Switching between text data and audio data based on a mapping

Information

  • Patent Grant
  • 10672399
  • Patent Number
    10,672,399
  • Date Filed
    Thursday, October 6, 2011
    12 years ago
  • Date Issued
    Tuesday, June 2, 2020
    4 years ago
Abstract
Techniques are provided for creating a mapping that maps locations in audio data (e.g., an audio book) to corresponding locations in text data (e.g., an e-book). Techniques are provided for using a mapping between audio data and text data, whether the mapping is created automatically or manually. A mapping may be used for bookmark switching where a bookmark established in one version of a digital work (e.g., e-book) is used to identify a corresponding location with another version of the digital work (e.g., an audio book). Alternatively, the mapping may be used to play audio that corresponds to text selected by a user. Alternatively, the mapping may be used to automatically highlight text in response to audio that corresponds to the text being played. Alternatively, the mapping may be used to determine where an annotation created in one media context (e.g., audio) will be consumed in another media context.
Description
FIELD OF THE INVENTION

The present invention relates to automatically creating a mapping between text data and audio data by analyzing the audio data to detect words reflected therein and compare those words to words in the document.


BACKGROUND

With the cost of handheld electronic devices decreasing and large demand for digital content, creative works that have once been published on printed media are increasingly becoming available as digital media. For example, digital books (also known as “e-books”) are increasingly popular, along with specialized handheld electronic devices known as e-book readers (or “e-readers”). Also, other handheld devices, such as tablet computers and smart phones, although not designed solely as e-readers, have the capability to be operated as e-readers.


A common standard by which e-books are formatted is the EPUB standard (short for “electronic publication”), which is a free and open e-book standard by the International Digital Publishing Forum (IDPF). An EPUB file uses XHTML 1.1 (or DTBook) to construct the content of a book. Styling and layout are performed using a subset of CSS, referred to as OPS Style Sheets.


For some written works, especially those that become popular, an audio version of the written work is created. For example, a recording of a famous individual (or one with a pleasant voice) reading a written work is created and made available for purchase, whether online or in a brick and mortar store.


It is not uncommon for consumers to purchase both an e-book and an audio version (or “audio book”) of the e-book. In some cases, a user reads the entirety of an e-book and then desires to listen to the audio book. In other cases, a user transitions between reading and listening to the book, based on the user's circumstances. For example, while engaging in sports or driving during a commute, the user will tend to listen to the audio version of the book. On the other hand, when lounging in a sofa-chair prior to bed, the user will tend to read the e-book version of the book. Unfortunately, such transitions can be painful, since the user must remember where she stopped in the e-book and manually locate where to begin in the audio book, or visa-versa. Even if the user remembers clearly what was happening in the book where the user left off, such transitions can still be painful because knowing what is happening does not necessarily make it easy to find the portion of an eBook or audio book that corresponds to those happenings. Thus, switching between an e-book and an audio book may be extremely time-consuming.


The specification “EPUB Media Overlays 3.0” defines a usage of SMIL (Synchronized Multimedia Integration Language), the Package Document, the EPUB Style Sheet, and the EPUB Content Document for representation of synchronized text and audio publications. A pre-recorded narration of a publication can be represented as a series of audio clips, each corresponding to part of the text. Each single audio clip, in the series of audio clips that make up a pre-recorded narration, typically represents a single phrase or paragraph, but infers no order relative to the other clips or to the text of a document. Media Overlays solve this problem of synchronization by tying the structured audio narration to its corresponding text in the EPUB Content Document using SMIL markup. Media Overlays are a simplified subset of SMIL 3.0 that allow the playback sequence of these clips to be defined.


Unfortunately, creating Media Overlay files is largely a manual process. Consequently, the granularity of the mapping between audio and textual versions of a work is very coarse. For example, a media overlay file may associate the beginning of each paragraph in an e-book with a corresponding location in an audio version of the book. The reason that media overlay files, especially for novels, do not contain a mapping at any finer level of granularity, such as on a word-by-word basis, is that creating such a highly granular media overlay file might take countless hours in human labor.


The approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a flow diagram that depicts a process for automatically creating a mapping between text data and audio data, according to an embodiment of the invention;



FIG. 2 is a block diagram that depicts a process that involves an audio-to-text correlator in generating a mapping between text data and audio data, according to an embodiment of the invention;



FIG. 3 is a flow diagram that depicts a process for using a mapping in one or more of these scenarios, according to an embodiment of the invention;



FIG. 4 is a block diagram that an example system 400 that may be used to implement some of the processes described herein, according to an embodiment of the invention.



FIGS. 5A-B are flow diagrams that depict processes for bookmark switching, according to an embodiment of the invention;



FIG. 6 is a flow diagram that depicts a process for causing text, from a textual version of a work, to be highlighted while an audio version of the work is being played, according to an embodiment of the invention;



FIG. 7 is a flow diagram that depicts a process of highlighting displayed text in response to audio input from a user, according to an embodiment of the invention;



FIGS. 8A-B are flow diagrams that depict processes for transferring an annotation from one media context to another, according to an embodiment of the invention; and



FIG. 9 is a block diagram that illustrates a computer system upon which an embodiment of the invention may be implemented.





DETAILED DESCRIPTION

In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present invention.


Overview of Automatic Generation of Audio-to-Text Mapping

According to one approach, a mapping is automatically created where the mapping maps locations within an audio version of a work (e.g., an audio book) with corresponding locations in a textual version of the work (e.g., an e-book). The mapping is created by performing a speech-to-text analysis on the audio version to identify words reflected in the audio version. The identified words are matched up with the corresponding words in the textual version of the work. The mapping associates locations (within the audio version) of the identified words with locations in the textual version of the work where the identified words are found.


Audio Version Formats

The audio data reflects an audible reading of text of a textual version of a work, such as a book, web page, pamphlet, flyer, etc. The audio data may be stored in one or more audio files. The one or more audio files may be in one of many file formats. Non-limiting examples of audio file formats include AAC, MP3, WAV, and PCM.


Textual Version Formats

Similarly, the text data to which the audio data is mapped may be stored in one of many document file formats. Non-limiting examples of document file formats include DOC, TXT, PDF, RTF, HTML, XHTML, and EPUB.


A typical EPUB document is accompanied by a file that (a) lists each XHTML content document, and (b) indicates an order of the XHTML content documents. For example, if a book comprises 20 chapters, then an EPUB document for that book may have 20 different XHTML documents, one for each chapter. A file that accompanies the EPUB document identifies an order of the XHTML documents that corresponds to the order of the chapters in the book. Thus, a single (logical) document (whether an EPUB document or another type of document) may comprise multiple data items or files.


The words or characters reflected in the text data may be in one or multiple languages. For example, one portion of the text data may be in English while another portion of the text data may be in French. Although examples of English words are provided herein, embodiments of the invention may be applied to other languages, including character-based languages.


Audio and Text Locations in Mapping

As described herein, a mapping comprises a set of mapping records, where each mapping record associates an audio location with a text location.


Each audio location identifies a location in audio data. An audio location may indicate an absolute location within the audio data, a relative location within the audio data, or a combination of an absolute location and a relative location. As an example of an absolute location, an audio location may indicate a time offset (e.g., 04:32:24 indicating 4 hours, 32 minutes, 24 seconds) into the audio data, or a time range, as indicated above in Example A. As an example of a relative location, an audio location may indicate a chapter number, a paragraph number, and a line number. As an example of a combination of an absolute location and a relative location, the audio location may indicate a chapter number and a time offset into the chapter indicated by the chapter number.


Similarly, each text location identifies a location in text data, such as a textual version of a work. A text location may indicate an absolute location within the textual version of the work, a relative location within the textual version of the work, or a combination of an absolute location and a relative location. As an example of an absolute location, a text location may indicate a byte offset into the textual version of the work and/or an “anchor” within the textual version of the work. An anchor is metadata within the text data that identifies a specific location or portion of text. An anchor may be stored separate from the text in the text data that is displayed to an end-user or may be stored among the text that is displayed to an end-user. For example, text data may include the following sentence: “Why did the chicken <i name=“123”/>cross the road?” where “<i name=“123”/>” is the anchor. When that sentence is displayed to a user, the user only sees “Why did the chicken cross the road?” Similarly, the same sentence may have multiple anchors as follows: “<i name=“123”/>Why <i name=“124”/>did <i name=“125”/>the <i name=“126”/>chicken <i name=“127”/>cross <i name=“128”/>the <i name=“129”/>road?” In this example, there is an anchor prior to each word in the sentence.


As an example of a relative location, a text location may indicate a page number, a chapter number, a paragraph number, and/or a line number. As an example of a combination of an absolute location and a relative location, a text location may indicate a chapter number and an anchor into the chapter indicated by the chapter number.


Examples of how to represent a text location and an audio location are provided in the specification entitled “EPUB Media Overlays 3.0,” which defines a usage of SMIL (Synchronized Multimedia Integration Language), an EPUB Style Sheet, and an EPUB Content Document. An example of an association that associates a text location with an audio location and that is provided in the specification is as follows:

















<par>









<text src=“chapter1.xhtml#sentence1”/>



<audio src=“chapter1_audio.mp3” clipBegin=“23s”



clipEnd=“45s”/>









</par>










Example A

In Example A, the “par” element includes two child elements: a “text” element and an “audio” element. The text element comprises an attribute “src” that identifies a particular sentence within an XHTML document that contains content from the first chapter of a book. The audio element comprises a “src” attribute that identifies an audio file that contains an audio version of the first chapter of the book, a “clipBegin” attribute that identifies where an audio clip within the audio file begins, and a “clipEnd” attribute that identifies where the audio clip within the audio file ends. Thus, seconds 23 through 45 in the audio file correspond to the first sentence in Chapter 1 of the book.


Creating a Mapping Between Text and Audio

According to an embodiment, a mapping between a textual version of a work and an audio version of the same work is automatically generated. Because the mapping is generated automatically, the mapping may use much finer granularity than would be practical using manual text-to-audio mapping techniques. Each automatically-generated text-to-audio mapping includes multiple mapping records, each of which associates a text location in the textual version with an audio location in the audio version.



FIG. 1 is a flow diagram that depicts a process 100 for automatically creating a mapping between a textual version of a work and an audio version of the same work, according to an embodiment of the invention. At step 110, a speech-to-text analyzer receives audio data that reflects an audible version of the work. At step 120, while the speech-to-text analyzer performs an analysis of the audio data, the speech-to-text analyzer generates text for portions of the audio data. At step 130, based on the text generated for the portions of the audio data, the speech-to-text analyzer generates a mapping between a plurality of audio locations in the audio data and a corresponding plurality of text locations in the textual version of the work.


Step 130 may involve the speech-to-text analyzer comparing the generated text with text in the textual version of the work to determine where, within the textual version of the work, the generated text is located. For each portion of generated text that is found in the textual version of the work, the speech-to-text analyzer associates (1) an audio location that indicates where, within the audio data, the corresponding portion of audio data is found with (2) a text location that indicates where, within the textual version of the work, the portion of text is found.


Textual Context

Every document has a “textual context”. The textual context of a textual version of a work includes intrinsic characteristics of the textual version of the work (e.g. the language the textual version of the work is written in, the specific words that textual version of the work uses, the grammar and punctuation that textual version of the work uses, the way the textual version of the work is structured, etc.) and extrinsic characteristics of the work (e.g. the time period in which the work was created, the genre to which the work belongs, the author of the work, etc.)


Different works may have significantly different textual contexts. For example, the grammar used in a classic English novel may be very different that the grammar of modern poetry. Thus, while a certain word order may follow the rules of one grammar, that same word order may violate the rules of another grammar. Similarly, the grammar used in both a classic English novel and modern poetry may differ from the grammar (or lack thereof) employed in a text message sent from one teenager to another.


As mentioned above, one technique described herein automatically creates a fine granularity mapping between the audio version of a work and the textual version of the same work by performing a speech-to-text conversion of the audio version of the work. In an embodiment, the textual context of a work is used to increase the accuracy of the speech-to-text analysis that is performed on the audio version of the work. For example, in order to determine the grammar employed in a work, the speech-to-text analyzer (or another process) may analyze the textual version of the work prior to performing a speech-to-text analysis. The speech-to-text analyzer may then make use of the grammar information thus obtained to increase the accuracy of the speech-to-text analysis of the audio version of the work.


Instead of or in addition to automatically determining the grammar of a work based on the textual version of the work, a user may provide input that identifies one or more rules of grammar that are followed by the author of the work. The rules associated with the identified grammar are input to the speech-to-text analyzer to assist the analyzer in recognizing words in the audio version of the work.


Limiting the Candidate Dictionary Based on Textual Version

Typically, speech-to-text analyzers must be configured or designed to recognize virtually every word in the English language and, optionally, some words in other languages. Therefore, speech-to-text analyzers must have access to a large dictionary of words. The dictionary from which a speech-to-text analyzer selects words during a speech-to-text operation is referred to herein as the “candidate dictionary” of the speech-to-text analyzer. The number of unique words in a typical candidate dictionary is approximately 500,000.


In an embodiment, text from the textual version of a work is taken into account when performing the speech-to-text analysis of the audio version of the work. Specifically, in one embodiment, during the speech-to-text analysis of an audio version of a work, the candidate dictionary used by the speech-to-text analyzer is restricted to the specific set of words that are in the text version of the work. In other words, the only words that are considered to be “candidates” during the speech-to-text operation performed on an audio version of a work are those words that actually appear in the textual version of the work.


By limiting the candidate dictionary used in the speech-to-text translation of a particular work to those words that appear in the textual version of the work, the speech-to-text operation may be significantly improved. For example, assume that the number of unique words in a particular work is 20,000. A conventional speech-to-text analyzer may have difficulty determining to which specific word, of a 500,000 word candidate dictionary, a particular portion of audio corresponds. However, that same portion of audio may unambiguously correspond to one particular word when only the 20,000 unique words that are in the textual version of the work are considered. Thus, with such a much smaller dictionary of possible words, the accuracy of the speech-to-text analyzer may be significantly improved.


Limiting the Candidate Dictionary Based on Current Position

To improve accuracy, the candidate dictionary may be restricted to even fewer words than all of the words in the textual version of the work. In one embodiment, the candidate dictionary is limited to those words found in a particular portion of the textual version of the work. For example, during a speech-to-text translation of a work, it is possible to approximately track the “current translation position” of the translation operation relative to the textual version of the work. Such tracking may be performed, for example, by comparing (a) the text that has been generated during the speech-to-text operation so far, against (b) the textual version of the work.


Once the current translation position has been determined, the candidate dictionary may further restricted based on the current translation position. For example, in one embodiment, the candidate dictionary is limited to only those words that appear, within the textual version of the work, after the current translation position. Thus, words that are found prior to the current translation position, but not thereafter, are effectively removed from the candidate dictionary. Such removal may increase the accuracy of the speech-to-text analyzer, since the smaller the candidate dictionary, the less likely the speech-to-text analyzer will translate a portion of audio data to the wrong word.


As another example, prior to a speech-to-text analysis, an audio book and a digital book may be divided into a number of segments or sections. The audio book may be associated with an audio section mapping and the digital book may be associated with a text section mapping. For example, the audio section mapping and the text section mapping may identify where each chapter begins or ends. These respective mappings may be used by a speech-to-text analyzer to limit the candidate dictionary. For example, if the speech-to-text analyzer determines, based on the audio section mapping, that the speech-to-text analyzer is analyzing the 4th chapter of the audio book, then the speech-to-text analyzer uses the text section mapping to identify the 4th chapter of the digital book and limit the candidate dictionary to the words found in the 4th chapter.


In a related embodiment, the speech-to-text analyzer employs a sliding window that moves as the current translation position moves. As the speech-to-text analyzer is analyzing the audio data, the speech-to-text analyzer moves the sliding window “across” the textual version of the work. The sliding window indicates two locations within the textual version of the work. For example, the boundaries of the sliding window may be (a) the start of the paragraph that precedes the current translation position and (b) the end of the third paragraph after the current translation position. The candidate dictionary is restricted to only those words that appear between those two locations.


While a specific example was given above, the window may span any amount of text within the textual version of the work. For example, the window may span an absolute amount of text, such as 60 characters. As another example, the window may span a relative amount of text from the textual version of the work, such as ten words, three “lines” of text, 2 sentences, or 1 “page” of text. In the relative amount scenario, the speech-to-text analyzer may use formatting data within the textual version of the work to determine how much of the textual version of the work constitutes a line or a page. For example, the textual version of a work may comprise a page indicator (e.g., in the form of an HTML or XML tag) that indicates, within the content of the textual version of the work, the beginning of a page or the ending of a page.


In an embodiment, the start of the window corresponds to the current translation position. For example, the speech-to-text analyzer maintains a current text location that indicates the most recently-matched word in the textual version of the work and maintains a current audio location that indicates the most recently-identified word in the audio data. Unless the narrator (whose voice is reflected in the audio data) misreads text of the textual version of the work, adds his/her own content, or skips portions of the textual version of the work during the recording, the next word that the speech-to-text analyzer detects in the audio data (i.e., after the current audio location) is most likely the next word in the textual version of the work (i.e., after the current text location). Maintaining both locations may significantly increase the accuracy of the speech-to-text translation.


Creating a Mapping Using Audio-to-Audio Correlation

In an embodiment, a text-to-speech generator and an audio-to-text correlator are used to automatically create a mapping between the audio version of a work and the textual version of a work. FIG. 2 is a block diagram that depicts these analyzers and the data used to generate the mapping. Textual version 210 of a work (such as an EPUB document) is input to text-to-speech generator 220. Text-to-speech generator 220 may be implemented in software, hardware, or a combination of hardware and software. Whether implemented in software or hardware, text-to-speech generator 220 may be implemented on a single computing device or may be distributed among multiple computing devices.


Text-to-speech generator 220 generates audio data 230 based on document 210. During the generation of the audio data 230, text-to-speech generator 220 (or another component not shown) creates an audio-to-document mapping 240. Audio-to-document mapping 240 maps, multiple text locations within document 210 to corresponding audio locations within generated audio data 230.


For example, assume that text-to-speech generator 220 generates audio data for a word located at location Y within document 210. Further assume that the audio data that was generated for the work is located at a location X within audio data 230. To reflect the correlation between the location of the word within the document 210 and the location of the corresponding audio in the audio data 230, a mapping would be created between location X and location Y.


Because text-to-speech generator 220 knows where a word or phrase occurs in document 210 when a corresponding word or phrase of audio is generated, each mapping between the corresponding words or phrases can be easily generated.


Audio-to-text correlator 260 accepts, as input, generated audio data 230, audio book 250, and audio-to-document mapping 240. Audio-to-text correlator 260 performs two main steps: an audio-to-audio correlation step and a look-up step. For the audio-to-audio correlation step, audio-to-text correlator 260 compares generated audio data 230 with audio book 250 to determine the correlation between portions of audio data 230 and portions of audio book 250. For example, audio-to-text correlator 260 may determine, for each word represented in audio data 230, the location of the corresponding word in audio book 250.


The granularity at which audio data 230 is divided, for the purpose of establishing correlations, may vary from implementation to implementation. For example, a correlation may be established between each word in audio data 230 and each corresponding word in audio book 250. Alternatively, a correlation may be established based on fixed-duration time intervals (e.g. one mapping for every 1 minute of audio). In yet another alternative, a correlation may be established for portions of audio established based on other criteria, such as at paragraph or chapter boundaries, significant pauses (e.g., silence of greater than 3 seconds), or other locations based on data in audio book 250, such as audio markers within audio book 250.


After a correlation between a portion of audio data 230 and a portion of audio book 250 is identified, audio-to-text correlator 260 uses audio-to-document mapping 240 to identify a text location (indicated in mapping 240) that corresponds to the audio location within generated audio data 230. Audio-to-text correlator 260 then associates the text location with the audio location within audio book 250 to create a mapping record in document-to-audio mapping 270.


For example, assume that a portion of audio book 250 (located at location Z) matches the portion of generated audio data 230 that is located at location X. Based on a mapping record (in audio-to-document mapping 240) that correlates location X to location Y within document 210, a mapping record in document-to-audio mapping 270 would be created that correlates location Z of the audio book 250 with location Y within document 210.


Audio-to-text correlator 260 repeatedly performs the audio-to-audio correlation and look-up steps for each portion of audio data 230. Therefore, document-to-audio mapping 270 comprises multiple mapping records, each mapping record mapping a location within document 210 to a location within audio book 250.


In an embodiment, the audio-to-audio correlation for each portion of audio data 230 is immediately followed by the look-up step for that portion of audio. Thus, document-to-audio mapping 270 may be created for each portion of audio data 230 prior to proceeding to the next portion of audio data 230. Alternatively, the audio-to-audio correlation step may be performed for many or for all of the portions of audio data 230 before any look-up step is performed. The look-up steps for all portions can be performed in a batch, after all of the audio-to-audio correlations have been established.


Mapping Granularity

A mapping has a number of attributes, one of which is the mapping's size, which refers to the number of mapping records in the mapping. Another attribute of a mapping is the mapping's “granularity.” The “granularity” of a mapping refers to the number of mapping records in the mapping relative to the size of the digital work. Thus, the granularity of a mapping may vary from one digital work to another digital work. For example, a first mapping for a digital book that comprises 200 “pages” includes a mapping record only for each paragraph in the digital book. Thus, the first mapping may comprise 1000 mapping records. On the other hand, a second mapping for a digital “children's” book that comprises 20 pages includes a mapping record for each word in the children's book. Thus, the second mapping may comprise 800 mapping records. Even though the first mapping comprises more mapping records than the second mapping, the granularity of the second mapping is finer than the granularity of the first mapping.


