provide an improved switching assembly for the ignition circuit and a switching mechanism.
An object of the present disclosure is to provide an improved switching assembly so as to improve the sealing performances such as waterproofing and anti-corrosion and the service life of the switching assembly.
Another object of the present disclosure is to provide a switching mechanism so as to improve the use reliability of the switching mechanism and simplify its structure.
Another object of the present disclosure is to provide an improved gas cooker so as to increase the service life of the gas cooker, simplify its structure, and reduce its cost.
It is provided according to an aspect of the present disclosure a switching assembly for an ignition circuit of a gas cooker which includes a gas valve structure configured for the passing through and cutting off of the gas, and the gas valve structure includes a plunger operable by an operator and a valve housing configured to receive the plunger. The switching assembly includes: a permanent magnet carrier configured to be connected to the plunger to move between an initial position and a working position with the movement of the plunger; a permanent magnet fixed onto the permanent magnet carrier; a reed switch connected to the ignition circuit through a cable; a sealing structure configured to be arranged around a connection segment between the reed switch and the cable such that the connection segment is sealed from an environment where the switching assembly is located. When the permanent magnet carrier is in the initial position, a distance between the permanent magnet and the reed switch allows the reed switch to be free from the effect of the permanent magnet to thereby maintain the ignition circuit in an off state; and when the permanent magnet carrier is in the working position, the permanent magnet is close to the reed switch such that the reed switch is switched on under the effect of the permanent magnet to thereby switch on the ignition circuit.
According to an embodiment, the switching assembly further includes a reed switch carrier, and the reed switch is carried by the reed switch carrier.
According to an embodiment, the reed switch carrier includes a housing part fixable to the valve housing of the gas valve structure, the housing part has an open box structure, and the connection segment between the reed switch and the cable is located in the housing part.
According to an embodiment, the reed switch is fitted in the housing part in a snap-fit manner; or the reed switch is integrally molded with the housing part.
According to an embodiment, the switching assembly includes a PCB mounted in the housing part, the reed switch and the cable are connected to each other by the PCB.
According to an embodiment, the sealing structure includes a sealant covering the connection segment between the reed switch and the cable.
According to an embodiment, the sealant is provided in the housing part merely at the connection segment between the reed switch and the cable; or the sealant is provided throughout an interior cavity of the housing part when the reed switch and the cable are installed in place.
According to an embodiment, the reed switch carrier further includes a cover part configured to cover an opening portion of the housing part in a shape-matching manner to define a hollow cavity between the cover part and the housing part, both the connection segment between the reed switch and the cable and the reed switch are accommodated in the hollow cavity.
According to an embodiment, the reed switch carrier has a through hole penetrating a bottom of the housing part and the cover part and having a diameter greater than that of the plunger, and the reed switch carrier can be fitted over the plunger via the through hole and be further fixed onto the valve housing of the gas valve structure.
According to an embodiment, the permanent magnet carrier is a cylindrical member that can be fitted over the plunger, and the cylindrical permanent magnet carrier includes a small-diameter portion and a large-diameter portion connected to each other, the permanent magnet is fixed in a wall of the large-diameter portion, and when the permanent magnet carrier is installed in place, the large-diameter portion is located in the hollow cavity of the reed switch carrier.
According to an embodiment, the permanent magnet carrier is a plate member that can be fitted over the plunger, and the permanent magnet carrier is located above the reed switch carrier when being installed in place.
According to an embodiment, the reed switch carrier is fixed to the valve housing of the gas valve structure via an attachment bracket.
According to an embodiment, the permanent magnet carrier is a cylindrical or plate-like member that can be fitted over the plunger.
According to an embodiment, the permanent magnet carrier is movable between the initial position and the working position as the plunger rotates; or the permanent magnet carrier is movable between the initial position and the working position as the plunger moves linearly; or the permanent magnet carrier is movable between the initial position and the working position as the plunger both rotates and moves linearly.