In an embodiment, the granularity of a mapping may be dictated based on input to a speech-to-text analyzer that generates the mapping. For example, a user may specify a specific granularity before causing a speech-to-text analyzer to generate a mapping. Non-limiting examples of specific granularities include:

    • word granularity (i.e., an association for each word),
    • sentence granularity (i.e., an association for each sentence),
    • paragraph granularity (i.e., an association for each paragraph),
    • 10-word granularity (i.e., a mapping for each 10 word portion in the digital work), and
    • 10-second granularity (i.e., a mapping for each 10 seconds of audio).


As another example, a user may specify the type of digital work (e.g., novel, children's book, short story) and the speech-to-text analyzer (or another process) determines the granularity based on the work's type. For example, a children's book may be associated with word granularity while a novel may be associated with sentence granularity.


The granularity of a mapping may even vary within the same digital work. For example, a mapping for the first three chapters of a digital book may have sentence granularity while a mapping for the remaining chapters of the digital book have word granularity.


On-the-Fly Mapping Generation During Text-to-Audio Transitions

While an audio-to-text mapping will, in many cases, be generated prior to a user needing to rely on one, in one embodiment, an audio-to-text mapping is generated at runtime or after a user has begun to consume the audio data and/or the text data on the user's device. For example, a user reads a textual version of a digital book using a tablet computer. The tablet computer keeps track of the most recent page or section of the digital book that the tablet computer has displayed to the user. The most recent page or section is identified by a “text bookmark.”


Later, the user selects to play an audio book version of the same work. The playback device may be the same tablet computer on which the user was reading the digital book or another device. Regardless of the device upon which the audio book is to be played, the text bookmark is retrieved, and a speech-to-text analysis is performed relative to at least a portion of the audio book. During the speech-to-text analysis, “temporary” mapping records are generated to establish a correlation between the generated text and the corresponding locations within the audio book.


Once the text and correlation records have been generated, a text-to-text comparison is used to determine the generated text that corresponds to the text bookmark. Then, the temporary mapping records are used to identify the portion of the audio book that corresponds to the portion of generated text that corresponds to the text bookmark. Playback of the audio book is then initiated from that position.


The portion of the audio book on which the speech-to-text analysis is performed may be limited to the portion that corresponds to the text bookmark. For example, an audio section mapping may already exist that indicates where certain portions of the audio book begin and/or end. For example, an audio section mapping may indicate where each chapter begins, where one or more pages begin, etc. Such an audio section mapping may be helpful to determine where to begin the speech-to-text analysis so that a speech-to-text analysis on the entire audio book is not required to be performed. For example, if the text bookmark indicates a location within the 12th chapter of the digital book and an audio section mapping associated with the audio data identifies where the 12th chapter begins in the audio data, then a speech-to-text analysis is not required to be performed on any of the first 11 chapters of the audio book. For example, the audio data may consist of 20 audio files, one audio file for each chapter. Therefore, only the audio file that corresponds to the 12th chapter is input to a speech-to-text analyzer.


On-the-Fly Mapping Generation During Audio-to-Text Transitions

Mapping records can be generated on-the-fly to facilitate audio-to-text transitions, as well as text-to-audio transitions. For example, assume that a user is listening to an audio book using a smart phone. The smart phone keeps track of the current location within the audio book that is being played. The current location is identified by an “audio bookmark.” Later, the user picks up a tablet computer and selects a digital book version of the audio book to display. The tablet computer receives the audio bookmark (e.g., from a central server that is remote relative to the tablet computer and the smart phone), performs a speech-to-text analysis of at least a portion of the audio book, and identifies, within the audio book, a portion that corresponds to a portion of text within a textual version of the audio book that corresponds to the audio bookmark. The tablet computer then begins displaying the identified portion within the textual version.


The portion of the audio book on which the speech-to-text analysis is performed may be limited to the portion that corresponds to the audio bookmark. For example, a speech-to-text analysis is performed on a portion of the audio book that spans one or more time segments (e.g., seconds) prior to the audio bookmark in the audio book and/or one or more time segments after the audio bookmark in the audio book. The text produced by the speech-to-text analysis on that portion is compared to text in the textual version to locate where the series of words or phrases in the produced text match text in the textual version.


If there exists a text section mapping that indicates where certain portions of the textual version begin or end and the audio bookmark can be used to identify a section in the text section mapping, then much of the textual version need not be analyzed in order to locate where the series of words or phrases in the produced text match text in the textual version. For example, if the audio bookmark indicates a location within in the 3rd chapter of the audio book and a text section mapping associated with the digital book identifies where the 3rd chapter begins in the textual version, then a speech-to-text analysis is not required to be performed on any of the first two chapters of the audio book or on any of the chapters of the audio book after the 3rd chapter.


Overview of Use of Audio-to-Text Mappings

According to one approach, a mapping (whether created manually or automatically) is used to identify the locations within an audio version of a digital work (e.g., an audio book) that correspond to locations within a textual version of the digital work (e.g., an e-book). For example, a mapping may be used to identify a location within an e-book based on a “bookmark” established in an audio book. As another example, a mapping may be used to identify which displayed text corresponds to an audio recording of a person reading the text as the audio recording is being played and cause the identified text to be highlighted. Thus, while an audio book is being played, a user of an e-book reader may follow along as the e-book reader highlights the corresponding text. As another example, a mapping may be used to identify a location in audio data and play audio at that location in response to input that selects displayed text from an e-book. Thus, a user may select a word in an e-book, which selection causes audio that corresponds to that word to be played. As another example, a user may create an annotation while “consuming” (e.g., reading or listening to) one version of a digital work (e.g., an e-book) and cause the annotation to be consumed while the user is consuming another version of the digital work (e.g., an audio book). Thus, a user can make notes on a “page” of an e-book and may view those notes while listening to an audio book of the e-book. Similarly, a user can make a note while listening to an audio book and then can view that note when reading the corresponding e-book.



FIG. 3 is a flow diagram that depicts a process for using a mapping in one or more of these scenarios, according to an embodiment of the invention.


At step 310, location data that indicates a specified location within a first media item is obtained. The first media item may be a textual version of a work or audio data that corresponds to a textual version of the work. This step may be performed by a device (operated by a user) that consumes the first media item. Alternatively, the step may be performed by a server that is located remotely relative to the device that consumes the first media item. Thus, the device sends the location data to the server over a network using a communication protocol.


At step 320, a mapping is inspected to determine a first media location that corresponds to the specified location. Similarly, this step may be performed by a device that consumes the first media item or by a server that is located remotely relative to the device.


At step 330, a second media location that corresponds to the first media location and that is indicated in the mapping is determined. For example, if the specified location is an audio “bookmark”, then the first media location is an audio location indicated in the mapping and the second media location is a text location that is associated with the audio location in the mapping. Similarly, For example, if the specified location is a text “bookmark”, then the first media location is a text location indicated in the mapping and the second media location is an audio location that is associated with the text location in the mapping.


At step 340, the second media item is processed based on the second media location. For example, if the second media item is audio data, then the second media location is an audio location and is used as a current playback position in the audio data. As another example, if the second media item is a textual version of a work, then the second media location is a text location and is used to determine which portion of the textual version of the work to display.


Examples of using process 300 in specific scenarios are provided below.


Architecture Overview

Each of the example scenarios mentioned above and described in detail below may involve one or more computing devices. FIG. 4 is a block diagram that an example system 400 that may be used to implement some of the processes described herein, according to an embodiment of the invention. System 400 includes end-user device 410, intermediary device 420, and end-user device 430. Non-limiting examples of end-user devices 410 and 430 include desktop computers, laptop computers, smart phones, tablet computers, and other handheld computing devices.


As depicted in FIG. 4, device 410 stores a digital media item 402 and executes a text media player 412 and an audio media player 414. Text media player 412 is configured to process electronic text data and cause device 410 to display text (e.g., on a touch screen of device 410, not shown). Thus, if digital media item 402 is an e-book, then text media player 412 may be configured to process digital media item 402, as long as digital media item 402 is in a text format that text media player 412 is configured to process. Device 410 may execute one or more other media players (not shown) that are configured to process other types of media, such as video.


Similarly, audio media player 414 is configured to process audio data and cause device 410 to generate audio (e.g., via speakers on device 410, not shown). Thus, if digital media item 402 is an audio book, then audio media player 414 may be configured to process digital media item 402, as long as digital media item 402 is in an audio format that audio media player 414 is configured to process. Whether item 402 is an e-book or an audio book, item 402 may comprise multiple files, whether audio files or text files.


Device 430 similarly stores a digital media item 404 and executes an audio media player 432 that is configured to process audio data and cause device 430 to generate audio. Device 430 may execute one or more other media players (not shown) that are configured to process other types of media, such as video and text.


Intermediary device 420 stores a mapping 406 that maps audio locations within audio data to text location in text data. For example, mapping 406 may map audio locations within digital media item 404 to text locations within digital media item 402. Although not depicted in FIG. 4, intermediary device 420 may store many mappings, one for each corresponding set of audio data and text data. Also, intermediary device 420 may interact with many end-user devices not shown.


Also, intermediary device 420 may store digital media items that users may access via their respective devices. Thus, instead of storing a local copy of a digital media item, a device (e.g., device 430) may request the digital media item from intermediary device 420.


Additionally, intermediary device 420 may store account data that associates one or more devices of a user with a single account. Thus, such account data may indicate that devices 410 and 430 are registered by the same user under the same account. Intermediary device 420 may also store account-item association data that associates an account with one or more digital media items owned (or purchased) by a particular user. Thus, intermediary device 420 may verify that device 430 may access a particular digital media item by determining whether the account-item association data indicates that device 430 and the particular digital media item are associated with the same account.


Although only two end-user devices are depicted, an end-user may own and operate more or less devices that consume digital media items, such as e-books and audio books. Similarly, although only a single intermediary device 420 is depicted, the entity that owns and operates intermediary device 420 may operate multiple devices, each of which provide the same service or may operate together to provide a service to the user of end-user devices 410 and 430.


Communication between intermediary device 420 and end-user devices 410 and 430 is made possible via network 440. Network 440 may be implemented by any medium or mechanism that provides for the exchange of data between various computing devices. Examples of such a network include, without limitation, a network such as a Local Area Network (LAN), Wide Area Network (WAN), Ethernet or the Internet, or one or more terrestrial, satellite, or wireless links. The network may include a combination of networks such as those described. The network may transmit data according to Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and/or Internet Protocol (IP).


Storage Location of Mapping

A mapping may be stored separate from the text data and the audio data from which the mapping was generated. For example, as depicted in FIG. 4, mapping 406 is stored separate from digital media items 402 and 404 even though mapping 406 may be used to identify a media location in one digital media item based on a media location in the other digital media item. In fact, mapping 406 is stored on a separate computing device (intermediary device 420) than devices 410 and 430 that store, respectively, digital media items 402 and 404.


Additionally or alternatively, a mapping may be stored as part of the corresponding text data. For example, mapping 406 may be stored in digital media item 402. However, even if the mapping is stored as part of the text data, the mapping may not be displayed to an end-user that consumes the text data. Additionally or alternatively still, a mapping may be stored as part of the audio data. For example, mapping 406 may be stored in digital media item 404.


Bookmark Switching

“Bookmark switching” refers to establishing a specified location (or “bookmark”) in one version of a digital work and using the bookmark to find the corresponding location within another version of the digital work. There are two types of bookmark switching: text-to-audio (TA) bookmark switching and audio-to-text (AT) bookmark switching. TA bookmark switching involves using a text bookmark established in an e-book to identify a corresponding audio location in an audio book. Conversely, another type of bookmark switching referred to herein as AT bookmark switching involves using an audio bookmark established in an audio book to identify a corresponding text location within an e-book.


Text-to-Audio Bookmark Switching


FIG. 5A is a flow diagram that depicts a process 500 for TA bookmark switching, according to an embodiment of the invention. FIG. 5A is described using elements of system 400 depicted in FIG. 4.


At step 502, a text media player 412 (e.g., an e-reader) determines a text bookmark within digital media item 402 (e.g., a digital book). Device 410 displays content from digital media item 402 to a user of device 410.


The text bookmark may be determined in response to input from the user. For example, the user may touch an area on a touch screen of device 410. Device 410's display, at or near that area, displays one or more words. In response to the input, the text media player 412 determines the one or more words that are closest to the area. The text media player 412 determines the text bookmark based on the determined one or more words.


Alternatively, the text bookmark may be determined based on the last text data that was displayed to the user. For example, the digital media item 402 may comprise 200 electronic “pages” and page 110 was the last page that was displayed. Text media player 412 determines that page 110 was the last page that was displayed. Text media player 412 may establish page 110 as the text bookmark or may establish a point at the beginning of page 110 as the text bookmark, since there may be no way to know where the user stopped reading. It may be safe to assume that the user at least read the last sentence on page 109, which sentence may have ended on page 109 or on page 110. Therefore, the text media player 412 may establish the beginning of the next sentence (which begins on page 110) as the text bookmark. However, if the granularity of the mapping is at the paragraph level, then text media player 412 may establish the beginning of the last paragraph on page 109. Similarly, if the granularity of the mapping is at the sentence level, then text media player 412 may establish the beginning of the chapter that includes page 110 as the text bookmark.


At step 504, text media player 412 sends, over network 440 to intermediary device 420, data that indicates the text bookmark. Intermediary device 420 may store the text bookmark in association with device 410 and/or an account of the user of device 410. Previous to step 502, the user may have established an account with an operator of intermediary device 420. The user then registered one or more devices, including device 410, with the operator. The registration caused each of the one or more devices to be associated with the user's account.


One or more factors may cause the text media player 412 to send the text bookmark to intermediary device 420. Such factors may include the exiting (or closing down) of text media player 412, the establishment of the text bookmark by the user, or an explicit instruction by the user to save the text bookmark for use when listening to the audio book that corresponds to the textual version of the work for which the text bookmark is established.


As noted previously, intermediary device 420 has access to (e.g., stores) mapping 406, which, in this example, maps multiple audio locations in digital media item 404 with multiple text locations within digital media item 402.


At step 506, intermediary device 420 inspects mapping 406 to determine a particular text location, of the multiple text locations, that corresponds to the text bookmark. The text bookmark may not exactly match any of the multiple text locations in mapping 406. However, intermediary device 420 may select the text location that is closest to the text bookmark. Alternatively, intermediary device 420 may select the text location that is immediately before the text bookmark, which text location may or may not be the closest text location to the text bookmark. For example, if the text bookmark indicates 5th chapter, 3rd paragraph, 5th sentence and the closest text locations in mapping 406 are (1) 5th chapter, 3rd paragraph, 1st sentence and (2), 5th chapter, 3rd paragraph, 6th sentence, then the text location (1) is selected.


At step 508, once the particular text location in the mapping is identified, intermediary device 420 determines a particular audio location, in mapping 406, that corresponds to the particular text location.


At step 510, intermediary device 420 sends the particular audio location to device 430, which, in this example, is different than device 410. For example, device 410 may be a tablet computer and the device 430 may be a smart phone. In a related embodiment, device 430 is not involved. Thus, intermediary device 420 may send the particular audio location to device 410.


Step 510 may be performed automatically, i.e., in response to intermediary device 420 determining the particular audio location. Alternatively, step 510 or step 506) may be performed in response to receiving, from device 430, an indication that device 430 is about to process digital media item 404. The indication may be a request for an audio location that corresponds to the text bookmark.


At step 512, audio media player 432 establishes the particular audio location as a current playback position of the audio data in digital media item 404. This establishment may be performed in response to receiving the particular audio location from intermediary device 420. Because the current playback position becomes the particular audio location, audio media player 432 is not required to play any of the audio that precedes the particular audio location in the audio data. For example, if the particular audio location indicates 2:56:03 (2 hours, 56 minutes, and 3 seconds), then audio media player 432 establishes that time in the audio data as the current playback position. Thus, if the user of device 430 selects a “play” button (whether graphical or physical) on device 430, then audio media player 430 begins processing the audio data at that 2:56:03 mark.


In an alternative embodiment, device 410 stores mapping 406 (or a copy thereof). Therefore, in place of steps 504-508, text media player 412 inspects mapping 406 to determine a particular text location, of the multiple text locations, that corresponds to the text bookmark. Then, text media player 412 determines a particular audio location, in mapping 406, that corresponds to the particular text location. The text media player 412 may then cause the particular audio location to be sent to intermediary device 420 to allow device 430 to retrieve the particular audio location and establish a current playback position in the audio data to be the particular audio location. Text media player 412 may also cause the particular text location (or text bookmark) to be sent to intermediary device 420 to allow device 410 (or another device, not shown) to later retrieve the particular text location to allow another text media player executing on the other device to display a portion (e.g., a page) of another copy of digital media item 402, where the portion corresponds to the particular text location.


In another alternative embodiment, intermediary device 420 and device 430 are not involved. Thus, steps 504 and 510 are not performed. Thus, device 410 performs all other steps in FIG. 5A, including steps 506 and 508.


Audio-to-Text Bookmark Switching


FIG. 5B is a flow diagram that depicts a process 550 for AT bookmark switching, according to an embodiment of the invention. Similarly to FIG. 5A, FIG. 5B is described using elements of system 400 depicted in FIG. 4.


At step 552, audio media player 432 determines an audio bookmark within digital media item 404 (e.g., an audio book).


The audio bookmark may be determined in response to input from the user. For example, the user may stop the playback of the audio data, for example, by selecting a “stop” button that is displayed on a touch screen of device 430. Audio media player 432 determines the location within audio data of digital media item 404 that corresponds to where playback stopped. Thus, the audio bookmark may simply be the last place where the user stopped listening to the audio generated from digital media item 404. Additionally or alternatively, the user may select one or more graphical buttons on the touch screen of device 430 to establish a particular location within digital media item 404 as the audio bookmark. For example, device 430 displays a timeline that corresponds to the length of the audio data in digital media item 404. The user may select a position on the timeline and then provide one or more additional inputs that are used by audio media player 432 to establish the audio bookmark.


At step 554, device 430 sends, over network 440 to intermediary device 420, data that indicates the audio bookmark. The intermediary device 420 may store the audio bookmark in association with device 430 and/or an account of the user of device 430. Previous to step 552, the user established an account with an operator of intermediary device 420. The user then registered one or more devices, including device 430, with the operator. The registration caused each of the one or more devices to be associated with the user's account.


Intermediary device 420 also has access to (e.g., stores) mapping 406. Mapping 406 maps multiple audio locations in the audio data of digital media item 404 with multiple text locations within text data of digital media item 402.


One or more factors may cause audio media player 432 to send the audio bookmark to intermediary device 420. Such factors may include the exiting (or closing down) of audio media player 432, the establishment of the audio bookmark by the user, or an explicit instruction by the user to save the audio bookmark for use when displaying portions of the textual version of the work (reflected in digital media item 402) that corresponds to digital media item 404, for which the audio bookmark is established.


At step 556, intermediary device 420 inspects mapping 406 to determine a particular audio location, of the multiple audio locations, that corresponds to the audio bookmark. The audio bookmark may not exactly match any of the multiple audio locations in mapping 406. However, intermediary device 420 may select the audio location that is closest to the audio bookmark. Alternatively, intermediary device 420 may select the audio location that is immediately before the audio bookmark, which audio location may or may not be the closest audio location to the audio bookmark. For example, if the audio bookmark indicates 02:43:19 (or 2 hours, 43 minutes, and 19 seconds) and the closest audio locations in mapping 406 are (1) 02:41:07 and (2), 0:43:56, then the audio location (1) is selected, even though audio location (2) is closest to the audio bookmark.


At step 558, once the particular audio location in the mapping is identified, intermediary device 420 determines a particular text location, in mapping 406, that corresponds to the particular audio location.


At step 560, intermediary device 420 sends the particular text location to device 410, which, in this example, is different than device 430. For example, device 410 may be a tablet computer and device 430 may be a smart phone that is configured to process audio data and generate audible sounds.


Step 560 may be performed automatically, i.e., in response to intermediary device 420 determining the particular text location. Alternatively, step 560 (or step 556) may be performed in response to receiving, from device 410, an indication that device 410 is about to process the digital media item 402. The indication may be a request for a text location that corresponds to the audio bookmark.


At step 562, text media player 412 displays information about the particular text location. Step 562 may be performed in response to receiving the particular text location from intermediary device 420. Device 410 is not required to display any of the content that precedes the particular text location in the textual version of the work reflected in digital media item 402. For example, if the particular text location indicates Chapter 3, paragraph 2, sentence 4, then device 410 displays a page that includes that sentence. Text media player 412 may cause a marker to be displayed at the particular text location in the page that visually indicates, to a user of device 410, where to begin reading in the page. Thus, the user is able to immediately read the textual version of the work beginning at a location that corresponds to the last words spoken by a narrator in the audio book.


In an alternative embodiment, the device 410 stores mapping 406. Therefore, in place of steps 556-560, after step 554 (wherein the device 430 sends data that indicates the audio bookmark to intermediary device 420), intermediary device 420 sends the audio bookmark to device 410. Then, text media player 412 inspects mapping 406 to determine a particular audio location, of the multiple audio locations, that corresponds to the audio bookmark. Then, text media player 412 determines a particular text location, in mapping 406, that corresponds to the particular audio location. This alternative process then proceeds to step 562, described above.


In another alternative embodiment, intermediary device 420 is not involved. Thus, steps 554 and 560 are not performed. Thus, device 430 performs all other steps in FIG. 5B, including steps 556 and 558.