According to an embodiment, the permanent magnet is embedded in the permanent magnet carrier or is integrally molded with the permanent magnet carrier.
According to an embodiment, the permanent magnet has a rectangular shape, a sector shape or an annular shape suitable for exerting a magnetic effect on the reed switch as the permanent magnet carrier moves.
It is provided according to another aspect of the present disclosure a switching mechanism which includes a gas valve structure configured for the passing through and cutting off of the gas. The gas valve structure includes a plunger operable by an operator and a valve housing receiving the plunger, and the switching mechanism further includes the switching assembly according to any one of the above aspects.
It is provided according to another aspect of the present disclosure a gas cooker which includes the above switching mechanism and an ignition circuit. The ignition circuit includes a spark plug, the switching assembly of the switching mechanism is connected in the ignition circuit for switching on or off the ignition circuit.
According to the present disclosure, the reed switch is used in the ignition circuit of the gas cooker, which can help to avoid the issue of damage to the ignition circuit due to jamming or corrosion of the elastic metal sheets of the switch structure in the conventional technology, and can improve waterproof and anti-corrosive properties of the entire ignition circuit, and can improve the use stability of the ignition circuit. The reed switch is connected to the cable in such a manner that the connection segment therebetween is sealed (water-proofing, anti-corrosion, etc.) from the surrounding environment where the switching assembly is located, which can further improve the reliability of the entire ignition circuit. As a result, the reliability and service life of the gas cooker and its switching mechanism can also be improved. Moreover, the switching assembly according to the present disclosure can be combined with the conventional gas valve structures and gas cookers, has a simple structure, is convenient to install, and has a high applicability.
The features and advantages of one or more embodiments of the present disclosure will become more readily understood from the following description with reference to the accompanying drawings in which:
The following description of preferred embodiments is merely exemplary and is in no way intended to limit the present disclosure, its application, or uses. The same components are denoted by the same reference numerals in the respective drawings, and thus the configurations of the same components will not be repeatedly described.
For the convenience of description, a switching assembly and a switching mechanism according to the present disclosure will be described in detail below by taking the application in a gas cooker as an example. However, it can be understood that the switching assembly and the switching mechanism according to the present disclosure are not limited to the application in the gas cooker, and can also be applied to other structures and applications which are required to control the leading through and cutoff of fluid and the switching on and off of an electric circuit.
As is known, the gas cooker (e.g., a household gas cooker) generally includes a switching mechanism manually operable by an operator. When using the gas cooker, the operator can manually operate the switching mechanism to ignite the gas cooker. This kind of switching mechanism generally includes a gas valve structure and an ignition circuit. The gas valve structure generally includes a plunger (e.g., a plunger 201, 201′ having a D-shaped cross-section as shown in
However, it is found by the present inventor that, in the process of using the gas cooker, the plunger is generally operated to rotate and/or to move linearly, for which an operation gap would be inevitably presented between the operation knob operable by the operator and an operation table (or between the plunger and the operation table). Foreign substances such as water, grease, food residues, etc., are apt to penetrate to the underside of the operation table through the operation gap, resulting in jamming, rusting, etc. of the components (e.g., the plunger, the elastic metal sheets) of the switching mechanism, and even resulting in malfunction of the related components and the entire switching mechanism.
To this end, it is provided by the present inventor an improved switching assembly in order to achieve at least one of the following objects: improving the sealing performances, such as waterproofing, anti-corrosion, etc., of the switching assembly, improving the reliability of the ignition circuit, improving the reliability and service life of the switching mechanism and the gas cooker, reducing the cost and simplifying the structure of the switching mechanism, etc.
As mentioned above, the gas valve structure generally includes a plunger operable by an operator. The switching assembly according to the present disclosure may be connected to an existing gas valve structure so as to be operated together with the gas valve structure via an operation knob to thereby switch the on or off state of the ignition circuit. This structural arrangement can make the switching mechanism more compact and easier to implement.
According to an embodiment of the present disclosure, the switching assembly may include a permanent magnet and a reed switch. The reed switch may be connected to the ignition circuit of the gas cooker by a cable. The permanent magnet may be carried by a permanent magnet carrier. The permanent magnet carrier may be connected to the plunger of the gas valve structure so as to move between an initial position and a working position together with the plunger. Thus, the permanent magnet may be away from or close to the reed switch as the permanent magnet carrier moves, thereby controlling the reed switch such that it is switched off or switched on, which in turn may switch off or switch on the ignition circuit. When the permanent magnet carrier is in the initial position, the permanent magnet is away from the reed switch, leaving the reed switch free from the magnetic effect of the permanent magnet and thus is maintained in its original off or on state. When the permanent magnet carrier is moved to its working position with the plunger, the permanent magnet may get close to the reed switch to exert a magnetic effect on the reed switch to switch on or off the reed switch, which thereby may further control the switching on or off of the ignition circuit connected to the reed switch. Advantageously, a sealing structure may be provided to seal the connection segment (or connection portion) between the reed switch and the cable from the environment in which the switching assembly is located (for example, the environment where the region under the gas cooker top is located) to prevent water, grease and other foreign substances from adversely affecting the ignition circuit, improve the performance of the switching assembly and the ignition circuit, and further improve the use reliability and service life of the switching assembly and the ignition circuit.
The switching assembly according to the present disclosure is further described in detail hereinafter with reference to
A structure for carrying the permanent magnet may be provided to allow the permanent magnet to move away from or get close to the reed switch, thereby affecting the state of the reed switch. According to the present disclosure, the switching assembly 100 may further include a permanent magnet carrier 110. The permanent magnet 120 may be fixed to the permanent magnet carrier 110. The permanent magnet carrier 110 may be fixedly connected to the plunger 201 to move between an initial position and a working position with the plunger 201 such that the permanent magnet 120 is away from or close to the reed switch 140. When the permanent magnet 120 is away from the reed switch 140, the reed switch can maintain its initial state (e.g., an off state). When the permanent magnet 120 is moved close to the reed switch 140 to exert a magnetic effect on the reed switch, the reed switch 140 may be switched to an on state.
Both ends of the reed switch 140 may be connected to the ignition circuit (please refer to
Advantageously, a structure for carrying the reed switch 140 may be provided so as to fixedly hold the reed switch 140. According to an embodiment of the present disclosure, the switching assembly 100 may further include a reed switch carrier 130. The reed switch 140 may be carried (fixed or supported) on the reed switch carrier 130. The reed switch carrier 130 may be fixedly supported at an appropriate location on the gas valve structure 200 (e.g., in an embodiment of the present disclosure, the reed switch carrier 130 is supported on the valve housing 202 of the gas valve structure 200). Thereby, the reed switch 140 may switch between the off and on states in response to the moving away or approaching of the permanent magnet 120.
It can be understood that the positional relationship between the permanent magnet 120 and the reed switch 140 should be configured such that, a distance or an included angle between the permanent magnet 120 and the reed switch 140 is sufficient to cause the permanent magnet 120 not to exert a magnetic effect on the reed switch 140 when the permanent magnet carrier 110 is in the initial position; and a distance or an included angle between the permanent magnet 120 and the reed switch 140 is sufficient for the permanent magnet 120 to exert a magnetic effect on the reed switch 140 to switch the on or off states of the reed switch 140 when the permanent magnet carrier 110 is in the working position.
According to an embodiment of the present disclosure, the reed switch carrier 130 may include a housing part 131 which may be fixed to the gas valve structure 200. For example, as further described below, the housing part 131 may be fitted over the plunger 201 and be further fixedly supported on other components (e.g., the valve housing 202) of the gas valve structure 200. Alternatively, the housing part 131 may be fixed onto the gas valve structure 200 through an attachment bracket. The reed switch 140 may be arranged inside the housing part 131 such that the reed switch 140 and the cable 300 may be connected to each other in the region of the housing part 131.