Highlight Text in Response to Playing Audio

In an embodiment, text from a portion of a textual version of a work is highlighted or “lit up” while audio data that corresponds to the textual version of the work is played. As noted previously, the audio data is an audio version of a textual version of the work and may reflect a reading, of text from the textual version, by a human user. As used herein, “highlighting” text refers to a media player (e.g., an “e-reader”) visually distinguishing that text from other text that is concurrently displayed with the highlighted text. Highlighting text may involve changing the font of the text, changing the font style of the text (e.g., italicize, bold, underline), changing the size of the text, changing the color of the text, changing the background color of the text, or creating an animation associated with the text. An example of creating an animation is causing the text (or background of the text) to blink on and off or to change colors. Another example of creating an animation is creating a graphic to appear above, below, or around the text. For example, in response to the word “toaster” being played and detected by a media player, the media player displays a toaster image above the word “toaster” in the displayed text. Another example of an animation is a bouncing ball that “bounces” on a portion of text (e.g., word, syllable, or letter) when that portion is detected in audio data that is played.



FIG. 6 is a flow diagram that depicts a process 600 for causing text, from a textual version of a work, to be highlighted while an audio version of the work is being played, according to an embodiment of the invention.


At step 610, the current playback position (which is constantly changing) of audio data of the audio version is determined. This step may be performed by a media player executing on a user's device. The media player processes the audio data to generate audio for the user.


At step 620, based on the current playback position, a mapping record in a mapping is identified. The current playback position may match or nearly match the audio location identified in the mapping record.


Step 620 may be performed by the media player if the media player has access to a mapping that maps multiple audio locations in the audio data with multiple text locations in the textual version of the work. Alternatively, step 620 may be performed by another process executing on the user's device or by a server that receives the current playback position from the user's device over a network.


At step 630, the text location identified in the mapping record is identified.


At step 640, a portion of the textual version of the work that corresponds to the text location is caused to be highlighted. This step may be performed by the media player or another software application executing on the user's device. If a server performs the look-up steps (620 and 630), then step 640 may further involve the server sending the text location to the user's device. In response, the media player, or another software application, accepts the text location as input and causes the corresponding text to be highlighted.


In an embodiment, different text locations that are identified, by the media player, in the mapping are associated with different types of highlighting. For example, one text location in the mapping may be associated with the changing of the font color from black to red while another text location in the mapping may be associated with an animation, such as a toaster graphic that shows a piece of toast “popping” out of toaster. Therefore, each mapping record in the mapping may include “highlighting data” that indicates how the text identified by the corresponding text location is to be highlighted. Thus, for each mapping record in the mapping that the media player identifies and that includes highlighting data, the media player uses the highlighting data to determine how to highlight the text. If a mapping record does not include highlighting data, then the media player may not highlight the corresponding text. Alternatively, if an mapping record in the mapping does not include highlighting data, then the media player may use a “default” highlight technique (e.g., bolding the text) to highlight the text.


Highlighting Text Based on Audio Input


FIG. 7 is a flow diagram that depicts a process 700 of highlighting displayed text in response to audio input from a user, according to an embodiment of the invention. In this embodiment, a mapping is not required. The audio input is used to highlight text in a portion of a textual version of a work that is concurrently displayed to the user.


At step 710, audio input is received. The audio input may be based on a user reading aloud text from a textual version of a work. The audio input may be received by a device that displays a portion of the textual version. The device may prompt the user to read aloud a word, phrase, or entire sentence. The prompt may be visual or audio. As an example of a visual prompt, the device may cause the following text to be displayed: “Please read the underlined text” while or immediately before the device displays a sentence that is underlined. As an example of an audio prompt, the device may cause a computer-generated voice to read “Please read the underlined text” or cause a pre-recorded human voice to be played, where the pre-recorded human voice provides the same instruction.


At step 720, a speech-to-text analysis is performed on the audio input to detect one or more words reflected in the audio input.


At step 730, for each detected word reflected in the audio input, that detected word is compared to a particular set of words. The particular set of words may be all the words that are currently displayed by a computing device (e.g., an e-reader). Alternatively, the particular set of words may be all the words that the user was prompted to read.


At step 740, for each detected word that matches a word in the particular set, the device causes that matching word to be highlighted.


The steps depicted in process 700 may be performed by a single computing device that displays text from a textual version of a work. Alternatively, the steps depicted in process 700 may be performed by one or more computing devices that are different than the computing device that displays text from the textual version. For example, the audio input from a user in step 710 may be sent from the user's device over a network to a network server that performs the speech-to-text analysis. The network server may then send highlight data to the user's device to cause the user's device to highlight the appropriate text.


Playing Audio in Response to Text Selection

In an embodiment, a user of a media player that displays portions of a textual version of a work may select portions of displayed text and cause the corresponding audio to be played. For example, if a displayed word from the digital book is “donut” and the user selects that word (e.g., by touching a portion of the media player's touch screen that displays that word), then the audio of “donut” may be played.


A mapping that maps text locations in a textual version of the work with audio locations in audio data is used to identify the portion of the audio data that corresponds to the selected text. The user may select a single word, a phrase, or even one or more sentences. In response to input that selects a portion of the displayed text, the media player may identify one or more text locations. For example, the media player may identify a single text location that corresponds to the selected portion, even if the selected portion comprises multiple lines or sentences. The identified text location may correspond to the beginning of the selected portion. As another example, the media player may identify a first text location that corresponds to the beginning of the selected portion and a second text location that corresponds to the ending of the selected portion.


The media player uses the identified text location to look up a mapping record in the mapping that indicates a text location that is closest (or closest prior) to the identified text location. The media player uses the audio location indicated in the mapping record to identify where, in the audio data, to begin processing the audio data in order to generate audio. If only a single text location is identified, then only the word or sounds at or near the audio location may be played. Thus, after the word or sounds are played, the media player ceases to play any more audio. Alternatively, the media player begins playing at or near the audio location and does not cease playing the audio that follows the audio location until (a) the end of the audio data is reached, (b) further input from the user (e.g., selection of a “stop” button), or (c) a pre-designated stopping point in the audio data (e.g., end of a page or chapter that requires further input to proceed).


If the media player identifies two text locations based on the selected portion, then two audio locations are identified and may be used to identify where to begin playing and where to stop playing the corresponding audio.


In an embodiment, the audio data identified by the audio location may be played slowly (i.e., at a slow playback speed) or continuously without advancing the current playback position in the audio data. For example, if a user of a tablet computer selects the displayed word “two” by touching a touch screen of the tablet computer with his finger and continuously touches the displayed word (i.e., without lifting his finger and without moving his finger to another displayed word), then the tablet computer plays the corresponding audio creating a sound reflected by reading the word “twoooooooooooooooo”.


In a similar embodiment, the speed at which a user drags her finger across displayed text on a touch screen of a media player causes the corresponding audio to be played at the same or similar speed. For example, a user selects the letter “d” of the displayed word “donut” and then slowly moves his finger across the displayed word. In response to this input, the media player identifies the corresponding audio data (using the mapping) and plays the corresponding audio at the same speed at which the user moves his finger. Therefore, the media player creates audio that sounds as if the reader of the text of the textual version of the work pronounced the word “donut” as “dooooooonnnnnnuuuuuut.”


In a similar embodiment, the time that a user “touches” a word displayed on a touch screen dictates how quickly or slowly the audio version of the word is played. For example, a quick tap of a displayed word by the user's finger causes the corresponding audio to be played at a normal speed, whereas the user holding down his finger on the selected word for more than 1 second causes the corresponding audio to be played at ½ the normal speed.


Transferring User Annotations

In an embodiment, a user initiates the creation of annotations to one media version (e.g., audio) of a digital work and causes the annotations to be associated with another media version (e.g., text) of the digital work. Thus, while an annotation may be created in the context of one type of media, the annotation may be consumed in the context of another type of media. The “context” in which an annotation is created or consumed refers to whether text is being displayed or audio is being played when the creation or consumption occurs.


Although the following examples involve determining a location within audio or text location when an annotation is created, some embodiments of the invention are not so limited. For example, the current playback position within an audio file when an annotation is created in the audio context is not used when consuming the annotation in the text context. Instead, an indication of the annotation may be displayed, by a device, at the beginning or the end of the corresponding textual version or on each “page” of the corresponding textual version. As another example, the text that is displayed when an annotation is created in the text context is not used when consuming the annotation in the audio context. Instead, an indication of the annotation may be displayed, by a device, at the beginning or end of the corresponding audio version or continuously while the corresponding audio version is being played. Additionally or alternatively to a visual indication, an audio indication of the annotation may be played. For example, a “beep” is played simultaneously with the audio track in such a way that both the beep and the audio track can be heard.



FIGS. 8A-B are flow diagrams that depict processes for transferring an annotation from one context to another, according to an embodiment of the invention. Specifically, FIG. 8A is a flow diagram depicts a process 800 for creating an annotation in the “text” context and consuming the annotation in the “audio” context, while FIG. 8B is a flow diagram that depicts a process 850 for creating an annotation in the “audio” context and consuming the annotation in the “text” context. The creation and consumption of an annotation may occur on the same computing device (e.g., device 410) or on separate computing devices (e.g., devices 410 and 430). FIG. 8A describes a scenario where the annotation is created and consumed on device 410 while FIG. 8B describes a scenario where the annotation is created on device 410 and later consumed on device 430.


At step 802 in FIG. 8A, text media player 412, executing on device 410, causes text (e.g., in the form of a page) from digital media item 402 to be displayed.


At step 804, text media player 412 determines a text location within a textual version of the work reflected in digital media item 402. The text location is eventually stored in association with an annotation. The text location may be determined in a number of ways. For example, text media player 412 may receive input that selects the text location within the displayed text. The input may be a user touching a touch screen (that displays the text) of device 410 for a period of time. The input may select a specific word, a number of words, the beginning or ending of a page, before or after a sentence, etc. The input may also include first selecting a button, which causes text media player 412 to change to a “create annotation” mode where an annotation may be created and associated with the text location.


As another example of determining a text location, text media player 412 determines the text location automatically (without user input) based on which portion of the textual version of the work (reflected in digital media item 402) is being displayed. For example, if device 410 is displaying page 20 of the textual version of the work, then the annotation will be associated with page 20.


At step 806, text media player 412 receives input that selects a “Create Annotation” button that may be displayed on the touch screen. Such a button may be displayed in response to input in step 804 that selects the text location, where, for example, the user touches the touch screen for a period of time, such as one second.


Although step 804 is depicted as occurring before step 806, alternatively, the selection of the “Create Annotation” button may occur prior to the determination of the text location.


At step 808, text media player 412 receives input that is used to create annotation data. The input may be voice data (such as the user speaking into a microphone of device 410) or text data (such as the user selecting keys on a keyboard, whether physical or graphical). If the annotation data is voice data, text media player 412 (or another process) may perform speech-to-text analysis on the voice data to create a textual version of the voice data.


At step 810, text media player 412 stores the annotation data in association with the text location. Text media player 412 uses a mapping (e.g., a copy of mapping 406) to identify a particular text location, in mapping, that is closest to the text location. Then, using mapping, text media player identifies an audio location that corresponds to the particular text location.


Alternatively to step 810, text media player 412 sends, over network 440 to intermediary device 420, the annotation data and the text location. In response, intermediary device 420 stores the annotation data in association with the text location. Intermediary device 420 uses a mapping (e.g., mapping 406) to identify a particular text location, in mapping 406, that is closest to the text location. Then, using mapping 406, intermediary device 420 identifies an audio location that corresponds to the particular text location. Intermediary device 420 sends the identified audio location over network 440 to device 410. Intermediary device 420 may send the identified audio location in response to a request, from device 410, for certain audio data and/or for annotations associated with certain audio data. For example, in response to a request for an audio book version of “The Tale of Two Cities”, intermediary device 420 determines whether there is any annotation data associated with that audio book and, if so, sends the annotation data to device 410.


Step 810 may also comprise storing date and/or time information that indicates when the annotation was created. This information may be displayed later when the annotation is consumed in the audio context.


At step 812, audio media player 414 plays audio by processing audio data of digital media item 404, which, in this example (although not shown), may be stored on device 410 or may be streamed to device 410 from intermediary device 420 over network 440.


At step 814, audio media player 414 determines when the current playback position in the audio data matches or nearly matches the audio location identified in step 810 using mapping 406. Alternatively, audio media player 414 may cause data that indicates that an annotation is available to be displayed, regardless of where the current playback position is located and without having to play any audio, as indicated in step 812. In other words, step 812 is unnecessary. For example, a user may launch audio media player 414 and cause audio media player 414 to load the audio data of digital media item 404. Audio media player 414 determines that annotation data is associated with the audio data. Audio media player 414 causes information about the audio data (e.g., title, artist, genre, length, etc.) to be displayed without generating any audio associated with the audio data. The information may include a reference to the annotation data and information about a location within the audio data that is associated with the annotation data, where the location corresponds to the audio location identified in step 810.


At step 816, audio media player 414 consumes the annotation data. If the annotation data is voice data, then consuming the annotation data may involve processing the voice data to generate audio or converting the voice data to text data and displaying the text data. If the annotation data is text data, then consuming the annotation data may involve displaying the text data, for example, in a side panel of a GUI that displays attributes of the audio data that is played or in a new window that appears separate from the GUI. Non-limiting examples of attributes include time length of the audio data, the current playback position, which may indicate an absolute location within the audio data (e.g., a time offset) or a relative position within the audio data (e.g., chapter or section number), a waveform of the audio data, and title of the digital work.



FIG. 8B describes a scenario, as noted previously, where an annotation is created on device 430 and later consumed on device 410.


At step 852, audio media player 432 processes audio data from digital media item 404 to play audio.


At step 854, audio media player 432 determines an audio location within the audio data. The audio location is eventually stored in association with an annotation. The audio location may be determined in a number of ways. For example, audio media player 432 may receive input that selects the audio location within the audio data. The input may be a user touching a touch screen (that displays attributes of the audio data) of device 430 for a period of time. The input may select an absolute position within a timeline that reflects the length of the audio data or a relative position within the audio data, such as a chapter number and a paragraph number. The input may also comprise first selecting a button, which causes audio media player 432 to change to a “create annotation” mode where an annotation may be created and associated with the audio location.


As another example of determining an audio location, audio media player 432 determines the audio location automatically (without user input) based on which portion of the audio data is being processed. For example, if audio media player 432 is processing a portion of the audio data that corresponds to chapter 20 of a digital work reflected in digital media item 404, then audio media player 432 determines that the audio location is at least be somewhere within chapter 20.


At step 856, audio media player 432 receives input that selects a “Create Annotation” button that may be displayed on the touch screen of device 430. Such a button may be displayed in response to input in step 854 that selects the audio location, where, for example, the user touches the touch screen continuously for a period of time, such as one second.


Although step 854 is depicted as occurring before step 856, alternatively, the selection of the “Create Annotation” button may occur prior to the determination of the audio location.


At step 858, the first media player receives input that is used to create annotation data, similar to step 808.


At step 860, audio media player 432 stores the annotation data in association with the audio location. Audio media player 432 uses a mapping (e.g., mapping 406) to identify a particular audio location, in the mapping, that is closest to the audio location determined in step 854. Then, using the mapping, audio media player 432 identifies a text location that corresponds to the particular audio location.


Alternatively to step 860, audio media player 432 sends, over network 400 to intermediary device 420, the annotation data and the audio location. In response, intermediary device 420 stores the annotation data in association with the audio location. Intermediary device 420 uses mapping 406 to identify a particular audio location, in the mapping, that is closest to the audio location determined in step 854. Then, using mapping 406, intermediary device 420 identifies a text location that corresponds to the particular audio location. Intermediary device 420 sends the identified text location over network 440 to device 410. Intermediary device 420 may send the identified text location in response to a request, from device 410, for certain text data and/or for annotations associated with certain text data. For example, in response to a request for a digital book of “The Grapes of Wrath”, intermediary device 420 determines whether there is any annotation data associated with that digital book and, if so, sends the annotation data to device 430.


Step 860 may also comprise storing date and/or time information that indicates when the annotation was created. This information may be displayed later when the annotation is consumed in the text context.


At step 862, device 410 displays text data associated with digital media item 402, which is a textual version of digital media item 404. Device 410 displays the text data of digital media item 402 based on a locally-stored copy of digital media item 402 or, if a locally-stored copy does not exist, may display the text data while the text data is streamed from intermediary device 420.


At step 864, device 410 determines when a portion of the textual version of the work (reflected in digital media item 402) that includes the text location (identified in step 860) is displayed. Alternatively, device 410 may display data that indicates that an annotation is available regardless of what portion of the textual version of the work, if any, is displayed.


At step 866, text media player 412 consumes the annotation data. If the annotation data is voice data, then consuming the annotation data may comprise playing the voice data or converting the voice data to text data and displaying the text data. If the annotation data is text data, then consuming the annotation data may comprises displaying the text data, for example, in a side panel of a GUI that displays a portion of the textual version of the work or in a new window that appears separate from the GUI.


Hardware Overview

According to one embodiment, the techniques described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, portable computer systems, handheld devices, networking devices or any other device that incorporates hard-wired and/or program logic to implement the techniques.


For example, FIG. 9 is a block diagram that illustrates a computer system 900 upon which an embodiment of the invention may be implemented. Computer system 900 includes a bus 902 or other communication mechanism for communicating information, and a hardware processor 904 coupled with bus 902 for processing information. Hardware processor 904 may be, for example, a general purpose microprocessor.


Computer system 900 also includes a main memory 906, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 902 for storing information and instructions to be executed by processor 904. Main memory 906 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 904. Such instructions, when stored in non-transitory storage media accessible to processor 904, render computer system 900 into a special-purpose machine that is customized to perform the operations specified in the instructions.


Computer system 900 further includes a read only memory (ROM) 908 or other static storage device coupled to bus 902 for storing static information and instructions for processor 904. A storage device 910, such as a magnetic disk or optical disk, is provided and coupled to bus 902 for storing information and instructions.


Computer system 900 may be coupled via bus 902 to a display 912, such as a cathode ray tube (CRT), for displaying information to a computer user. An input device 914, including alphanumeric and other keys, is coupled to bus 902 for communicating information and command selections to processor 904. Another type of user input device is cursor control 916, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 904 and for controlling cursor movement on display 912. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.


Computer system 900 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 900 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 900 in response to processor 904 executing one or more sequences of one or more instructions contained in main memory 906. Such instructions may be read into main memory 906 from another storage medium, such as storage device 910. Execution of the sequences of instructions contained in main memory 906 causes processor 904 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.


The term “storage media” as used herein refers to any non-transitory media that store data and/or instructions that cause a machine to operation in a specific fashion. Such storage media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 910. Volatile media includes dynamic memory, such as main memory 906. Common forms of storage media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge.


Storage media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between storage media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 902. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.


Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 904 for execution. For example, the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 900 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 902. Bus 902 carries the data to main memory 906, from which processor 904 retrieves and executes the instructions. The instructions received by main memory 906 may optionally be stored on storage device 910 either before or after execution by processor 904.


Computer system 900 also includes a communication interface 918 coupled to bus 902. Communication interface 918 provides a two-way data communication coupling to a network link 920 that is connected to a local network 922. For example, communication interface 918 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 918 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links may also be implemented. In any such implementation, communication interface 918 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.


Network link 920 typically provides data communication through one or more networks to other data devices. For example, network link 920 may provide a connection through local network 922 to a host computer 924 or to data equipment operated by an Internet Service Provider (ISP) 926. ISP 926 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 928. Local network 922 and Internet 928 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 920 and through communication interface 918, which carry the digital data to and from computer system 900, are example forms of transmission media.


Computer system 900 can send messages and receive data, including program code, through the network(s), network link 920 and communication interface 918. In the Internet example, a server 930 might transmit a requested code for an application program through Internet 928, ISP 926, local network 922 and communication interface 918.


The received code may be executed by processor 904 as it is received, and/or stored in storage device 910, or other non-volatile storage for later execution.


In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the invention, and what is intended by the applicants to be the scope of the invention, is the literal and equivalent scope of the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction.