It can be understood that the reed switch carrier 130 is not necessarily to be fixed onto the gas valve structure 200, it can also be supported or fixed onto other structural parts of the gas cooker, or it can be supported or fixed by a special structure.
According to the present disclosure, the housing part 131 may be of an open box structure. Alternatively, as shown in (a) of
Advantageously, as shown in
A sealing structure for sealing the connection segment between the reed switch 140 and the cable 300 from the environment in which the switching assembly 10 is located may include a sealant covering the connection segment.
For example, the sealant (or an isolation material, such as an epoxy, or an elastomeric material) may be applied only on the connection segment between the reed switch 140 and the cable 300. According to practical requirements and practical structural arrangement, a sealant may be applied in all or a portion of the region of the housing part 131.
With this structural arrangement, the connection segment between the reed switch 140 and the cable 300 can be in a sealed state with respect to the environment in which the switching assembly 10 is located, which therefore can protect the ignition circuit from being adversely affected by foreign substances such as water, grease, from the outside. Therefore, the use reliability and service life of the ignition circuit can be improved, which in turn can improve the use reliability and stability of the switching mechanism of the gas cooker and the gas cooker itself. In a case where the switching assembly according to the present disclosure is applied to other switching mechanisms or electrical circuits, the performance of the switching mechanisms or the electrical circuits may be improved as well.
As shown in
Advantageously, the permanent magnet carrier 110 may be fitted over the plunger 201 so as to move with the plunger 201. In this way, it is not necessary to make any changes to the plunger of the existing gas valve structure, but only need to provide a permanent magnet carrier that matches the plunger. Therefore, the application convenience of the switching assembly according to the present disclosure can be improved.
It can be understood that the permanent magnet carrier may be fixedly connected to the plunger 201 in other feasible ways in addition to those disclosed in the present application and is not limited by this disclosure. For example, an additional support structure may be provided such that the permanent magnet carrier is be fixedly connected to the plunger by the additional support structure. Alternatively, the plunger may be partially modified to facilitate the fixed connection of the permanent magnet carrier thereto.
As shown in
Specifically, the permanent magnet carrier 110 may include a small-diameter portion 1112 and a large-diameter portion 1114. The large-diameter portion 1114 has a diameter greater than that of the small-diameter portion 1112. This structural arrangement may save the space occupied by the permanent magnet carrier and the material costs.
The bottom 1311 of the housing part 131 may be provided with a first through hole 1312 which may have a diameter greater than that of the plunger 201 such that the housing part 131 would not move with the plunger 201. The housing part 131 may be fitted over the plunger 201 by means of the first through hole 1312 in the bottom 1311 thereof and further fixedly supported on the gas valve structure 200 (e.g., supported on the valve housing 202). In the case that the cover part 132 is provided, the cover part 132 may also correspondingly be provided with a second through hole 1322. Thus, the first through hole 1312 and the second through hole 1322 may constitute a through hole penetrating through the reed switch carrier 130. When installed in place, the plunger 201 may extend through the through hole.
In a mounted state (i.e., the switching assembly according to the present disclosure is mounted on the plunger), the permanent magnet carrier 110 and the reed switch carrier 130 may be sequentially sleeved on the plunger 201. The permanent magnet carrier 110 may be located above the reed switch carrier 130. The large-diameter portion 1114 of the permanent magnet carrier 110 may abut on the bottom 1311 of the housing part 131. The permanent magnet 120 may be arranged in the wall of the large-diameter portion 1114 and adjacent to the bottom 1311 of the housing part 131. The reed switch 140 may be mounted on the bottom 1311 of the housing part 131 near a side wall of the housing part 131. With this arrangement, the permanent magnet 120 may be substantially in the same horizontal plane as the reed switch 140. As shown in (a) of
As shown in
A groove may be provided in the permanent magnet carrier 110 (for example, a groove may be provided in the wall of the large-diameter portion 1114), and the permanent magnet 120 may be embedded in the groove in the wall of the large-diameter portion 1114. Advantageously, the permanent magnet may be integrally molded in the permanent magnet carrier 110 (e.g., molded in the wall of the large-diameter portion 1114), in this case, the permanent magnet may be stably held in the permanent magnet carrier, which may further improve the performance of the switching assembly.