Claims
  • 1. A method comprising: obtaining an annotation that comprises text data or voice data input from a user;storing an association between the annotation and a specified location within a textual version of a work;inspecting a mapping between a plurality of audio locations in an audio version of the work and a corresponding plurality of text locations in the textual version of the work, wherein the mapping is based on an audio-to-text analysis of the audio version of the work, to: determine a particular text location, of the plurality of text locations, that corresponds to the specified location, andbased on the particular text location, determine a particular audio location, of the plurality of audio locations, that corresponds to the particular text location;providing the annotation and the particular audio location to a media player to cause the media player to display or play the annotation during playback of the audio version of the work at a particular time based on the particular audio location;wherein the method is performed by one or more computing devices.
  • 2. The method of claim 1, wherein: obtaining further comprises a server receiving, over a network, the specified location from a first device;inspecting and providing are performed by the server; andproviding comprises the server sending the particular audio location to a second device that executes the media player.
  • 3. The method of claim 2, wherein the second device and the first device are the same device.
  • 4. The method of claim 1 wherein obtaining, inspecting, and providing are performed by a computing device that is configured to display the textual version of the work and that executes the media player.
  • 5. The method of claim 1, further comprising determining, at a device that is configured to display the textual version of the work, the specified location without input from a user of the device.
  • 6. The method of claim 1, further comprising: receiving input from a user; andin response to receiving the input, determining the specified location based on the input.
  • 7. The method of claim 6, wherein: providing the particular audio location to the media player comprises providing the particular audio location to the media player to cause the media player to process the audio data beginning at a current playback position, which causes the media player to generate audio from the processed audio data; andcausing the media player to process the audio data is performed in response to receiving the input.
  • 8. The method of claim 7, wherein: the input selects multiple words in the textual version of the work;the specified location is a first specified location;obtaining further comprises obtaining a second specified location, within the textual version of the work, that is different than the first specified location;inspecting further comprises inspecting the mapping to: determine a second particular text location, of the plurality of text locations, that corresponds to the second specified location, andbased on the second particular text location, determine a second particular audio location, of the plurality of audio locations, that corresponds to the second particular text location; andproviding the particular audio location to the media player comprises providing the second particular audio location to the media player to cause the media player to cease processing the audio data when the current playback position arrives at or near the second particular audio location.
  • 9. One or more storage media storing instructions which, when executed by one or more processors, causes performance of the method recited in claim 1.
  • 10. One or more storage media storing instructions which, when executed by one or more processors, causes performance of the method recited in claim 2.
  • 11. One or more storage media storing instructions which, when executed by one or more processors, causes performance of the method recited in claim 3.
  • 12. One or more storage media storing instructions which, when executed by one or more processors, causes performance of the method recited in claim 4.
  • 13. One or more storage media storing instructions which, when executed by one or more processors, causes performance of the method recited in claim 5.
  • 14. One or more storage media storing instructions which, when executed by one or more processors, causes performance of the method recited in claim 6.
  • 15. One or more storage media storing instructions which, when executed by one or more processors, causes performance of the method recited in claim 7.
  • 16. One or more storage media storing instructions which, when executed by one or more processors, causes performance of the method recited in claim 8.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Patent Application No. 61/493,372, entitled “Automatically Creating A Mapping Between Text Data And Audio Data And Switching Between Text Data And Audio Data Based On A Mapping,” filed on Jun. 3, 2011, invented by Alan C. Cannistraro, et al., the entire disclosure of which is incorporated by reference for all purposes as if fully set forth herein. The present application claims priority to U.S. Provisional Patent Application No. 61/494,375, entitled “Automatically Creating A Mapping Between Text Data And Audio Data And Switching Between Text Data And Audio Data Based On A Mapping,” filed on Jun. 7, 2011, invented by Alan C. Cannistraro, et al., the entire disclosure of which is incorporated by reference for all purposes as if fully set forth herein. The present application is related to U.S. patent application Ser. No. 13/267,738 entitled “Automatically Creating A Mapping Between Text Data And Audio Data,” filed on Oct. 6, 2011, the entire disclosure of which is incorporated by reference for all purposes as if fully set forth herein.

US Referenced Citations (898)
Number Name Date Kind
3704345 Coker et al. Nov 1972 A
3828132 Flanagan et al. Aug 1974 A
3979557 Schulman et al. Sep 1976 A
4278838 Antonov Jul 1981 A
4282405 Taguchi Aug 1981 A
4310721 Manley et al. Jan 1982 A
4348553 Baker et al. Sep 1982 A
4653021 Takagi Mar 1987 A
4688195 Thompson et al. Aug 1987 A
4692941 Jacks et al. Sep 1987 A
4718094 Bahl et al. Jan 1988 A
4724542 Williford Feb 1988 A
4726065 Froessl Feb 1988 A
4727354 Lindsay Feb 1988 A
4776016 Hansen Oct 1988 A
4783807 Marley Nov 1988 A
4811243 Racine Mar 1989 A
4819271 Bahl et al. Apr 1989 A
4827518 Feustel et al. May 1989 A
4827520 Zeinstra May 1989 A
4829576 Porter May 1989 A
4829583 Monroe et al. May 1989 A
4833712 Bahl et al. May 1989 A
4839853 Deerwester et al. Jun 1989 A
4852168 Sprague Jul 1989 A
4862504 Nomura Aug 1989 A
4878230 Murakami et al. Oct 1989 A
4903305 Gillick et al. Feb 1990 A
4905163 Garber et al. Feb 1990 A
4914586 Swinehart et al. Apr 1990 A
4914590 Loatman et al. Apr 1990 A
4944013 Gouvianakis et al. Jul 1990 A
4955047 Morganstein et al. Sep 1990 A
4965763 Zamora Oct 1990 A
4974191 Amirghodsi et al. Nov 1990 A
4977598 Doddington et al. Dec 1990 A
4992972 Brooks et al. Feb 1991 A
5010574 Wang Apr 1991 A
5020112 Chou May 1991 A
5021971 Lindsay Jun 1991 A
5022081 Hirose et al. Jun 1991 A
5027406 Roberts et al. Jun 1991 A
5031217 Nishimura Jul 1991 A
5032989 Tornetta Jul 1991 A
5040218 Vitale et al. Aug 1991 A
5047617 Bianco Sep 1991 A
5057915 Kohorn et al. Oct 1991 A
5072452 Brown et al. Dec 1991 A
5091945 Kleijn Feb 1992 A
5127053 Koch Jun 1992 A
5127055 Larkey Jun 1992 A
5128672 Kaehler Jul 1992 A
5133011 McKiel, Jr. Jul 1992 A
5142584 Ozawa Aug 1992 A
5164900 Bernath Nov 1992 A
5165007 Bahl et al. Nov 1992 A
5179627 Sweet et al. Jan 1993 A
5179652 Rozmanith et al. Jan 1993 A
5194950 Murakami et al. Mar 1993 A
5197005 Shwartz et al. Mar 1993 A
5199077 Wilcox et al. Mar 1993 A
5202952 Gillick et al. Apr 1993 A
5208862 Ozawa May 1993 A
5216747 Hardwick et al. Jun 1993 A
5220639 Lee Jun 1993 A
5220657 Bly et al. Jun 1993 A
5222146 Bahl et al. Jun 1993 A
5230036 Akamine et al. Jul 1993 A
5235680 Bijnagte Aug 1993 A
5267345 Brown et al. Nov 1993 A
5268990 Cohen et al. Dec 1993 A
5282265 Rohra Suda et al. Jan 1994 A
5289562 Mizuta et al. Feb 1994 A
RE34562 Murakami et al. Mar 1994 E
5291286 Murakami et al. Mar 1994 A
5293448 Honda Mar 1994 A
5293452 Picone et al. Mar 1994 A
5297170 Eyuboglu et al. Mar 1994 A
5301109 Landauer et al. Apr 1994 A
5303406 Hansen et al. Apr 1994 A
5309359 Katz et al. May 1994 A
5317507 Gallant May 1994 A
5317647 Pagallo May 1994 A
5325297 Bird et al. Jun 1994 A
5325298 Gallant Jun 1994 A
5327498 Hamon Jul 1994 A
5333236 Bahl et al. Jul 1994 A
5333275 Wheatley et al. Jul 1994 A
5345536 Hoshimi et al. Sep 1994 A
5349645 Zhao Sep 1994 A
5353377 Kuroda et al. Oct 1994 A
5377301 Rosenberg et al. Dec 1994 A
5384892 Strong Jan 1995 A
5384893 Hutchins Jan 1995 A
5386494 White Jan 1995 A
5386556 Hedin et al. Jan 1995 A
5390279 Strong Feb 1995 A
5396625 Parkes Mar 1995 A
5400434 Pearson Mar 1995 A
5404295 Katz et al. Apr 1995 A
5412756 Bauman et al. May 1995 A
5412804 Krishna May 1995 A
5412806 Du et al. May 1995 A
5418951 Damashek May 1995 A
5424947 Nagao et al. Jun 1995 A
5434777 Luciw Jul 1995 A
5444823 Nguyen Aug 1995 A
5455888 Iyengar et al. Oct 1995 A
5469529 Bimbot et al. Nov 1995 A
5471611 McGregor Nov 1995 A
5475587 Anick et al. Dec 1995 A
5479488 Lenning et al. Dec 1995 A
5491772 Hardwick et al. Feb 1996 A
5493677 Balogh Feb 1996 A
5495604 Harding et al. Feb 1996 A
5500905 Martin et al. Mar 1996 A
5502790 Yi Mar 1996 A
5502791 Nishimura et al. Mar 1996 A
5515475 Gupta et al. May 1996 A
5536902 Serra et al. Jul 1996 A
5537618 Boulton et al. Jul 1996 A
5555343 Luther Sep 1996 A
5574823 Hassanein et al. Nov 1996 A
5577241 Spencer Nov 1996 A
5578808 Taylor Nov 1996 A
5579436 Chou et al. Nov 1996 A
5581655 Cohen et al. Dec 1996 A
5584024 Shwartz Dec 1996 A
5596676 Swaminathan et al. Jan 1997 A
5596994 Bro Jan 1997 A
5608624 Luciw Mar 1997 A
5613036 Strong Mar 1997 A
5617507 Lee et al. Apr 1997 A
5619694 Shimazu Apr 1997 A
5621859 Schwartz et al. Apr 1997 A
5621903 Luciw et al. Apr 1997 A
5642464 Yue et al. Jun 1997 A
5642519 Martin Jun 1997 A
5644727 Atkins Jul 1997 A
5649060 Ellozy et al. Jul 1997 A
5664055 Kroon Sep 1997 A
5675819 Schuetze Oct 1997 A
5682539 Conrad et al. Oct 1997 A
5687077 Gough, Jr. Nov 1997 A
5696962 Kupiec Dec 1997 A
5701400 Amado Dec 1997 A
5706442 Anderson et al. Jan 1998 A
5710886 Christensen et al. Jan 1998 A
5712957 Waibel et al. Jan 1998 A
5715468 Budzinski Feb 1998 A
5721827 Logan et al. Feb 1998 A
5727950 Cook et al. Mar 1998 A
5729694 Holzrichter et al. Mar 1998 A
5732216 Logan et al. Mar 1998 A
5732390 Katayanagi et al. Mar 1998 A
5734791 Acero et al. Mar 1998 A
5737734 Schultz Apr 1998 A
5742705 Parthasarathy Apr 1998 A
5748974 Johnson May 1998 A
5749081 Whiteis May 1998 A
5757979 Hongo et al. May 1998 A
5759101 Von Kohorn Jun 1998 A
5790978 Olive et al. Aug 1998 A
5794050 Dahlgren et al. Aug 1998 A
5794182 Manduchi et al. Aug 1998 A
5794207 Walker et al. Aug 1998 A
5794237 Gore, Jr. Aug 1998 A
5799276 Komissarchik et al. Aug 1998 A
5812697 Sakai et al. Sep 1998 A
5812698 Platt et al. Sep 1998 A
5822743 Gupta et al. Oct 1998 A
5825881 Colvin, Sr. Oct 1998 A
5826261 Spencer Oct 1998 A
5828999 Bellegarda et al. Oct 1998 A
5835893 Ushioda Nov 1998 A
5839106 Bellegarda Nov 1998 A
5845255 Mayaud Dec 1998 A
5857184 Lynch Jan 1999 A
5860063 Gorin et al. Jan 1999 A
5862233 Walker et al. Jan 1999 A
5864806 Mokbel et al. Jan 1999 A
5864844 James et al. Jan 1999 A
5867799 Lang et al. Feb 1999 A
5873056 Liddy et al. Feb 1999 A
5875437 Atkins Feb 1999 A
5884323 Hawkins et al. Mar 1999 A
5895464 Bhandari et al. Apr 1999 A
5895466 Goldberg et al. Apr 1999 A
5899972 Miyazawa et al. May 1999 A
5909666 Gould et al. Jun 1999 A
5913193 Huang et al. Jun 1999 A
5915236 Gould et al. Jun 1999 A
5915249 Spencer Jun 1999 A
5920836 Gould et al. Jul 1999 A
5920837 Gould et al. Jul 1999 A
5930769 Rose Jul 1999 A
5933822 Braden-Harder et al. Aug 1999 A
5936926 Yokouchi et al. Aug 1999 A
5940811 Norris Aug 1999 A
5941944 Messerly Aug 1999 A
5943670 Prager Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5956699 Wong et al. Sep 1999 A
5960394 Gould et al. Sep 1999 A
5960422 Prasad Sep 1999 A
5963924 Williams et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5970474 LeRoy et al. Oct 1999 A
5974146 Randle et al. Oct 1999 A
5982891 Ginter et al. Nov 1999 A
5983179 Gould Nov 1999 A
5987132 Rowney Nov 1999 A
5987140 Rowney et al. Nov 1999 A
5987404 Della Pietra et al. Nov 1999 A
5987440 O'Neil et al. Nov 1999 A
5991441 Jourjine Nov 1999 A
5999908 Abelow Dec 1999 A
6016471 Kuhn et al. Jan 2000 A
6017219 Adams, Jr. et al. Jan 2000 A
6023684 Pearson Feb 2000 A
6024288 Gottlich et al. Feb 2000 A
6026345 Shah et al. Feb 2000 A
6026375 Hall et al. Feb 2000 A
6026388 Liddy et al. Feb 2000 A
6026393 Gupta et al. Feb 2000 A
6029132 Kuhn et al. Feb 2000 A
6038533 Buchsbaum et al. Mar 2000 A
6052656 Suda et al. Apr 2000 A
6055514 Wren Apr 2000 A
6055531 Bennett et al. Apr 2000 A
6064959 Young et al. May 2000 A
6064960 Bellegarda et al. May 2000 A
6070139 Miyazawa et al. May 2000 A
6070147 Harms et al. May 2000 A
6073097 Gould et al. Jun 2000 A
6076051 Messerly et al. Jun 2000 A
6076088 Paik et al. Jun 2000 A
6078914 Redfern Jun 2000 A
6081750 Hoffberg et al. Jun 2000 A
6081774 de Hita et al. Jun 2000 A
6081780 Lumelsky Jun 2000 A
6094649 Bowen et al. Jun 2000 A
6088731 Kiraly et al. Jul 2000 A
6092043 Squires et al. Jul 2000 A
6101468 Gould et al. Aug 2000 A
6105865 Hardesty Aug 2000 A
6108627 Sabourin Aug 2000 A
6119101 Peckover Sep 2000 A
6122616 Henton Sep 2000 A
6125356 Brockman et al. Sep 2000 A
6144938 Surace et al. Nov 2000 A
6173261 Arai et al. Jan 2001 B1
6173279 Levin et al. Jan 2001 B1
6177905 Welch Jan 2001 B1
6188999 Moody Feb 2001 B1
6195641 Loring et al. Feb 2001 B1
6199076 Logan Mar 2001 B1
6205456 Nakao Mar 2001 B1
6208971 Bellegarda et al. Mar 2001 B1
6233559 Balakrishnan May 2001 B1
6233578 Machihara et al. May 2001 B1
6246981 Papineni et al. Jun 2001 B1
6259826 Pollard et al. Jul 2001 B1
6260011 Heckerman et al. Jul 2001 B1
6260013 Sejnoha Jul 2001 B1
6260024 Shkedy Jul 2001 B1
6266637 Donovan et al. Jul 2001 B1
6275824 O'Flaherty et al. Aug 2001 B1
6282507 Horiguchi et al. Aug 2001 B1
6282511 Mayer Aug 2001 B1
6285786 Seni et al. Sep 2001 B1
6308149 Gaussier et al. Oct 2001 B1
6311189 deVries et al. Oct 2001 B1
6317594 Gossman et al. Nov 2001 B1
6317707 Bangalore et al. Nov 2001 B1
6317831 King Nov 2001 B1
6321092 Fitch et al. Nov 2001 B1
6334103 Surace et al. Dec 2001 B1
6356854 Schubert et al. Mar 2002 B1
6356905 Gershman et al. Mar 2002 B1
6366883 Campbell et al. Apr 2002 B1
6366884 Belllegarda et al. Apr 2002 B1
6397186 Bush et al. May 2002 B1
6421672 McAllister et al. Jul 2002 B1
6434522 Tsuboka Aug 2002 B1
6434524 Weber Aug 2002 B1
6442518 Van Thong et al. Aug 2002 B1
6446076 Burkey et al. Sep 2002 B1
6449620 Draper et al. Sep 2002 B1
6453281 Walters et al. Sep 2002 B1
6453292 Ramaswamy et al. Sep 2002 B2
6460029 Fries et al. Oct 2002 B1
6466654 Cooper et al. Oct 2002 B1
6477488 Bellegarda Nov 2002 B1
6487534 Thelen et al. Nov 2002 B1
6489951 Wong et al. Dec 2002 B1
6499013 Weber Dec 2002 B1
6501937 Ho et al. Dec 2002 B1
6505158 Conkie Jan 2003 B1
6505175 Silverman et al. Jan 2003 B1
6505183 Loofbourrow et al. Jan 2003 B1
6510417 Woods et al. Jan 2003 B1
6513063 Julia et al. Jan 2003 B1
6519565 Clements et al. Feb 2003 B1
6523061 Halverson et al. Feb 2003 B1
6523172 Martinez-Guerra et al. Feb 2003 B1
6526382 Yuschik Feb 2003 B1
6526395 Morris Feb 2003 B1
6532444 Weber Mar 2003 B1
6532446 King Mar 2003 B1
6546388 Edlund et al. Apr 2003 B1
6553344 Bellegarda et al. Apr 2003 B2
6556983 Altschuler et al. Apr 2003 B1
6584464 Warthen Jun 2003 B1
6598022 Yuschik Jul 2003 B2
6598039 Livowsky Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6601234 Bowman-Amuah Jul 2003 B1
6604059 Strubbe et al. Aug 2003 B2
6615172 Bennett et al. Sep 2003 B1
6615175 Gazdzinski Sep 2003 B1
6615220 Austin et al. Sep 2003 B1
6622121 Crepy et al. Sep 2003 B1
6622136 Russell Sep 2003 B2
6625583 Silverman et al. Sep 2003 B1
6628808 Bach et al. Sep 2003 B1
6631346 Karaorman et al. Oct 2003 B1
6633846 Bennett et al. Oct 2003 B1
6647260 Dusse et al. Nov 2003 B2
6650735 Burton et al. Nov 2003 B2
6654740 Tokuda et al. Nov 2003 B2
6665639 Mozer et al. Dec 2003 B2
6665640 Bennett et al. Dec 2003 B1
6665641 Coorman et al. Dec 2003 B1
6680675 Suzuki Jan 2004 B1
6684187 Conkie Jan 2004 B1
6691064 Vroman Feb 2004 B2
6691090 Laurila et al. Feb 2004 B1
6691111 Lazaridis et al. Feb 2004 B2
6691151 Cheyer et al. Feb 2004 B1
6697780 Beutnagel et al. Feb 2004 B1
6697824 Bowman-Amuah Feb 2004 B1
6701294 Ball et al. Mar 2004 B1
6711585 Copperman et al. Mar 2004 B1
6718324 Edlund et al. Apr 2004 B2
6721728 McGreevy Apr 2004 B2
6735632 Kiraly et al. May 2004 B1
6742021 Halverson et al. May 2004 B1
6757362 Cooper et al. Jun 2004 B1
6757718 Halverson et al. Jun 2004 B1
6766320 Want et al. Jul 2004 B1
6778951 Contractor Aug 2004 B1
6778952 Bellegarda Aug 2004 B2
6778962 Kasai et al. Aug 2004 B1
6778970 Au Aug 2004 B2
6792082 Levine Sep 2004 B1
6807574 Partovi et al. Oct 2004 B1
6810379 Vermeulen et al. Oct 2004 B1
6813491 McKinney Nov 2004 B1
6829603 Chai et al. Dec 2004 B1
6832194 Mozer et al. Dec 2004 B1
6839464 Hawkins et al. Jan 2005 B2
6839669 Gould et al. Jan 2005 B1
6842767 Partovi et al. Jan 2005 B1
6847966 Sommer et al. Jan 2005 B1
6847979 Allemang et al. Jan 2005 B2
6851115 Cheyer et al. Feb 2005 B1
6859931 Cheyer et al. Feb 2005 B1
6865533 Addison et al. Mar 2005 B2
6895380 Sepe, Jr. May 2005 B2
6895558 Loveland May 2005 B1
6901399 Corston et al. May 2005 B1
6912498 Stevens et al. Jun 2005 B2
6912499 Sabourin et al. Jun 2005 B1
6924828 Hirsch Aug 2005 B1
6928614 Everhart Aug 2005 B1
6931384 Horvitz et al. Aug 2005 B1
6934684 Alpdemir et al. Aug 2005 B2
6937975 Elworthy Aug 2005 B1
6937986 Denenberg et al. Aug 2005 B2
6957076 Hunzinger Oct 2005 B2
6960734 Park Nov 2005 B1
6964023 Maes et al. Nov 2005 B2
6980949 Ford Dec 2005 B2
6980955 Okutani et al. Dec 2005 B2
6985865 Packingham et al. Jan 2006 B1
6988071 Gazdzinski Jan 2006 B1
6996531 Korall et al. Feb 2006 B2
6999927 Mozer et al. Feb 2006 B2
7020685 Chen et al. Mar 2006 B1
7024363 Comerford et al. Apr 2006 B1
7027974 Busch et al. Apr 2006 B1
7036128 Julia et al. Apr 2006 B1
7050977 Bennett May 2006 B1
7058569 Coorman et al. Jun 2006 B2
7062428 Hogenhout et al. Jun 2006 B2
7069560 Cheyer et al. Jun 2006 B1
7084758 Cole Aug 2006 B1
7085723 Ross et al. Aug 2006 B2
7092887 Mozer et al. Aug 2006 B2
7092928 Elad et al. Aug 2006 B1
7093693 Gazdzinski Aug 2006 B1
7107204 Liu et al. Sep 2006 B1
7127046 Smith et al. Oct 2006 B1
7127403 Saylor et al. Oct 2006 B1
7136710 Hoffberg et al. Nov 2006 B1
7137126 Coffman et al. Nov 2006 B1
7139714 Bennett et al. Nov 2006 B2
7139722 Perrella et al. Nov 2006 B2
7152070 Musick et al. Dec 2006 B1
7177798 Hsu et al. Feb 2007 B2
7197460 Gupta et al. Mar 2007 B1
7200559 Wang Apr 2007 B2
7203646 Bennett Apr 2007 B2
7216073 Lavi et al. May 2007 B2
7216080 Tsiao et al. May 2007 B2
7225125 Bennett et al. May 2007 B2
7228278 Nguyen et al. Jun 2007 B2
7233790 Kjellberg et al. Jun 2007 B2
7233904 Luisi Jun 2007 B2
7266496 Wang et al. Sep 2007 B2
7269556 Kiss et al. Sep 2007 B2
7277854 Bennett et al. Oct 2007 B2
7290039 Lisitsa et al. Oct 2007 B1
7299033 Kjellberg et al. Nov 2007 B2
7310600 Garner et al. Dec 2007 B1
7315818 Stevens et al. Jan 2008 B2
7324947 Jordan et al. Jan 2008 B2
7349953 Lisitsa et al. Mar 2008 B2
7362738 Taube et al. Apr 2008 B2
7376556 Bennett May 2008 B2
7376645 Bernard May 2008 B2
7379874 Schmid et al. May 2008 B2
7386449 Sun et al. Jun 2008 B2
7389224 Elworthy Jun 2008 B1
7392185 Bennett Jun 2008 B2
7398209 Kennewick et al. Jul 2008 B2
7403938 Harrison et al. Jul 2008 B2
7409337 Potter et al. Aug 2008 B1
7415100 Cooper et al. Aug 2008 B2
7418392 Mozer et al. Aug 2008 B1
7426467 Nashida et al. Sep 2008 B2
7427024 Gazdzinski et al. Sep 2008 B1
7447635 Konopka et al. Nov 2008 B1
7454351 Jeschke et al. Nov 2008 B2
7460652 Chang Dec 2008 B2
7467087 Gillick et al. Dec 2008 B1
7475010 Chao Jan 2009 B2
7483832 Tischer Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7490039 Shaffer et al. Feb 2009 B1
7496498 Chu et al. Feb 2009 B2
7496512 Zhao et al. Feb 2009 B2
7502738 Kennewick et al. Mar 2009 B2
7508373 Lin et al. Mar 2009 B2
7522927 Fitch et al. Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7528713 Singh et al. May 2009 B2
7529671 Rockenbeck et al. May 2009 B2
7529676 Koyama May 2009 B2
7539656 Fratkina et al. May 2009 B2
7546382 Healey et al. Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7558730 Davis et al. Jul 2009 B2
7571106 Cao et al. Aug 2009 B2
7577522 Rosenberg Aug 2009 B2
7580551 Srihari et al. Aug 2009 B1
7599918 Shen et al. Oct 2009 B2
7603381 Burke et al. Oct 2009 B2
7620549 Di Cristo et al. Nov 2009 B2
7624007 Bennett Nov 2009 B2
7634409 Kennewick et al. Dec 2009 B2
7636657 Ju et al. Dec 2009 B2
7640160 Di Cristo et al. Dec 2009 B2
7647225 Bennett et al. Jan 2010 B2
7649454 Singh et al. Jan 2010 B2
7657424 Bennett Feb 2010 B2
7664638 Cooper et al. Feb 2010 B2
7672841 Bennett Mar 2010 B2
7676026 Baxter, Jr. Mar 2010 B1
7684985 Dominach et al. Mar 2010 B2
7684990 Caskey et al. Mar 2010 B2
7693715 Hwang et al. Apr 2010 B2
7693719 Chu et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707267 Lisitsa et al. Apr 2010 B2
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7716056 Weng et al. May 2010 B2
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7721301 Wong et al. May 2010 B2
7725307 Bennett May 2010 B2
7725318 Gavalda et al. May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7774204 Mozer et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7801729 Mozer Sep 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7831426 Bennett Nov 2010 B2
7840400 Levi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7853664 Wang et al. Dec 2010 B1
7873519 Bennett Jan 2011 B2
7873654 Bernard Jan 2011 B2
7881936 Longé et al. Feb 2011 B2
7885844 Cohen et al. Feb 2011 B1
7890652 Bull et al. Feb 2011 B2
7912702 Bennett Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7930197 Ozzie et al. Apr 2011 B2
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7996228 Miller et al. Aug 2011 B2
7999669 Singh et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8024195 Mozer et al. Sep 2011 B2
8032383 Bhardwaj et al. Oct 2011 B1
8036901 Mozer Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8050500 Batty et al. Nov 2011 B1
8055708 Chitsaz et al. Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8082153 Coffman et al. Dec 2011 B2
8095364 Longé et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8131557 Davis et al. Mar 2012 B2
8138912 Singh et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8188856 Singh et al. May 2012 B2
8190359 Bourne May 2012 B2
8195467 Mozer et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8219407 Roy et al. Jul 2012 B1
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8290777 Nguyen et al. Oct 2012 B1
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8296383 Lindahl Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311834 Gazdzinski Nov 2012 B1
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8447612 Gazdzinski May 2013 B2
8484027 Murphy Jul 2013 B1
8498857 Kopparapu et al. Jul 2013 B2
8861925 Ohme Oct 2014 B1
20010047264 Roundtree Nov 2001 A1
20020010584 Schultz et al. Jan 2002 A1
20020031262 Imagawa et al. Mar 2002 A1
20020032564 Ehsani et al. Mar 2002 A1
20020035474 Alpdemir Mar 2002 A1
20020042707 Zhao et al. Apr 2002 A1
20020046025 Hain Apr 2002 A1
20020057293 Liao May 2002 A1
20020059068 Rose et al. May 2002 A1
20020067308 Robertson Jun 2002 A1
20020069063 Buchner et al. Jun 2002 A1
20020077817 Atal Jun 2002 A1
20020095290 Kahn et al. Jul 2002 A1
20020099552 Rubin et al. Jul 2002 A1
20020103641 Kuo et al. Aug 2002 A1
20020116171 Russell Aug 2002 A1
20020116185 Cooper et al. Aug 2002 A1
20020116189 Yeh et al. Aug 2002 A1
20020128827 Bu et al. Sep 2002 A1
20020129057 Spielberg Sep 2002 A1
20020133347 Schoneburg et al. Sep 2002 A1
20020135565 Gordon et al. Sep 2002 A1
20020138265 Stevens et al. Sep 2002 A1
20020143551 Sharma et al. Oct 2002 A1
20020154160 Hosokawa Oct 2002 A1
20020164000 Cohen et al. Nov 2002 A1
20020184189 Hay et al. Dec 2002 A1
20020198714 Zhou Dec 2002 A1
20030078766 Appelt et al. Apr 2003 A1
20030088414 Huang et al. May 2003 A1
20030097210 Horst et al. May 2003 A1
20030099335 Tanaka et al. May 2003 A1
20030135740 Talmor et al. Jul 2003 A1
20030167335 Alexander Sep 2003 A1
20030190074 Loudon et al. Oct 2003 A1
20030233230 Ammicht et al. Dec 2003 A1
20030234824 Litwiller Dec 2003 A1
20040054530 Davis et al. Mar 2004 A1
20040085162 Agarwal et al. May 2004 A1
20040135701 Yasuda et al. Jul 2004 A1
20040145607 Alderson Jul 2004 A1
20040186714 Baker Sep 2004 A1
20040199387 Wang et al. Oct 2004 A1
20040216049 Lewis et al. Oct 2004 A1
20040220798 Chi et al. Nov 2004 A1
20040236778 Junqua et al. Nov 2004 A1
20050002507 Timmins et al. Jan 2005 A1
20050010409 Hull et al. Jan 2005 A1
20050015772 Saare et al. Jan 2005 A1
20050033582 Gadd et al. Feb 2005 A1
20050045373 Born Mar 2005 A1
20050049880 Roth et al. Mar 2005 A1
20050055403 Brittan Mar 2005 A1
20050058438 Hayashi Mar 2005 A1
20050071332 Ortega et al. Mar 2005 A1
20050080625 Bennett et al. Apr 2005 A1
20050086059 Bennett Apr 2005 A1
20050091118 Fano Apr 2005 A1
20050100214 Zhang et al. May 2005 A1
20050102614 Brockett et al. May 2005 A1
20050108001 Aarskog May 2005 A1
20050108074 Bloechl et al. May 2005 A1
20050114124 Liu et al. May 2005 A1
20050119897 Bennett et al. Jun 2005 A1
20050143972 Gopalakrishnan et al. Jun 2005 A1
20050152602 Chen et al. Jul 2005 A1
20050165607 DiFabbrizio et al. Jul 2005 A1
20050182628 Choi Aug 2005 A1
20050182629 Coorman et al. Aug 2005 A1
20050192801 Lewis et al. Sep 2005 A1
20050192812 Buchholz et al. Sep 2005 A1
20050196733 Budra et al. Sep 2005 A1
20050203747 Lecoeuche Sep 2005 A1
20050203991 Kawamura et al. Sep 2005 A1
20050228665 Kobayashi et al. Oct 2005 A1
20050273626 Pearson et al. Dec 2005 A1
20050288936 Busayapongchai et al. Dec 2005 A1
20050289463 Wu et al. Dec 2005 A1
20060009973 Nguyen et al. Jan 2006 A1
20060018492 Chiu et al. Jan 2006 A1
20060020890 Kroll et al. Jan 2006 A1
20060061488 Dunton Mar 2006 A1
20060095848 Naik May 2006 A1
20060106592 Brockett et al. May 2006 A1
20060106594 Brockett et al. May 2006 A1
20060106595 Brockett et al. May 2006 A1
20060117002 Swen Jun 2006 A1
20060122834 Bennett Jun 2006 A1
20060143007 Koh et al. Jun 2006 A1
20060143559 Spielberg Jun 2006 A1
20060194181 Rosenberg Aug 2006 A1
20060217967 Goertzen et al. Sep 2006 A1
20060235700 Wong et al. Oct 2006 A1
20060293886 Odell et al. Dec 2006 A1
20070006098 Krumm et al. Jan 2007 A1
20070027732 Hudgens Feb 2007 A1
20070038436 Cristo et al. Feb 2007 A1
20070041361 Iso-Sipila Feb 2007 A1
20070050191 Weider et al. Mar 2007 A1
20070055514 Beattie et al. Mar 2007 A1
20070055525 Kennewick et al. Mar 2007 A1
20070055529 Kanevsky et al. Mar 2007 A1
20070058832 Hug et al. Mar 2007 A1
20070088556 Andrew Apr 2007 A1
20070094026 Ativanichayaphong et al. Apr 2007 A1
20070100790 Cheyer et al. May 2007 A1
20070106674 Agrawal et al. May 2007 A1
20070118377 Badino et al. May 2007 A1
20070118378 Skuratovsky May 2007 A1
20070135949 Snover et al. Jun 2007 A1
20070156627 D'Alicandro Jul 2007 A1
20070174188 Fish Jul 2007 A1
20070185754 Schmidt Aug 2007 A1
20070185917 Prahlad et al. Aug 2007 A1
20070198269 Braho et al. Aug 2007 A1
20070203955 Pomerantz Aug 2007 A1
20070208569 Subramanian et al. Sep 2007 A1
20070211071 Slotznick et al. Sep 2007 A1
20070225980 Sumita Sep 2007 A1
20070271104 McKay Nov 2007 A1
20070276651 Bliss et al. Nov 2007 A1
20070276714 Beringer Nov 2007 A1
20070282595 Tunning et al. Dec 2007 A1
20080012950 Lee et al. Jan 2008 A1
20080015864 Ross et al. Jan 2008 A1
20080021708 Bennett et al. Jan 2008 A1
20080027726 Hansen Jan 2008 A1
20080034032 Healey et al. Feb 2008 A1
20080052063 Bennett et al. Feb 2008 A1
20080056579 Guha Mar 2008 A1
20080077384 Agapi et al. Mar 2008 A1
20080079566 Singh et al. Apr 2008 A1
20080082332 Mallett et al. Apr 2008 A1
20080082338 O'Neil et al. Apr 2008 A1
20080082651 Singh et al. Apr 2008 A1
20080120112 Jordan et al. May 2008 A1
20080120342 Reed et al. May 2008 A1
20080126100 Grost et al. May 2008 A1
20080129520 Lee Jun 2008 A1
20080131006 Oliver Jun 2008 A1
20080140413 Millman et al. Jun 2008 A1
20080140416 Shostak Jun 2008 A1
20080140652 Millman et al. Jun 2008 A1
20080140657 Azvine et al. Jun 2008 A1
20080189114 Fail et al. Aug 2008 A1
20080221903 Kanevsky et al. Sep 2008 A1
20080228463 Mori et al. Sep 2008 A1
20080228490 Fischer et al. Sep 2008 A1
20080228496 Yu et al. Sep 2008 A1
20080240569 Tonouchi Oct 2008 A1
20080247519 Abella et al. Oct 2008 A1
20080249770 Kim et al. Oct 2008 A1
20080255837 Kahn et al. Oct 2008 A1
20080256613 Grover Oct 2008 A1