Alternatively, the permanent magnet 120 may be in a different horizontal plane from the reed switch 140. For example, in an embodiment not shown, the reed switch carrier 140 may be arranged above or below the permanent magnet carrier 110 such that when the permanent magnet carrier 110 is in the initial position (i.e., a position in which the permanent magnet 120 is away from the reed switch 140), the permanent magnet 120 could not exert a magnetic effect on the reed switch 140. However, when the permanent magnet carrier 110 is rotated to the working position (i.e., a position in which the permanent magnet is close to the reed switch 140), the permanent magnet 120 exerts a magnetic effect on the reed switch 140 so as to switch on the ignition circuit.
In the present embodiment, as shown in
The switching assembly 100′ according to another embodiment of the present disclosure is further described below with reference to
As shown in
Similar to the arrangement of the permanent magnet 120 on the permanent magnet carrier 110, the permanent magnet 120′ may be embedded into the permanent magnet carrier 110′ or be integrally molded with the permanent magnet carrier 110′. In the present embodiment, as shown in (a) and (b) of
The reed carrier 130′ may be fixed to the gas valve structure 200′ below the permanent magnet carrier 110′. As such, in the initial state, the permanent magnet 120′ and the reed switch 140′ may be arranged in different horizontal planes such that the permanent magnet 120′ can approach or be away from the reed switch 140′ in response to the linear movement of the permanent magnet carrier 110′.
As can be appreciated, since the permanent magnet 120′ will move with the permanent magnet carrier 110′ together with the linear movement of the plunger 201′, the distance between the permanent magnet 120′ and the reed switch 140′ should be sufficient such that when the permanent magnet carrier 110′ is in its initial position, the reed switch 140′ could be free from the magnetic effect of the permanent magnet 120′. However, when the permanent magnet carrier 110′ is moved to its working position, the reed switch 140′ may be switched on or off under the magnetic effect of the permanent magnet 120′.
It may also be appreciated that in an embodiment not shown, the reed switch carrier 130′ may be fixed to the gas valve structure 200′ above the permanent magnet carrier 110′. Accordingly, the permanent magnet 120′ may be arranged on an upper surface of the permanent magnet carrier 110′.
According to a practical situation, the permanent magnet 120′ may have a rectangular shape, a sector shape, an annular shape, or the like. The correspondence between the permanent magnet 120′ and the reed switch 140′ may be determined according to the practical conditions. For example, in a case that the plunger 201′ may only be moved linearly, the permanent magnet 120′ may be arranged in alignment with the reed switch 140′ in a vertical direction. In a case that the plunger 201′ may be moved linearly as well as rotated at the same time, in the initial position, the permanent magnet 120′ and the reed switch 140′ may have a predetermined angle therebetween. Of course, in a case that the permanent magnet 120′ is in an annular shape, the reed switch 140′ may be arranged at any suitable position below or above the permanent magnet.
Similar to the structure previously described with reference to
Similar to the arrangement of the reed switch 140 in the housing part 131 of the reed switch carrier 130, the reed switch 140′ may be arranged in the housing part 131′ in a snap-fit manner, or the reed switch 140′ may be molded integrally with the housing part 131′, or a PCB may be provided such that the reed switch 140′ and the cable are connected together. Also, a sealing structure including a sealant may also be provided. For example, a sealant may be provided only on a connection segment between the reed switch 140′ and the cable or in the entire inner cavity of the housing part 131′ such that the connection segment between the reed switch 140′ and the cable is in a sealed state.
Similarly, the reed switch carrier 130′ may further have a cover part 132′. In the case that the cover part 132′ is provided, the cover part 132′ can also be attached to the gas valve structure by an additional attachment bracket, as shown in
According to the present embodiment, when the permanent magnet carrier 110′ is in the initial position, as shown in (a) of
According to the present disclosure, the reed switch 140, 140′ of the switching assembly 100, 100′ may be connected to the ignition circuit of the gas cooker via the cables 300.
When the switching assemblies are actuated through the plungers of the gas valve structures, the permanent magnets may be brought close to the reed switches RS1, RS2, RS3, RS4 such that the reed switches RS1, RS2, RS3, RS4 are switched on, thereby switching on the ignition circuits. As a result, the spark plugs SP1, SP2, SP3, SP4 can generate sparks.
The four ignition circuits shown in
It can be seen that, the reed switches are connected to the cables in a sealed manner. Therefore, in the application shown in
It may be understood that the application shown in
In addition, according to an embodiment of the present disclosure, the permanent magnet carriers are all sleeved and fixed on the plunger. This structural arrangement further facilitates preventing the plunger from being jammed. In particular, in the embodiment shown in
According to the present disclosure, the permanent magnet and the reed switch are used in the ignition circuit of the gas cooker to control the on/off of the ignition circuit. The permanent magnet can be moved to get close to the reed switch or away from the reed switch with the movement of the plunger, thereby affecting the on or off state of the reed switch. The reed switch and the ignition circuit are connected by the cables, and the connection segment between the reed switch and the cables are in a sealed state. Therefore, the use stability of the ignition circuit is improved, and the operation convenience of the gas cooker and its switching mechanism is improved, the structure is simplified, and the cost is reduced. Furthermore, the sleeved connection of the permanent magnet carrier on the plunger further facilitates reducing the risk that the plunger is jammed by foreign substances, which thereby further improves the performance of the switching mechanism and the gas cooker.
In the present disclosure, the above description was made by taking the application of the switching assembly in a gas cooker as an example. Therefore, the gas cooker and the switching mechanism having the switching assembly described above are also within the protection scope of the present disclosure.
It can be understood that, the switching assembly according to the present disclosure is not limited to be applied to the gas cooker. For example, a plunger that can be rotated and/or linearly moved can be provided to match with the application of the present switching assembly. To this end, a switching mechanism may be provided, and the switching structure may include a plunger and the above-described switching assembly. This kind of switching mechanism may be used in other applications so as to control the on or off state of the electrical circuit.
Specific embodiments and variations of the present disclosure have been specifically described above. However, the person skilled in the art should understand that the present disclosure is not limited to the above-mentioned specific embodiments and variations, but may include various possible combinations and incorporations. For example, the permanent magnet carrier and the reed switch carrier of the switching assembly 100 shown in
Although various embodiments of the present disclosure have been described in detail herein, it should be understood that the present disclosure is not limited to the specific embodiments described and illustrated herein in detail, other variations and modifications may be implemented by the person skilled in the art without departing from the spirit and scope of the present disclosure. All these variations and modifications fall within the scope of the present disclosure. Moreover, all the components described here can be replaced by other technically equivalent components.
Number | Date | Country | Kind |
---|---|---|---|
201811073568.0 | Sep 2018 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/072785 | 8/27/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/052961 | 3/19/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4663601 | Troutman | May 1987 | A |
5478977 | Beasley | Dec 1995 | A |
20050224066 | Li | Oct 2005 | A1 |
20080003532 | Gjerde | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
101885041 | Aug 2018 | KR |
Entry |
---|
International Search Report and Written Opinion for PCT/EP2019/072785 dated Nov. 6, 2019, 10 pages. |
Brazilian Office action for app No. BR112021004273-3, dated Jun. 8, 2023, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20220026064 A1 | Jan 2022 | US |