20080270118 Kuo et al. Oct 2008 A1
20080281510 Shahine Nov 2008 A1
20080300878 Bennett Dec 2008 A1
20080313335 Jung et al. Dec 2008 A1
20080319763 Di Fabbrizio et al. Dec 2008 A1
20090006100 Badger et al. Jan 2009 A1
20090006343 Platt et al. Jan 2009 A1
20090011709 Akasaka et al. Jan 2009 A1
20090018835 Cooper et al. Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090055179 Cho et al. Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090070097 Wu et al. Mar 2009 A1
20090076792 Lawson-Tancred Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090077165 Rhodes et al. Mar 2009 A1
20090100049 Cao Apr 2009 A1
20090112572 Thorn Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090123071 Iwasaki May 2009 A1
20090125477 Lu et al. May 2009 A1
20090150156 Kennewick et al. Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090171664 Kennewick et al. Jul 2009 A1
20090187577 Reznik et al. Jul 2009 A1
20090191895 Singh et al. Jul 2009 A1
20090204409 Mozer et al. Aug 2009 A1
20090222488 Boerries et al. Sep 2009 A1
20090228126 Spielberg et al. Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090271109 Lee et al. Oct 2009 A1
20090271175 Bodin et al. Oct 2009 A1
20090271178 Bodin et al. Oct 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090299849 Cao et al. Dec 2009 A1
20090307162 Bui et al. Dec 2009 A1
20100005081 Bennett Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100036660 Bennett Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100049514 Kennewick et al. Feb 2010 A1
20100057457 Ogata et al. Mar 2010 A1
20100070899 Hunt et al. Mar 2010 A1
20100081456 Singh et al. Apr 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100088100 Lindahl Apr 2010 A1
20100131273 Aley-Raz et al. May 2010 A1
20100138215 Williams Jun 2010 A1
20100138416 Bellotti Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100146442 Nagasaka et al. Jun 2010 A1
20100161554 Datuashvili et al. Jun 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100225809 Connors Sep 2010 A1
20100228540 Bennett Sep 2010 A1
20100231474 Yamagajo et al. Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100257160 Cao Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100278320 Arsenault et al. Nov 2010 A1
20100278453 King Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100286985 Kennewick et al. Nov 2010 A1
20100299133 Kopparapu et al. Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100312547 van Os et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100324709 Starmen Dec 2010 A1
20100324895 Kurzweil et al. Dec 2010 A1
20100324905 Kurzweil et al. Dec 2010 A1
20100332235 David Dec 2010 A1
20100332280 Bradley et al. Dec 2010 A1
20100332348 Cao Dec 2010 A1
20110047072 Ciurea Feb 2011 A1
20110054901 Qin et al. Mar 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110076994 Kim et al. Mar 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110125540 Jang et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 Di Cristo et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110153330 Yazdani et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110184730 LeBeau et al. Jul 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110224972 Millett et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231184 Kerr Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110231474 Locker et al. Sep 2011 A1
20110260861 Singh et al. Oct 2011 A1
20110264643 Cao Oct 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110288861 Kurzweil et al. Nov 2011 A1
20110298585 Barry Dec 2011 A1
20110306426 Novak et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035908 LeBeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120066581 Spalink Mar 2012 A1
20120084086 Gilbert et al. Apr 2012 A1
20120084634 Wong Apr 2012 A1
20120137367 Dupont et al. May 2012 A1
20120149394 Singh et al. Jun 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120197998 Kessel et al. Aug 2012 A1
20120214517 Singh et al. Aug 2012 A1
20120245719 Story et al. Sep 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120271635 Ljolje Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120310642 Cao et al. Dec 2012 A1
20120310649 Cannistraro et al. Dec 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20120330661 Lindahl Dec 2012 A1
20130006638 Lindahl Jan 2013 A1
20130110518 Gruber et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
20130325443 Begeja et al. Dec 2013 A1
Foreign Referenced Citations (62)
Number Date Country
681573 Apr 1993 CH
3837590 May 1990 DE
198 41 541 Dec 2007 DE
0138061 Sep 1984 EP
0138061 Apr 1985 EP
0218859 Apr 1987 EP
0262938 Apr 1988 EP
0293259 Nov 1988 EP
0299572 Jan 1989 EP
0313975 May 1989 EP
0314908 May 1989 EP
0327408 Aug 1989 EP
0389271 Sep 1990 EP
0411675 Feb 1991 EP
0559349 Sep 1993 EP
0559349 Sep 1993 EP
0570660 Nov 1993 EP
0863453 Sep 1998 EP
1229496 Aug 2002 EP
1245023 Oct 2002 EP
2 109 295 Oct 2009 EP
2293667 Apr 1996 GB
06 019965 Jan 1994 JP
7-199379 Aug 1995 JP
2000-207167 Jul 2000 JP
2001 125896 May 2001 JP
2002 024212 Jan 2002 JP
2002-169588 Jun 2002 JP
2002-344880 Nov 2002 JP
2003 517158 May 2003 JP
2004-152063 May 2004 JP
2005-070645 Mar 2005 JP
2005-189454 Jul 2005 JP
2006-023860 Jan 2006 JP
2007-206317 Aug 2007 JP
2009 036999 Feb 2009 JP
2013-511214 Mar 2013 JP
10-2007-0057496 Jun 2007 KR
10-0776800 Nov 2007 KR
10-2008-001227 Feb 2008 KR
10-0810500 Mar 2008 KR
10 2008 109322 Dec 2008 KR
10 2009 086805 Aug 2009 KR
10-0920267 Oct 2009 KR
10-2010-0032792 Apr 2010 KR
10-2010-0119519 Nov 2010 KR
10 2011 0113414 Oct 2011 KR
WO 9502221 Jan 1995 WO
WO 9726612 Jul 1997 WO
WO 9841956 Sep 1998 WO
WO 9901834 Jan 1999 WO
WO 9908238 Feb 1999 WO
WO 9956227 Nov 1999 WO
WO 200060435 Oct 2000 WO
WO 200060435 Oct 2000 WO
WO 02073603 Sep 2002 WO
WO 2006129967 Dec 2006 WO
WO 2008085742 Jul 2008 WO
WO 2008109835 Sep 2008 WO
2010075623 Jul 2010 WO
2011060106 May 2011 WO
WO 2011088053 Jul 2011 WO
Non-Patent Literature Citations (424)
Entry
Acero, A., et al., “Environmental Robustness in Automatic Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Acero, A., et al., “Robust Speech Recognition by Normalization of the Acoustic Space,” International Conference on Acoustics, Speech, and Signal Processing, 1991, 4 pages.
Ahlbom, G., et al., “Modeling Spectral Speech Transitions Using Temporal Decomposition Techniques,” IEEE International Conference of Acoustics, Speech, and Signal Processing (ICASSP'87), Apr. 1987, vol. 12, 4 pages.
Aikawa, K., “Speech Recognition Using Time-Warping Neural Networks,” Proceedings of the 1991 IEEE Workshop on Neural Networks for Signal Processing, Sep. 30 to Oct. 1, 1991, 10 pages.
Anastasakos, A., et al., “Duration Modeling in Large Vocabulary Speech Recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Anderson, R. H., “Syntax-Directed Recognition of Hand-Printed Two-Dimensional Mathematics,” In Proceedings of Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Machinery Inc. Symposium, © 1967, 12 pages.
Ansari, R., et al., “Pitch Modification of Speech using a Low-Sensitivity Inverse Filter Approach,” IEEE Signal Processing Letters, vol. 5, No. 3, Mar. 1998, 3 pages.
Anthony, N. J., et al., “Supervised Adaption for Signature Verification System,” Jun. 1, 1978, IBM Technical Disclosure, 3 pages.
Apple Computer, “Guide Maker User's Guide,” © Apple Computer, Inc., Apr. 27, 1994, 8 pages.
Apple Computer, “Introduction to Apple Guide,” © Apple Computer, Inc., Apr. 28, 1994, 20 pages.
Asanović, K., et al., “Experimental Determination of Precision Requirements for Back-Propagation Training of Artificial Neural Networks,” In Proceedings of the 2nd International Conference of Microelectronics for Neural Networks, 1991, www.ICSI.Berkeley.EDU, 7 pages.
Atal, B. S., “Efficient Coding of LPC Parameters by Temporal Decomposition,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'83), Apr. 1983, 4 pages.
Bahl, L. R., et al., “Acoustic Markov Models Used in the Tangora Speech Recognition System,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 4 pages.
Bahl, L. R., et al., “A Maximum Likelihood Approach to Continuous Speech Recognition,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. PAMI-5, No. 2, Mar. 1983, 13 pages.
Bahl, L. R., et al., “A Tree-Based Statistical Language Model for Natural Language Speech Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, Issue 7, Jul. 1989, 8 pages.
Bahl, L. R., et al., “Large Vocabulary Natural Language Continuous Speech Recognition,” In Proceedings of 1989 International Conference on Acoustics, Speech, and Signal Processing, May 23-26, 1989, vol. 1, 6 pages.
Bahl, L. R., et al, “Multonic Markov Word Models for Large Vocabulary Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 1, No. 3, Jul. 1993, 11 pages.
Bahl, L. R., et al., “Speech Recognition with Continuous-Parameter Hidden Markov Models,” In Proceeding of International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88), Apr. 11-14, 1988, vol. 1, 8 pages.
Banbrook, M., “Nonlinear Analysis of Speech from a Synthesis Perspective,” A thesis submitted for the degree of Doctor of Philosophy, The University of Edinburgh, Oct. 15, 1996, 35 pages.
Belaid, A., et al., “A Syntactic Approach for Handwritten Mathematical Formula Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, No. 1, Jan. 1984, 7 pages.
Bellegarda, E. J., et al., “On-Line Handwriting Recognition Using Statistical Mixtures,” Advances in Handwriting and Drawings: A Multidisciplinary Approach, Europia, 6th International IGS Conference on Handwriting and Drawing, Paris—France, Jul. 1993, 11 pages.
Bellegarda, J. R., “A Latent Semantic Analysis Framework for Large-Span Language Modeling,” 5th European Conference on Speech, Communication and Technology, (EUROSPEECH'97), Sep. 22-25, 1997, 4 pages.
Bellegarda, J. R., “A Multispan Language Modeling Framework for Large Vocabulary Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 6, No. 5, Sep. 1998, 12 pages.
Bellegarda, J. R., et al., “A Novel Word Clustering Algorithm Based on Latent Semantic Analysis,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, 4 pages.
Bellegarda, J. R., et al., “Experiments Using Data Augmentation for Speaker Adaptation,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'95), May 9-12, 1995, 4 pages.
Bellegarda, J. R., “Exploiting Both Local and Global Constraints for Multi-Span Statistical Language Modeling,” Proceeding of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'98), vol. 2, May 12-15, 1998, 5 pages.
Bellegarda, J. R., “Exploiting Latent Semantic Information in Statistical Language Modeling,” In Proceedings of the IEEE, Aug. 2000, vol. 88, No. 8, 18 pages.
Bellegarda, J. R., “Interaction-Driven Speech Input—A Data-Driven Approach to the Capture of Both Local and Global Language Constraints,” 1992, 7 pages, available at http://old.sigchi.org/bulletin/1998.2/bellegarda.html.
Bellegarda, J. R., “Large Vocabulary Speech Recognition with Multispan Statistical Language Models,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 1, Jan. 2000, 9 pages.
Bellegarda, J. R., et al., “Performance of the IBM Large Vocabulary Continuous Speech Recognition System on the ARPA Wall Street Journal Task,” Signal Processing VII: Theories and Applications, © 1994 European Association for Signal Processing, 4 pages.
Bellegarda, J. R., et al., “The Metamorphic Algorithm: A Speaker Mapping Approach to Data Augmentation,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 8 pages.
Black, A. W., et al., “Automatically Clustering Similar Units for Unit Selection in Speech Synthesis,” In Proceedings of Eurospeech 1997, vol. 2, 4 pages.
Blair, D. C., et al., “An Evaluation of Retrieval Effectiveness for a Full-Text Document-Retrieval System,” Communications of the ACM, vol. 28, No. 3, Mar. 1985, 11 pages.
Briner, L. L., “Identifying Keywords in Text Data Processing,” In Zelkowitz, Marvin V., ED, Directions and Challenges,15th Annual Technical Symposium, Jun. 17, 1976, Gaithersbury, Maryland, 7 pages.
Bulyko, I., et al., “Joint Prosody Prediction and Unit Selection for Concatenative Speech Synthesis,” Electrical Engineering Department, University of Washington, Seattle, 2001, 4 pages.
Bussey, H. E., et al., “Service Architecture, Prototype Description, and Network Implications of a Personalized Information Grazing Service,” INFOCOM'90, Ninth Annual Joint Conference of the IEEE Computer and Communication Societies, Jun. 3-7, 1990, http://slrohall.com/publications/, 8 pages.
Buzo, A., et al., “Speech Coding Based Upon Vector Quantization,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. Assp-28, No. 5, Oct. 1980, 13 pages.
Caminero-Gil, J., et al., “Data-Driven Discourse Modeling for Semantic Interpretation,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, May 7-10, 1996, 6 pages.
Cawley, G. C., “The Application of Neural Networks to Phonetic Modelling,” PhD Thesis, University of Essex, Mar. 1996, 13 pages.
Chang, S., et al., “A Segment-based Speech Recognition System for Isolated Mandarin Syllables,” Proceedings TENCON '93, IEEE Region 10 conference on Computer, Communication, Control and Power Engineering, Oct. 19-21, 1993, vol. 3, 6 pages.
Conklin, J., “Hypertext: An Introduction and Survey,” Computer Magazine, Sep. 1987, 25 pages.
Connolly, F. T., et al., “Fast Algorithms for Complex Matrix Multiplication Using Surrogates,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Jun. 1989, vol. 37, No. 6, 13 pages.
Deerwester, S., et al., “Indexing by Latent Semantic Analysis,” Journal of the American Society for Information Science, vol. 41, No. 6, Sep. 1990, 19 pages.
Deller, Jr., J. R., et al., “Discrete-Time Processing of Speech Signals,” © 1987 Prentice Hall, ISBN: 0-02-328301-7, 14 pages.
Digital Equipment Corporation, “Open VMS Software Overview,” Dec. 1995, software manual, 159 pages.
Donovan, R. E., “A New Distance Measure for Costing Spectral Discontinuities in Concatenative Speech Synthesisers,” 2001, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6398, 4 pages.
Frisse, M. E., “Searching for Information in a Hypertext Medical Handbook,” Communications of the ACM, vol. 31, No. 7, Jul. 1988, 8 pages.
Goldberg, D., et al., “Using Collaborative Filtering to Weave an Information Tapestry,” Communications of the ACM, vol. 35, No. 12, Dec. 1992, 10 pages.
Gorin, A. L., et al., “On Adaptive Acquisition of Language,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), vol. 1, Apr. 3-6, 1990, 5 pages.
Gotoh, Y., et al., “Document Space Models Using Latent Semantic Analysis,” In Proceedings of Eurospeech, 1997, 4 pages.
Gray, R. M., “Vector Quantization,” IEEE ASSP Magazine, Apr. 1984, 26 pages.
Harris, F. J., “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” In Proceedings of the IEEE, vol. 66, No. 1, Jan. 1978, 34 pages.
Helm, R., et al., “Building Visual Language Parsers,” In Proceedings of CHI'91 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 8 pages.
Hermansky, H., “Perceptual Linear Predictive (PLP) Analysis of Speech,” Journal of the Acoustical Society of America, vol. 87, No. 4, Apr. 1990, 15 pages.
Hermansky, H., “Recognition of Speech in Additive and Convolutional Noise Based on Rasta Spectral Processing,” In proceedings of IEEE International Conference on Acoustics, speech, and Signal Processing (ICASSP'93), Apr. 27-30, 1993, 4 pages.
Hoehfeld M., et al., “Learning with Limited Numerical Precision Using the Cascade-Correlation Algorithm,” IEEE Transactions on Neural Networks, vol. 3, No. 4, Jul. 1992, 18 pages.
Holmes, J. N., “Speech Synthesis and Recognition—Stochastic Models for Word Recognition,” Speech Synthesis and Recognition, Published by Chapman & Hall, London, ISBN 0 412 53430 4, © 1998 J. N. Holmes, 7 pages.
Hon, H.W., et al., “CMU Robust Vocabulary-Independent Speech Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-91), Apr. 14-17, 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Editor,” vol. 29, No. 10, Mar. 10, 1987, 3 pages.
IBM Technical Disclosure Bulletin, “Integrated Audio-Graphics User Interface,” vol. 33, No. 11, Apr. 1991, 4 pages.
IBM Technical Disclosure Bulletin, “Speech Recognition with Hidden Markov Models of Speech Waveforms,” vol. 34, No. 1, Jun. 1991, 10 pages.
Iowegian International, “FIR Filter Properties,” dspGuro, Digital Signal Processing Central, http://www.dspguru.com/dsp/taqs/fir/properties, downloaded on Jul. 28, 2010, 6 pages.
Jacobs, P. S., et al., “Scisor: Extracting Information from On-Line News,” Communications of the ACM, vol. 33, No. 11, Nov. 1990, 10 pages.
Jelinek, F., “Self-Organized Language Modeling for Speech Recognition,” Readings in Speech Recognition, edited by Alex Waibel and Kai-Fu Lee, May 15, 1990, © 1990 Morgan Kaufmann Publishers, Inc., ISBN: 1-55860-124-4, 63 pages.
Jennings, A., et al., “A Personal News Service Based on a User Model Neural Network,” IEICE Transactions on Information and Systems, vol. E75-D, No. 2, Mar. 1992, Tokyo, JP, 12 pages.
Ji, T., et al., “A Method for Chinese Syllables Recognition based upon Sub-syllable Hidden Markov Model,” 1994 International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 4 pages.
Jones, J., “Speech Recognition for Cyclone,” Apple Computer, Inc., E.R.S., Revision 2.9, Sep. 10, 1992, 93 pages.
Katz, S. M., “Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, No. 3, Mar. 1987, 3 pages.
Kitano, H., “PhiDM-Dialog, An Experimental Speech-to-Speech Dialog Translation System,” Jun. 1991 Computer, vol. 24, No. 6, 13 pages.
Klabbers, E., et al., “Reducing Audible Spectral Discontinuities,” IEEE Transactions on Speech and Audio Processing, vol. 9, No. 1, Jan. 2001, 13 pages.
Klatt, D. H., “Linguistic Uses of Segmental Duration in English: Acoustic and Perpetual Evidence,” Journal of the Acoustical Society of America, vol. 59, No. 5, May 1976, 16 pages.
Kominek, J., et al., “Impact of Durational Outlier Removal from Unit Selection Catalogs,” 5th ISCA Speech Synthesis Workshop, Jun. 14-16, 2004, 6 pages.
Kubala, F., et al., “Speaker Adaptation from a Speaker-Independent Training Corpus,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'90), Apr. 3-6, 1990, 4 pages.
Kubala, F., et al., “The Hub and Spoke Paradigm for CSR Evaluation,” Proceedings of the Spoken Language Technology Workshop, Mar. 6-8, 1994, 9 pages.
Lee, K.F., “Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System,” Apr. 18, 1988, Partial fulfillment of the requirements for the degree of Doctor of Philosophy, Computer Science Department, Carnegie Mellon University, 195 pages.
Lee, L., et al., “A Real-Time Mandarin Dictation Machine for Chinese Language with Unlimited Texts and Very Large Vocabulary,” International Conference on Acoustics, Speech and Signal Processing, vol. 1, Apr. 3-6, 1990, 5 pages.
Lee, L, et al., “Golden Mandarin(II)-An Improved Single-Chip Real-Time Mandarin Dictation Machine for Chinese Language with Very Large Vocabulary,” 0-7803-0946-4/93 © 19931EEE, 4 pages.
Lee, L, et al., “Golden Mandarin(II)—An Intelligent Mandarin Dictation Machine for Chinese Character Input with Adaptation/Learning Functions,” International Symposium on Speech, Image Processing and Neural Networks, Apr. 13-16, 1994, Hong Kong, 5 pages.
Lee, L., et al., “System Description of Golden Mandarin (I) Voice Input for Unlimited Chinese Characters,” International Conference on Computer Processing of Chinese & Oriental Languages, vol. 5, Nos. 3 & 4, Nov. 1991, 16 pages.
Lin, C.H., et al., “A New Framework for Recognition of Mandarin Syllables With Tones Using Sub-syllabic Unites,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-93), Apr. 27-30, 1993, 4 pages.
Linde, Y., et al., “An Algorithm for Vector Quantizer Design,” IEEE Transactions on Communications, vol. 28, No. 1, Jan. 1980, 12 pages.
Liu, F.H., et al., “Efficient Joint Compensation of Speech for the Effects of Additive Noise and Linear Filtering,” IEEE International Conference of Acoustics, Speech, and Signal Processing, ICASSP-92, Mar. 23-26, 1992, 4 pages.
Logan, B., “Mel Frequency Cepstral Coefficients for Music Modeling,” In International Symposium on Music Information Retrieval, 2000, 2 pages.
Lowerre, B. T., “The-HARPY Speech Recognition System,” Doctoral Dissertation, Department of Computer Science, Carnegie Mellon University, Apr. 1976, 20 pages.
Maghbouleh, A., “An Empirical Comparison of Automatic Decision Tree and Linear Regression Models for Vowel Durations,” Revised version of a paper presented at the Computational Phonology in Speech Technology workshop, 1996 annual meeting of the Association for Computational Linguistics in Santa Cruz, California, 7 pages.
Markel, J. D., et al., “Linear Prediction of Speech,” Springer-Verlag, Berlin Heidelberg New York 1976, 12 pages.
Morgan, B., “Business Objects,” (Business Objects for Windows) Business Objects Inc., DBMS Sep. 1992, vol. 5, No. 10, 3 pages.
Mountford, S. J., et al., “Talking and Listening to Computers,” The Art of Human-Computer Interface Design, Copyright © 1990 Apple Computer, Inc. Addison-Wesley Publishing Company, Inc., 17 pages.
Murty, K. S. R., et al., “Combining Evidence from Residual Phase and MFCC Features for Speaker Recognition,” IEEE Signal Processing Letters, vol. 13, No. 1, Jan. 2006, 4 pages.
Murveit H. et al., “Integrating Natural Language Constraints into HMM-based Speech Recognition,” 1990 International Conference on Acoustics, Speech, and Signal Processing, Apr. 3-6, 1990, 5 pages.
Nakagawa, S., et al., “Speaker Recognition by Combining MFCC and Phase Information,” IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Mar. 14-19, 2010, 4 pages.
Niesler, T. R., et al., “A Variable-Length Category-Based N-Gram Language Model,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), vol. 1, May 7-10, 1996, 6 pages.
Papadimitriou, C. H., et al., “Latent Semantic Indexing: A Probabilistic Analysis,” Nov. 14, 1997, http://citeseerx.ist.psu.edu/messages/downloadsexceeded.html, 21 pages.
Parsons, T. W., “Voice and Speech Processing,” Linguistics and Technical Fundamentals, Articulatory Phonetics and Phonemics, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 5 pages.
Parsons, T. W., “Voice and Speech Processing,” Pitch and Formant Estimation, © 1987 McGraw-Hill, Inc., ISBN: 0-07-0485541-0, 15 pages.
Picone, J., “Continuous Speech Recognition Using Hidden Markov Models,” IEEE ASSP Magazine, vol. 7, No. 3, Jul. 1990, 16 pages.
Rabiner, L. R., et al., “Fundamental of Speech Recognition,” © 1993 AT&T, Published by Prentice-Hall, Inc., ISBN: 0-13-285826-6, 17 pages.
Rabiner, L. R., et al., “Note on the Properties of a Vector Quantizer for LPC Coefficients,” The Bell System Technical Journal, vol. 62, No. 8, Oct. 1983, 9 pages.
Ratcliffe, M., “ClearAccess 2.0 allows SQL searches off-line,” (Structured Query Language), ClearAcess Corp., MacWeek Nov. 16, 1992, vol. 6, No. 41, 2 pages.
Remde, J. R., et al., “SuperBook: An Automatic Tool for Information Exploration—Hypertext?,” In Proceedings of Hypertext'87 papers, Nov. 13-15, 1987, 14 pages.
Reynolds, C. F., “On-Line Reviews: A New Application of the HICOM Conferencing System,” IEE Colloquium on Human Factors in Electronic Mail and Conferencing Systems, Feb. 3, 1989, 4 pages.
Rigoll, G., “Speaker Adaptation for Large Vocabulary Speech Recognition Systems Using Speaker Markov Models,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP'89), May 23-26, 1989, 4 pages.
Riley, M. D., “Tree-Based Modelling of Segmental Durations,” Talking Machines Theories, Models, and Designs, 1992 © Elsevier Science Publishers B.V., North-Holland, ISBN: 08-444-89115.3, 15 pages.
Rivoira, S., et al., “Syntax and Semantics in a Word-Sequence Recognition System,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'79), Apr. 1979, 5 pages.
Rosenfeld, R., “A Maximum Entropy Approach to Adaptive Statistical Language Modelling,” Computer Speech and Language, vol. 10, No. 3, Jul. 1996, 25 pages.
Roszkiewicz, A., “Extending your Apple,” Back Talk—Lip Service, A+ Magazine, The Independent Guide for Apple Computing, vol. 2, No. 2, Feb. 1984, 5 pages.
Sakoe, H., et al., “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,” IEEE Transactins on Acoustics, Speech, and Signal Processing, Feb. 1978, vol. ASSP-26 No. 1, 8 pages.
Salton, G., et al., “On the Application of Syntactic Methodologies in Automatic Text Analysis,” Information Processing and Management, vol. 26, No. 1, Great Britain 1990, 22 pages.
Savoy, J., “Searching Information in Hypertext Systems Using Multiple Sources of Evidence,” International Journal of Man-Machine Studies, vol. 38, No. 6, Jun. 1993, 15 pages.
Scagliola, C., “Language Models and Search Algorithms for Real-Time Speech Recognition,” International Journal of Man-Machine Studies, vol. 22, No. 5, 1985, 25 pages.
Schmandt, C., et al., “Augmenting a Window System with Speech Input,” IEEE Computer Society, Computer Aug. 1990, vol. 23, No. 8, 8 pages.
Schütze, H., “Dimensions of Meaning,” Proceedings of Supercomputing'92 Conference, Nov. 16-20, 1992, 10 pages.
Sheth B., et al., “Evolving Agents for Personalized Information Filtering,” In Proceedings of the.Ninth Conference on Artificial Intelligence for Applications, Mar. 1-5, 1993, 9 pages.
Shikano, K., et al., “Speaker Adaptation Through Vector Quantization,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'86), vol. 11, Apr. 1986, 4 pages.
Sigurdsson, S., et al., “Mel Frequency Cepstral Coefficients: An Evaluation of Robustness of MP3 Encoded Music,” In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), 2006, 4 pages.
Silverman, K. E. A., et al., “Using a Sigmoid Transformation for Improved Modeling of Phoneme Duration,” Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 15-19, 1999, 5 pages.
Tenenbaum, A.M., et al., “Data Structure Using Pascal,” 1981 Prentice-Hall, Inc., 34 pages.
Tsai, W.H., et al., “Attributed Grammar—A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-10, No. 12, Dec. 1980, 13 pages.
Udell, J., “Computer Telephony,” Byte, vol. 19, No. 7, Jul. 1, 1994, 9 pages.
Van Santen, J. P. H., “Contextual Effects on Vowel Duration,” Journal Speech Communication, vol. 11, No. 6, Dec. 1992, 34 pages.
Vepa, J., et al., “New Objective Distance Measures for Spectral Discontinuities in Concatenative Speech Synthesis,” In Proceedings of the IEEE 2002 Workshop on Speech Synthesis, 4 pages.
Verschelde, J., “MATLAB Lecture 8. Special Matrices in MATLAB,” Nov. 23, 2005, UIC Dept. of Math., Stat.. & C.S., MCS 320, Introduction to Symbolic Computation, 4 pages.
Vingron, M. “Near-Optimal Sequence Alignment,” Deutsches Krebsforschungszentrum (DKFZ), Abteilung Theoretische Bioinformatik, Heidelberg, Germany, Jun. 1996, 20 pages.
Werner, S., et al., “Prosodic Aspects of Speech,” Université de Lausanne, Switzerland, 1994, Fundamentals of Speech Synthesis and Speech Recognition: Basic Concepts, State of the Art, and Future Challenges, 18 pages.
Wikipedia, “Mel Scale,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Mel_scale, 2 pages.
Wikipedia, “Minimum Phase,” Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Minimum_phase, 8 pages.
Wolff, M., “Poststructuralism and the ARTFUL Database: Some Theoretical Considerations,” Information Technology and Libraries, vol. 13, No. 1, Mar. 1994, 10 pages.
Wu, M., “Digital Speech Processing and Coding,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture—2 course presentation, University of Maryland, College Park, 8 pages.
Wu, M., “Speech Recognition, Synthesis, and H.C.I.,” ENEE408G Capstone-Multimedia Signal Processing, Spring 2003, Lecture—3 course presentation, University of Maryland, College Park, 11 pages.
Wyle, M. F., “A Wide Area Network Information Filter,” In Proceedings of First International Conference on Artificial Intelligence on Wall Street, Oct. 9-11, 1991, 6 pages.
Yankelovich, N., et al., “Intermedia: The Concept and the Construction of a Seamless Information Environment,” Computer Magazine, Jan. 1988, © 1988 IEEE, 16 pages.
Yoon, K., et al., “Letter-to-Sound Rules for Korean,” Department of Linguistics, The Ohio State University, 2002, 4 pages.
Zhao, Y., “An Acoustic-Phonetic-Based Speaker Adaptation Technique for Improving Speaker-Independent Continuous Speech Recognition,” IEEE Transactions on Speech and Audio Processing, vol. 2, No. 3, Jul. 1994, 15 pages.
Zovato, E., et al., “Towards Emotional Speech Synthesis: A Rule Based Approach,” 2 pages.
International Search Report dated Nov. 9, 1994, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 8 pages (Robert Don Strong).
International Preliminary Examination Report dated Mar. 1, 1995, received in International Application No. PCT/US1993/12666, which corresponds to U.S. Appl. No. 07/999,302, 5 pages (Robert Don Strong).
International Preliminary Examination Report dated Apr. 10, 1995, received in International Application No. PCT/US1993/12637, which corresponds to U.S. Appl. No. 07/999,354, 7 pages (Alejandro Acero).
International Search Report dated Feb. 8, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 7 pages (Yen-Lu Chow).
International Preliminary Examination Report dated Feb. 28, 1996, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
Written Opinion dated Aug. 21, 1995, received in International Application No. PCT/US1994/11011, which corresponds to U.S. Appl. No. 08/129,679, 4 pages (Yen-Lu Chow).
International Search Report dated Nov. 8, 1995, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 6 pages. (Peter V. De Souza).
International Preliminary Examination Report dated Oct. 9, 1996, received in International Application No. PCT/US1995/08369, which corresponds to U.S. Appl. No. 08/271,639, 4 pages (Peter V. De Souza).
Office Action dated Jun. 24, 2013, received in U.S. Appl. No. 13/267,738, 41 pages (Cao).
Martin, D., et al., “The Open Agent Architecture: A Framework for building distributed software systems,” Jan.-Mar. 1999, Applied Artificial Intelligence: An International Journal, vol. 13, No. 1-2, http://adam.cheyer.com/papers/oaa.pdf, 38 pages.
Alfred App, 2011, http://www.alfredapp.com/, 5 pages.
Ambite, JL., et al., “Design and Implementation of the CALO Query Manager,” Copyright © 2006, American Association for Artificial Intelligence, (www.aaai.org), 8 pages.
Ambite, JL., et al., “Integration of Heterogeneous Knowledge Sources in the CALO Query Manager,” 2005, The 4th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE), Agia Napa, Cyprus, ttp://wvvw.isi.edu/people/ambite/publications/integration_heterogeneous_knowledge_sources_calo_query_manager, 18 pages.
Belvin, R. et al., “Development of the HRL Route Navigation Dialogue System,” 2001, In Proceedings of the First International Conference on Human Language Technology Research, Paper, Copyright © 2001 HRL Laboratories, LLC, http://citeseerx.ist.psu.edu/viewdoc/surnmary?doi=10.1.1.10.6538, 5 pages.
Berry, P. M., et al. “PTIME: Personalized Assistance for Calendaring,” ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Publication date: Jul. 2011, 40:1-22, 22 pages.
Bussler, C., et al., “Web Service Execution Environment (WSMX),” Jun. 3, 2005, W3C Member Submission, http://www.w3.org/Submission/WSMX, 29 pages.
Butcher, M., “EVI arrives in town to go toe-to-toe with Siri,” Jan. 23, 2012, http://techcrunch.com/2012/01/23/evi-arrives-in-town-to-go-toe-to-toe-with-siri/, 2 pages.
Chen, Y., “Multimedia Siri Finds and Plays Whatever You Ask for,” Feb. 9, 2012, http://www.psfk.com/2012/02/multimedia-siri.html, 9 pages.
Cheyer, A., “About Adam Cheyer,” Sep. 17, 2012, http://www.adam.cheyer.com/about.html, 2 pages.
Cheyer, A., “A Perspective on AI & Agent Technologies for SCM,” VerticalNet, 2001 presentation, 22 pages.
Cheyer, A. et al., “Spoken Language and Multimodal Applications for Electronic Realties,” © Springer-Verlag London Ltd, Virtual Reality 1999, 3:1-15, 15 pages.
Cutkosky, M. R. et al., “PACT: An Experiment in Integrating Concurrent Engineering Systems,” Journal, Computer, vol. 26 Issue 1, Jan. 1993, IEEE Computer Society Press Los Alamitos, CA, USA, http://dl.acm.org/citation.cfm?id=165320, 14 pages.
Domingue, J., et al., “Web Service Modeling Ontology (WSMO)—An Ontology for Semantic Web Services,” Jun. 9-10, 2005, position paper at the W3C Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria, 6 pages.
Elio, R. et al., “On Abstract Task Models and Conversation Policies,” http://webdocs.cs.ualberta.ca/˜ree/publications/papers2/ATS.AA99.pdf, May 1999, 10 pages.
Ericsson, S. et al., “Software illustrating a unified approach to multimodality and multilinguality in the in-home domain,” Dec. 22, 2006, Talk and Look: Tools for Ambient Linguistic Knowledge, http://www.talk-project.eurice.eu/fileadmin/talk/publications_public/deliverables_public/D1_6.pdf, 127 pages.
Evi, “Meet Evi: the one mobile app that provides solutions for your everyday problems,” Feb. 8, 2012, http://www.evi.com/, 3 pages.
Feigenbaum, E., et al., “Computer-assisted Semantic Annotation of Scientific Life Works,” 2007, http://tomgruber.org/writing/stanford-cs300.pdf, 22 pages.
Gannes, L., “Alfred App Gives Personalized Restaurant Recommendations,” allthingsd.com, Jul. 18, 2011, http://allthingsd.com/20110718/alfred-app-gives-personalized-restaurant-recommendations/, 3 pages.
Gautier, P. O., et al. “Generating Explanations of Device Behavior Using Compositional Modeling and Causal Ordering,” 1993, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8394, 9 pages.
Gervasio, M. T., et al., Active Preference Learning for Personalized Calendar Scheduling Assistancae, Copyright © 2005, http://www.ai.sri.com/˜gervasio/pubs/gervasio-iui05.pdf, 8 pages.
Glass, A., “Explaining Preference Learning,” 2006, http://cs229.stanford.edu/proj2006/Glass-ExplainingPreferenceLearning.pdf, 5 pages.
Glass, J., et al., “Multilingual Spoken-Language Understanding in the MIT Voyager System,” Aug. 1995, http://groups.csail.mit.edu/sls/publications/1995/speechcomm95-voyager.pdf, 29 pages.
Goddeau, D., et al., “A Form-Based Dialogue Manager for Spoken Language Applications,” Oct. 1996, http://phasedance.com/pdf/icslp96.pdf, 4 pages.
Goddeau, D., et al., “Galaxy: A Human-Language Interface to On-Line Travel Information,” 1994 International Conference on Spoken Language Processing, Sep. 18-22, 1994, Pacific Convention Plaza Yokohama, Japan, 6 pages.
Gruber, T. R., et al., “An Ontology for Engineering Mathematics,” In Jon Doyle, Piero Torasso, & Erik Sandewall, Eds., Fourth International Conference on Principles of Knowledge Representation and Reasoning, Gustav Stresemann Institut, Bonn, Germany, Morgan Kaufmann, 1994, http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html, 22 pages.
Gruber, T. R., “A Translation Approach to Portable Ontology Specifications,” Knowledge Systems Laboratory, Stanford University, Sep. 1992, Technical Report KSL 92-71, Revised Apr. 1993, 27 pages.
Gruber, T. R., “Automated Knowledge Acquisition for Strategic Knowledge,” Knowledge Systems Laboratory, Machine Learning, 4, 293-336 (1989), 44 pages.
Gruber, T. R., “(Avoiding) the Travesty of the Commons,” Presentation at NPUC 2006, New Paradigms for User Computing, IBM Almaden Research Center, Jul. 24, 2006. http://tomgruber.org/writing/avoiding-travestry.htm, 52 pages.
Gruber, T. R., “Big Think Small Screen: How semantic computing in the cloud will revolutionize the consumer experience on the phone,” Keynote presentation at Web 3.0 conference, Jan. 27, 2010, http://tomgruber.org/writing/web30jan2010.htm, 41 pages.
Gruber, T. R., “Collaborating around Shared Content on the WWW,” W3C Workshop on WWW and Collaboration, Cambridge, MA, Sep. 11, 1995, http://www.w3.org/Collaboration/Workshop/Proceedings/P9.html, 1 page.
Gruber, T. R., “Collective Knowledge Systems: Where the Social Web meets the Semantic Web,” Web Semantics: Science, Services and Agents on the World Wide Web (2007), doi:10.1016/j.websem.2007.11.011, keynote presentation given at the 5th International Semantic Web Conference, Nov. 7, 2006, 19 pages.
Gruber, T. R., “Where the Social Web meets the Semantic Web,” Presentation at the 5th International Semantic Web Conference, Nov. 7, 2006, 38 pages.
Gruber, T. R., “Despite our Best Efforts, Ontologies are not the Problem,” AAAI Spring Symposium, Mar. 2008, http://tomgruber.org/writing/aaai-ss08.htm, 40 pages.
Gruber, T. R., “Enterprise Collaboration Management with Intraspect,” Intraspect Software, Inc., Instraspect Technical White Paper Jul. 2001, 24 pages.
Gruber, T. R., “Every ontology is a treaty—a social agreement—among people with some common motive in sharing,” Interview by Dr. Miltiadis D. Lytras, Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web and Information Systems, vol. 1, Issue 3, 2004, http://www.sigsemis.org 1, 5 pages.
Gruber, T. R., et al., “Generative Design Rationale: Beyond the Record and Replay Paradigm,” Knowledge Systems Laboratory, Stanford University, Dec. 1991, Technical Report KSL 92-59, Updated Feb. 1993, 24 pages.
Gruber, T. R., “Helping Organizations Collaborate, Communicate, and Learn,” Presentation to NASA Ames Research, Mountain View, CA, Mar. 2003, http://tomgruber.org/writing/organizational-intelligence-talk.htm, 30 pages.
Gruber, T. R., “Intelligence at the Interface: Semantic Technology and the Consumer Internet Experience,” Presentation at Semantic Technologies conference (SemTech08), May 20, 2008, http://tomgruber.org/writing.htm, 40 pages.
Gruber, T. R., Interactive Acquisition of Justifications: Learning “Why” by Being Told “What” Knowledge Systems Laboratory, Stanford University, Oct. 1990, Technical Report KSL 91-17, Revised Feb. 1991, 24 pages.
Gruber, T. R., “It Is What It Does: The Pragmatics of Ontology for Knowledge Sharing,” (c) 2000, 2003, http://www.cidoc-crm.org/docs/symposium_presentations/gruber_cidoc-ontology-2003.pdf, 21 pages.
Gruber, T. R., et al., “Machine-generated Explanations of Engineering Models: A Compositional Modeling Approach,” (1993) In Proc. International Joint Conference on Artificial Intelligence, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.930, 7 pages.
Gruber, T. R., “2021: Mass Collaboration and the Really New Economy,” TNTY Futures, the newsletter of the Next Twenty Years series, vol. 1, Issue 6, Aug. 2001, http://www.tnty.com/newsletter/futures/archive/v01-05business.html, 5 pages.
Gruber, T. R., et al.,“NIKE: A National Infrastructure for Knowledge Exchange,” Oct. 1994, http://www.eit.com/papers/nike/nike.html and nike.ps, 10 pages.
Gruber, T. R., “Ontologies, Web 2.0 and Beyond,” Apr. 24, 2007, Ontology Summit 2007, http://tomgruber.org/writing/ontolog-social-web-keynote.pdf, 17 pages.
Gruber, T. R., “Ontology of Folksonomy: A Mash-up of Apples and Oranges,” Originally published to the web in 2005, Int'l Journal on Semantic Web & Information Systems, 3(2), 2007, 7 pages.
Gruber, T. R., “Siri, a Virtual Personal Assistant—Bringing Intelligence to the Interface,” Jun. 16, 2009, Keynote presentation at Semantic Technologies conference, Jun. 2009. http://tomgruber.org/writing/semtech09.htm, 22 pages.
Gruber, T. R., “TagOntology,” Presentation to Tag Camp, www.tagcamp.org, Oct. 29, 2005, 20 pages.
Gruber, T. R., et al., “Toward a Knowledge Medium for Collaborative Product Development,” In Artificial Intelligence in Design 1992, from Proceedings of the Second International Conference on Artificial Intelligence in Design, Pittsburgh, USA, Jun. 22-25, 1992, 19 pages.
Gruber, T. R., “Toward Principles for the Design of Ontologies Used for Knowledge Sharing,” Iin International Journal Human-Computer Studies 43, p. 907-928, substantial revision of paper presented at the International Workshop on Formal Ontology, Mar. 1993, Padova, Italy, available as Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford University, further revised Aug. 23, 1993, 23 pages.
Guzzoni, D., et al., “Active, A Platform for Building Intelligent Operating Rooms,” Surgetica 2007 Computer-Aided Medical Interventions: tools and applications, pp. 191-198, Paris, 2007, Sauramps Médical, http://Isro.epfl.ch/page-68384-en.html, 8 pages.
Guzzoni, D., et al., “Active, A Tool for Building Intelligent User Interfaces,” ASC 2007, Palma de Mallorca, http://Isro.epfl.ch/page-34241.html, 6 pages.
Guzzoni, D., et al., “A Unified Platform for Building Intelligent Web Interaction Assistants,” Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Computer Society, 4 pages.
Guzzoni, D., et al., “Modeling Human-Agent Interaction with Active Ontoiogies,” 2007, AAAI Spring Symposium, Interaction Challenges for Intelligent Assistants, Stanford University, Palo Alto, California, 8 pages.
Hardawar, D., “Driving app Waze builds its own Siri for hands-free voice control,” Feb. 9, 2012, http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/, 4 pages.
Intraspect Software, “The Intraspect Knowledge Management Solution: Technical Overview,” http://tomgruber.org/writing/intraspect-whitepaper-1998.pdf, 18 pages.
Julia, L., et al., Un éditeur interactif de tableaux dessinés à main levée (An Interactive Editor for Hand-Sketched Tables), Traitement du Signal 1995, vol. 12, No. 6, 8 pages. No English Translation Available.
Karp, P. D., “A Generic Knowledge-Base Access Protocol,” May 12, 1994, http://lecture.cs.buu.ac.th/˜f50353/Document/gfp.pdf, 66 pages.
Lemon, O., et al., “Multithreaded Context for Robust Conversational Interfaces: Context-Sensitive Speech Recognition and Interpretation of Corrective Fragments,” Sep. 2004, ACM Transactions on Computer-Human Interaction, vol. 11, No. 3, 27 pages.
Leong, L., et al., “CASIS: A Context-Aware Speech Interface System,” IUI'05, Jan. 9-12, 2005, Proceedings of the 10th international conference on Intelligent user interfaces, San Diego, California, USA, 8 pages.
Lieberman, H., et al., “Out of context: Computer systems that adapt to, and learn from, context,” 2000, IBM Systems Journal, vol. 39, Nos. 3/4, 2000, 16 pages.
Lin, B., et al., “A Distributed Architecture for Cooperative Spoken Dialogue Agents with Coherent Dialogue State and History,” 1999, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.272, 4 pages.
McGuire, J., et al., “SHADE: Technology for Knowledge-Based Collaborative Engineering,” 1993, Journal of Concurrent Engineering: Applications and Research (CERA), 18 pages.
Meng, H., et al., “Wheels: A Conversational System in the Automobile Classified Domain,” Oct. 1996, httphttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3022, 4 pages.
Milward, D., et al., “D2.2: Dynamic Multimodal Interface Reconfiguration,” Talk and Look: Tools for Ambient Linguistic Knowledge, Aug. 8, 2006, http://www.ihmc.us/users/nblaylock/Pubs/Files/talk_d2.2.pdf, 69 pages.
Mitra, P., et al., “A Graph-Oriented Model for Articulation of Ontology Interdependencies,” 2000, http://ilpubs.stanford.edu:8090/442/1/2000-20.pdf, 15 pages.
Moran, D. B., et al., “Multimodal User Interfaces in the Open Agent Architecture,” Proc. of the 1997 International Conference on Intelligent User Interfaces (IUI97), 8 pages.
Mozer, M., “An Intelligent Environment Must be Adaptive,” Mar./Apr. 1999, IEEE Intelligent Systems, 3 pages.
Mühlhäuser, M., “Context Aware Voice User Interfaces for Workflow Support,” Darmstadt 2007, http://tuprints.ulb.tu-darmstadt.de/876/1/PhD.pdf, 254 pages.
Naone, E., “TR10: Intelligent Software Assistant,” Mar.-Apr. 2009, Technology Review, http://www.technologyreview.com/printer_friendly_article.aspx?id=22117, 2 pages.
Neches, R., “Enabling Technology for Knowledge Sharing,” Fall 1991, AI Magazine, pp. 37-56, (21 pages).
Nöth, E., et al., “Verbmobil: The Use of Prosody in the Linguistic Components of a Speech Understanding System,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 5, Sep. 2000, 14 pages.
Phoenix Solutions, Inc. v. West Interactive Corp., Document 40, Declaration of Christopher Schmandt Regarding the MIT Galaxy System dated Jul. 2, 2010, 162 pages.
Rice, J., et al., “Monthly Program: Nov. 14, 1995,” The San Francisco Bay Area Chapter of ACM SIGCHI, http://www.baychi.org/calendar/19951114/, 2 pages.
Rice, J., et al., “Using the Web Instead of a Window System,” Knowledge Systems Laboratory, Stanford University, (http://tomgruber.org/writing/ks1-95-69.pdf, Sep. 1995.) CHI '96 Proceedings: Conference on Human Factors in Computing Systems, Apr. 13-18, 1996, Vancouver, BC, Canada, 14 pages.
Rivlin, Z., et al., “Maestro: Conductor of Multimedia Analysis Technologies,” 1999 SRI International, Communications of the Association for Computing Machinery (CACM), 7 pages.
Roddy, D., et al., “Communication and Collaboration in a Landscape of B2B eMarketplaces,” VerticalNet Solutions, white paper, Jun. 15, 2000, 23 pages.
Seneff, S., et al., “A New Restaurant Guide Conversational System: Issues in Rapid Prototyping for Specialized Domains,” Oct. 1996, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16 . . . rep . . . , 4 pages.
Sheth, A., et al., “Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships,” Oct. 13, 2002, Enhancing the Power of the Internet: Studies in Fuzziness and Soft Computing, SpringerVerlag, 38 pages.
Simonite, T., “One Easy Way to Make Siri Smarter,” Oct. 18, 2011, Technology Review, http:// www.technologyreview.com/printer_friendly_article.aspx?id=38915, 2 pages.
Stent, A., et al., “The CommandTalk Spoken Dialogue System,” 1999, http://acl.Idc.upenn.edu/P/P99/P99-1024.pdf, 8 pages.
Tofel, K., et al., “SpeakTolt: A personal assistant for older iPhones, iPads,” Feb. 9, 2012, http://gigaom.com/apple/speaktoit-siri-for-older-iphones-ipads/, 7 pages.
Tucker, J., “Too lazy to grab your TV remote? Use Siri instead,” Nov. 30, 2011, http://www.engadget.com/2011/11/30/too-lazy-to-grab-your-tv-remote-use-siri-instead/, 8 pages.
Tur, G., et al., “The CALO Meeting Speech Recognition and Understanding System,” 2008, Proc. IEEE Spoken Language Technology Workshop, 4 pages.
Tur, G., et al., “The-CALO-Meeting-Assistant System,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 6, Aug. 2010, 11 pages.
Vlingo InCar, “Distracted Driving Solution with Vlingo InCar,” 2:38 minute video uploaded to YouTube by Vlingo Voice on Oct. 6, 2010, http://www.youtube.com/watch?v=Vqs8XfXxgz4, 2 pages.
Vlingo, “Vlingo Launches Voice Enablement Application on Apple App Store,” Vlingo press release dated Dec. 3, 2008, 2 pages.
YouTube, “Knowledge Navigator,” 5:34 minute video uploaded to YouTube by Knownav on Apr. 29, 2008, http://www.youtube.com/watch?v=QRH8eimU_20, 1 page.
YouTube,“Send Text, Listen to and Send E-Mail ‘By Voice’ www.voiceassist.com,” 2:11 minute video uploaded to YouTube by VoiceAssist on Jul 30, 2009, http://www.youtube.com/watch?v=0tEU61nHHA4, 1 page.
YouTube,“Text'nDrive App Demo—Listen and Reply to your Messages by Voice while Driving!,” 1:57 minute video uploaded to YouTube by TextnDrive on Apr 27, 2010, http://www.youtube.com/watch?v=WaGfzoHsAMw, 1 page.
YouTube, “Voice on the Go (BlackBerry),” 2:51 minute video uploaded to YouTube by VoiceOnTheGo on Jul. 27, 2009, http://www.youtube.conn/watch?v=pJqpWgQS98w, 1 page.
Zue, V., “Conversational Interfaces: Advances and Challenges,” Sep. 1997, http://www.cs.cmu.edu/˜dod/papers/zue97.pdf, 10 pages.
Zue, V. W., “Toward Systems that Understand Spoken Language,” Feb. 1994, ARPA Strategic Computing Institute, © 1994 IEEE, 9 pages.
International Search Report and Written Opinion dated Nov. 29, 2011, received in International Application No. PCT/US2011/20861, which corresponds to U.S. Appl. No. 12/987,982, 15 pages (Thomas Robert Gruber).
Agnäs, MS., et al., “Spoken Language Translator: First-Year Report,” Jan. 1994, SICS (ISSN 0283-3638), SRI and Telia Research AB, 161 pages.
Allen, J., “Natural Language Understanding,” 2nd Edition, Copyright © 1995 by the Benjamin/Cummings Publishing Company, Inc., 671 pages.
Alshawi, H., et al., “CLARE: A Contextual Reasoning and Cooperative Response Framework for the Core Language Engine,” Dec. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 273 pages.
Alshawi, H., et al., “Declarative Derivation of Database Queries from Meaning Representations,” Oct. 1991, Proceedings of the BANKAI Workshop on Intelligent Information Access, 12 pages.
Alshawi H., et al., “Logical Forms in the Core Language Engine,” 1989, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 8 pages.
Alshawi, H., et al., “Overview of the Core Language Engine,” Sep. 1988, Proceedings of Future Generation Computing Systems, Tokyo, 13 pages.
Alshawi, H., “Translation and Monotonic Interpretation/Generation,” Jul. 1992, SRI International, Cambridge Computer Science Research Centre, Cambridge, 18 pages, http://www.cam.sri.com/tr/crc024/paper.ps.Z_1992.
Appelt, D., et al., “Fastus: A Finite-state Processor for Information Extraction from Real-world Text,” 1993, Proceedings of IJCAI, 8 pages.
Appelt, D., et al., “SRI: Description of the JV-FASTUS System Used for MUC-5,” 1993, SRI International, Artificial Intelligence Center, 19 pages.
Appelt, D., et al., SRI International Fastus System MUC-6 Test Results and Analysis, 1995, SRI International, Menlo Park, California, 12 pages.
Archbold, A., et al., “A Team User's Guide,” Dec. 21, 1981, SRI International, 70 pages.
Bear, J., et al., “A System for Labeling Self-Repairs in Speech,” Feb. 22, 1993, SRI International, 9 pages.
Bear, J., et al., “Detection and Correction of Repairs in Human-Computer Dialog,” May 5, 1992, SRI International, 11 pages.
Bear, J., et al., “Integrating Multiple Knowledge Sources for Detection and Correction of Repairs in Human-Computer Dialog,” 1992, Proceedings of the 30th annual meeting on Association for Computational Linguistics (ACL), 8 pages.
Bear, J., et al., “Using Information Extraction to Improve Document Retrieval,” 1998, SRI International, Menlo Park, California, 11 pages.
Berry, P., et al., “Task Management under Change and Uncertainty Constraint Solving Experience with the CALO Project,” 2005, Proceedings of CP'05 Workshop on Constraint Solving under Change, 5 pages.
Bobrow, R. et al., “Knowledge Representation for Syntactic/Semantic Processing,” From: AAA-80 Proceedings. Copyright © 1980, AAAI, 8 pages.
Bouchou, B., et al., “Using Transducers in Natural Language Database Query,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 17 pages.
Bratt, H., et al., “The SRI Telephone-based ATIS System,” 1995, Proceedings of ARPA Workshop on Spoken Language Technology, 3 pages.
Bulyko, I. et al., “Error-Correction Detection and Response Generation in a Spoken Dialogue System,” © 2004 Elsevier B.V., specom.2004.09.009, 18 pages.
Burke, R., et al., “Question Answering from Frequently Asked Question Files,” 1997, AI Magazine, vol. 18, No. 2, 10 pages.
Burns, A., et al., “Development of a Web-Based Intelligent Agent for the Fashion Selection and Purchasing Process via Electronic Commerce,” Dec. 31, 1998, Proceedings of the Americas Conference on Information system (AMCIS), 4 pages.
Carter, D., “Lexical Acquisition in the Core Language Engine,” 1989, Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 8 pages.
Carter, D., et al., “The Speech-Language Interface in the Spoken Language Translator,” Nov. 23, 1994, SRI International, 9 pages.
Chai, J., et al., “Comparative Evaluation of a Natural Language Dialog Based System and a Menu Driven System for Information Access: a Case Study,” Apr. 2000, Proceedings of the International Conference on Multimedia Information Retrieval (RIAO), Paris, 11 pages.
Cheyer, A., et al., “Multimodal Maps: An Agent-based Approach,” International Conference on Cooperative Multimodal Communication, 1995, 15 pages.
Cheyer, A., et al., “The Open Agent Architecture,” Autonomous Agents and Multi-Agent systems, vol. 4, Mar. 1, 2001, 6 pages.
Cheyer, A., et al., “The Open Agent Architecture: Building communities of distributed software agents” Feb. 21, 1998, Artificial Intelligence Center SRI International, Power Point presentation, downloaded from http://www.ai.sri.com/˜oaa/, 25 pages.
Codd, E. F., “Databases: Improving Usability and Responsiveness—‘How About Recently’,” Copyright © 1978, by Academic Press, Inc., 28 pages.
Cohen, P.R., et al., “An Open Agent Architecture,” 1994, 8 pages. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.480.
Coles, L. S., et al., “Chemistry Question-Answering,” Jun. 1969, SRI International, 15 pages.
Coles, L. S., “Techniques for Information Retrieval Using an Inferential Question-Answering System with Natural-Language Input,” Nov. 1972, SRI International, 198 Pages.
Coles, L. S., “The Application of Theorem Proving to Information Retrieval,” Jan. 1971, SRI International, 21 pages.
Constantinides, P., et al., “A Schema Based Approach to Dialog Control,” 1998, Proceedings of the International Conference on Spoken Language Processing, 4 pages.
Cox, R. V., et al., “Speech and Language Processing for Next-Millennium Communications Services,” Proceedings of the IEEE, vol. 88, No. 8, Aug. 2000, 24 pages.
Craig, J., et al., “Deacon: Direct English Access and Control,” Nov. 7-10, 1966 AFIPS Conference Proceedings, vol. 19, San Francisco, 18 pages.
Dar, S., et al., “DTL's DataSpot: Database Exploration Using Plain Language,” 1998 Proceedings of the 24th VLDB Conference, New York, 5 pages.
Davis, Z., et al., “A Personal Handheld Multi-Modal Shopping Assistant,” 2006 IEEE, 9 pages.
Decker, K., et al., “Designing Behaviors for Information Agents,” The Robotics Institute, Carnegie-Mellon University, paper, Jul. 6, 1996, 15 pages.
Decker, K., et al., “Matchmaking and Brokering,” The Robotics Institute, Carnegie-Mellon University, paper, May 16, 1996, 19 pages.
Dowding, J., et al., “Gemini: A Natural Language System for Spoken-Language Understanding,” 1993, Proceedings of the Thirty-First Annual Meeting of the Association for Computational Linguistics, 8 pages.
Dowding, J., et al., “Interleaving Syntax and Semantics in an Efficient Bottom-Up Parser,” 1994, Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, 7 pages.
Epstein, M., et al., “Natural Language Access to a Melanoma Data Base,” Sep. 1978, SRI International, 7 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” Classes/Subclasses Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results,” List of Publications Manually reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Ferguson, G., et al., “TRIPS: An Integrated Intelligent Problem-Solving Assistant,” 1998, Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) and Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 7 pages.
Fikes, R., et al., “A Network-based knowledge Representation and its Natural Deduction System,” Jul. 1977, SRI International, 43 pages.
Gambäck, B., et al., “The Swedish Core Language Engine,” 1992 NOTEX Conference, 17 pages.
Glass, J., et al., “Multilingual Language Generation Across Multiple Domains,” Sep. 18-22, 1994, International Conference on Spoken Language Processing, Japan, 5 pages.
Green, C. “The Application of Theorem Proving to Question-Answering Systems,” Jun. 1969, SRI Stanford Research Institute, Artificial Intelligence Group, 169 pages.
Gregg, D. G., “DSs Access on the WWW: An Intelligent Agent Prototype,” 1998 Proceedings of the Americas Conference on Information Systems—Association for Information Systems, 3 pages.
Grishman, R., “Computational Linguistics: An Introduction,” © Cambridge University Press 1986, 172 pages.
Grosz, B. et al., “Dialogic: A Core Natural-Language Processing System,” Nov. 9, 1982, SRI International, 17 pages.
Grosz, B. et al., “Research on Natural-Language Processing at SRI,” Nov. 1981, SRI International, 21 pages.
Grosz, B., et al., “TEAM: An Experiment in the Design of Transportable Natural-Language Interfaces,” Artificial Intelligence, vol. 32, 1987, 71 pages.
Grosz, B., “Team: A Transportable Natural-Language Interface System,” 1983, Proceedings of the First Conference on Applied Natural Language Processing, 7 pages.
Guida, G., et al., “NLI: A Robust Interface for Natural Language Person-Machine Communication,” Int. J. Man-Machine Studies, vol. 17, 1982, 17 pages.
Guzzoni, D., et al., “Active, A platform for Building Intelligent Software,” Computational Intelligence 2006, 5 pages. http://www.informatik.uni-trier.de/˜ley/pers/hd/g/Guzzoni:Didier.
Guzzoni, D., “Active: A unified platform for building intelligent assistant applications,” Oct. 25, 2007, 262 pages.
Guzzoni, D., et al., “Many Robots Make Short Work,” 1996 AAAI Robot Contest, SRI International, 9 pages.
Haas, N., et al., “An Approach to Acquiring and Applying Knowledge,” Nov. 1980, SRI International, 22 pages.
Hadidi, R., et al., “Students' Acceptance of Web-Based Course Offerings: An Empirical Assessment,” 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Hawkins, J., et al., “Hierarchical Temporal Memory: Concepts, Theory, and Terminology,” Mar. 27, 2007, Numenta, Inc., 20 pages.
He, Q., et al., “Personal Security Agent: KQML-Based PKI,” The Robotics Institute, Carnegie-Mellon University, paper, Oct. 1, 1997, 14 pages.
Hendrix, G. et al., “Developing a Natural Language Interface to Complex Data,” ACM Transactions on Database Systems, vol. 3, No. 2, Jun. 1978, 43 pages.
Hendrix, G., “Human Engineering for Applied Natural Language Processing,” Feb. 1977, SRI International, 27 pages.
Hendrix, G., “Klaus: A System for Managing Information and Computational Resources,” Oct. 1980, SRI International, 34 pages.
Hendrix, G., “Lifer: A Natural Language Interface Facility,” Dec. 1976, SRI Stanford Research Institute, Artificial Intelligence Center, 9 pages.
Hendrix, G., “Natural-Language Interface,” Apr.-Jun. 1982, American Journal of Computational Linguistics, vol. 8, No. 2, 7 pages. Best Copy Available.
Hendrix, G., “The Lifer Manual: A Guide to Building Practical Natural Language Interfaces,” Feb. 1977, SRI International, 76 pages.
Hendrix, G., et al., “Transportable Natural-Language Interfaces to Databases,” Apr. 30, 1981, SRI International, 18 pages.
Hirschman, L., et al., “Multi-Site Data Collection and Evaluation in Spoken Language Understanding,” 1993, Proceedings of the workshop on Human Language Technology, 6 pages.
Hobbs, J., et al., “Fastus: A System for Extracting Information from Natural-Language Text,” Nov. 19, 1992, SRI International, Artificial Intelligence Center, 26 pages.
Hobbs, J., et al.,“Fastus: Extracting Information from Natural-Language Texts,” 1992, SRI International, Artificial Intelligence Center, 22 pages.
Hobbs, J., “Sublanguage and Knowledge,” Jun. 1984, SRI International, Artificial Intelligence Center, 30 pages.
Hodjat, B., et al., “Iterative Statistical Language Model Generation for Use with an Agent-Oriented Natural Language Interface,” vol. 4 of the Proceedings of HCI International 2003, 7 pages.
Huang, X., et al., “The SPHINX-II Speech Recognition System: An Overview,” Jan. 15, 1992, Computer, Speech and Language, 14 pages.
Issar, S., et al., “CMU's Robust Spoken Language Understanding System,” 1993, Proceedings of Eurospeech, 4 pages.
Issar, S., “Estimation of Language Models for New Spoken Language Applications,” Oct. 3-6, 1996, Proceedings of 4th International Conference on Spoken language Processing, Philadelphia, 4 pages.
Janas, J., “The Semantics-Based Natural Language Interface to Relational Databases,” © Springer-Verlag Berlin Heidelberg 1986, Germany, 48 pages.
Johnson, J., “A Data Management Strategy for Transportable Natural Language Interfaces,” Jun. 1989, doctoral thesis submitted to the Department of Computer Science, University of British Columbia, Canada, 285 pages.
Julia, L., et al., “http://www.speech.sri.com/demos/atis.html,” 1997, Proceedings of AAAI, Spring Symposium, 5 pages.
Kahn, M., et al., “CoABS Grid Scalability Experiments,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 8 pages.
Kamel, M., et al., “A Graph Based Knowledge Retrieval System,” © 1990 IEEE, 7 pages.
Katz, B., “Annotating the World Wide Web Using Natural Language,” 1997, Proceedings of the 5th RIAO Conference on Computer Assisted Information Searching on the Internet, 7 pages.
Katz, B., “A Three-Step Procedure for Language Generation,” Dec. 1980, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 42 pages.
Kats, B., et al., “Exploiting Lexical Regularities in Designing Natural Language Systems,” 1988, Proceedings of the 12th International Conference on Computational Linguistics, Coling'88, Budapest, Hungary, 22 pages.
Katz, B., et al., “REXTOR: A System for Generating Relations from Natural Language,” In Proceedings of the ACL Oct. 2000 Workshop on Natural Language Processing and Information Retrieval (NLP&IR), 11 pages.
Katz, B., “Using English for Indexing and Retrieving,” 1988 Proceedings of the 1st RIAO Conference on User-Oriented Content-Based Text and Image (RIAO'88), 19 pages.
Konolige, K., “A Framework for a Portable Natural-Language Interface to Large Data Bases,” Oct. 12, 1979, SRI International, Artificial Intelligence Center, 54 pages.
Laird, J., et al., “SOAR: An Architecture for General Intelligence,” 1987, Artificial Intelligence vol. 33, 64 pages.
Langly, P., et al.,“A Design for the Icarus Architechture,” SIGART Bulletin, vol. 2, No. 4, 6 pages.
Larks, “Intelligent Software Agents: Larks,” 2006, downloaded on Mar. 15, 2013 from http://www.cs.cmu.edu/larks.html, 2 pages.
Martin, D., et al., “Building Distributed Software Systems with the Open Agent Architecture,” Mar. 23-25, 1998, Proceedings of the Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 23 pages.
Martin, D., et al., “Development Tools for the Open Agent Architecture,” Apr. 1996, Proceedings of the International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 17 pages.
Martin, D., et al., “Information Brokering in an Agent Architecture,” Apr. 1997, Proceedings of the second International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology, 20 pages.
Martin, D., et al., “PAAM '98 Tutorial: Building and Using Practical Agent Applications,” 1998, SRI International, 78 pages.
Martin, P., et al., “Transportability and Generality in a Natural-Language Interface System,” Aug. 8-12, 1983, Proceedings of the Eight International Joint Conference on Artificial Intelligence, West Germany, 21 pages.
Matiasek, J., et al., “Tamic-P: A System for NL Access to Social Insurance Database,” Jun. 17-19, 1999, Proceeding of the 4th International Conference on Applications of Natural Language to Information Systems, Austria, 7 pages.
Michos, S.E., et al., “Towards an adaptive natural language interface to command languages,” Natural Language Engineering 2 (3), © 1994 Cambridge University Press, 19 pages. Best Copy Available.
Milstead, J., et al., “Metadata: Cataloging by Any Other Name . . . ” Jan. 1999, Online, Copyright © 1999 Information Today, Inc., 18 pages.
Minker, W., et al., “Hidden Understanding Models for Machine Translation,” 1999, Proceedings of ETRW on Interactive Dialogue in Multi-Modal Systems, 4 pages.
Modi, P. J., et al., “CMRadar: A Personal Assistant Agent for Calendar Management,” © 2004, American Association for Artificial Intelligence, Intelligent Systems Demonstrations, 2 pages.
Moore, R., et al., “Combining Linguistic and Statistical Knowledge Sources in Natural-Language Processing for ATIS,” 1995, SRI International, Artificial Intelligence Center, 4 pages.
Moore, R., “Handling Complex Queries in a Distributed Data Base,” Oct. 8, 1979, SRI International, Artificial Intelligence Center, 38 pages.
Moore, R., “Practical Natural-Language Processing by Computer,” Oct. 1981, SRI International, Artificial Intelligence Center, 34 pages.
Moore, R., et al., “SRI's Experience with the ATIS Evaluation,” Jun. 24-27, 1990, Proceedings of a workshop held at Hidden Valley, Pennsylvania, 4 pages. Best Copy Available.
Moore, et al., “The Information Warefare Advisor: An Architecture for Interacting with Intelligent Agents Across the Web,” Dec. 31, 1998 Proceedings of Americas Conference on Information Systems (AMCIS), 4 pages.
Moore, R., “The Role of Logic in Knowledge Representation and Commonsense Reasoning,” Jun. 1982, SRI International, Artificial Intelligence Center, 19 pages.
Moore, R., “Using Natural-Language Knowledge Sources in Speech Recognition,” Jan. 1999, SRI International, Artificial Intelligence Center, 24 pages.
Moran, D., et al., “Intelligent Agent-based User Interfaces,” Oct. 12-13, 1995, Proceedings of International Workshop on Human Interface Technology, University of Aizu, Japan, 4 pages. http://www.dougmoran.com/dmoran/PAPERS/oaa-iwhit1995.pdf.
Moran, D., “Quantifier Scoping in the SRI Core Language Engine,” 1988, Proceedings of the 26th annual meeting on Association for Computational Linguistics, 8 pages.
Motro, A., “Flex: A Tolerant and Cooperative User Interface to Databases,” IEEE Transactions on Knowledge and Data Engineering, vol. 2, No. 2, Jun. 1990, 16 pages.
Murveit, H., et al., “Speech Recognition in SRI's Resource Management and ATIS Systems,” 1991, Proceedings of the workshop on Speech and Natural Language (HTL'91), 7 pages.
OAA, “The Open Agent Architecture 1.0 Distribution Source Code,” Copyright 1999, SRI International, 2 pages.
Odubiyi, J., et al., “SAIRE—a scalable agent-based information retrieval engine,” 1997 Proceedings of the First International Conference on Autonomous Agents, 12 pages.
Owei, V., et al., “Natural Language Query Filtration in the Conceptual Query Language,” © 1997 IEEE, 11 pages.
Pannu, A., et al., “A Learning Personal Agent for Text Filtering and Notification,” 1996, The Robotics Institute School of Computer Science, Carnegie-Mellon University, 12 pages.
Pereira, “Logic for Natural Language Analysis,” Jan. 1983, SRI International, Artificial Intelligence Center, 194 pages.
Perrault, C.R., et al., “Natural-Language Interfaces,” Aug. 22, 1986, SRI International, 48 pages.
Pulman, S.G., et al., “Clare: A Combined Language and Reasoning Engine,” 1993, Proceedings of JFIT Conference, 8 pages. URL: http://www.cam.sri.com/tr/crc042/paper.ps.Z.
Ravishankar, “Efficient Algorithms for Speech Recognition,” May 15, 1996, Doctoral Thesis submitted to School of Computer Science, Computer Science Division, Carnegie Mellon University, Pittsburg, 146 pages.
Rayner, M., et al., “Adapting the Core Language Engine to French and Spanish,” May 10, 1996, Cornell University Library, 9 pages. http://arxiv.org/abs/cmp-Ig/9605015.
Rayner, M., “Abductive Equivalential Translation and its application to Natural Language Database Interfacing,” Sep. 1993 Dissertation paper, SRI International, 163 pages.
Rayner, M., et al., “Deriving Database Queries from Logical Forms by Abductive Definition Expansion,” 1992, Proceedings of the Third Conference on Applied Natural Language Processing, ANLC'92, 8 pages.
Rayner, M., “Linguistic Domain Theories: Natural-Language Database Interfacing from First Principles,” 1993, SRI International, Cambridge, 11 pages.
Rayner, M., et al., “Spoken Language Translation With Mid-90's Technology: A Case Study,” 1993, EUROSPEECH, ISCA, 4 pages. http://dblp.uni-trier.de/db/conf/interspeech/eurospeech1993.html#RaynerBCCDGKKLPPS93.
Rudnicky, A.I., et al., “Creating Natural Dialogs in the Carnegie Mellon Communicator System,”, 1999,p. 1-5.
Russell, S., et al., “Artificial Intelligence, A Modern Approach,” © 1995 Prentice Hall, Inc., 121 pages.
Sacerdoti, E., et al., “A Ladder User's Guide (Revised),” Mar. 1980, SRI International, Artificial Intelligence Center, 39 pages.
Sagalowicz, D., “A D-Ladder User's Guide,” Sep. 1980, SRI International, 42 pages.
Sameshima, Y., et al., “Authorization with security attributes and privilege delegation Access control beyond the ACL,” Computer Communications, vol. 20, 1997, 9 pages.
San-Segundo, R., et al., “Confidence Measures for Dialogue Management in the CU Communicator System,” Jun. 5-9, 2000, Proceedings of Acoustics, Speech, and Signal Processing (ICASSP'00), 4 pages.
Sato, H., “A Data Model, Knowledge Base, and Natural Language Processing for Sharing a Large Statistical Database,” 1989, Statistical and Scientific Database Management, Lecture Notes in Computer Science, vol. 339, 20 pages.
Schnelle, D., “Context Aware Voice User Interfaces for Workflow Support,” Aug. 27, 2007, Dissertation paper, 254 pages.
Sharoff, S., et al., “Register-domain Separation as a Methodology for Development of Natural Language Interfaces to Databases,” 1999, Proceedings of Human-Computer Interaction (INTERACT'99), 7 pages.
Shimazu, H., et al., “CAPIT: Natural Language Interface Design Tool with Keyword Analyzer and Case-Based Parser,” NEC Research & Development, vol. 33, No. 4, Oct. 1992, 11 pages.
Shinkle, L., “Team User's Guide,” Nov. 1984, SRI International, Artificial Intelligence Center, 78 pages.
Shklar, L., et al., “Info Harness: Use of Automatically Generated Metadata for Search and Retrieval of Heterogeneous Information,” 1995 Proceedings of CAiSE'95, Finland, p. 1-14.
Singh, N., “Unifying Heterogeneous Information Models,” 1998 Communications of the ACM, 13 pages.
SRI2009, “SRI Speech: Products: Software Development Kits: EduSpeak,” 2009, 2 pages, available at http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak.shtml.
Starr, B., et al., “Knowledge-Intensive Query Processing,” May 31, 1998, Proceedings of the 5th KRDB Workshop, Seattle, 6 pages.
Stern, R., et al. “Multiple Approaches to Robust Speech Recognition,” 1992, Proceedings of Speech and Natural Language Workshop, 6 pages.
Stickel, “A Nonclausal Connection-Graph Resolution Theorem-Proving Program,” 1982, Proceedings of AAAI'82, 5 pages.
Sugumaran, V., “A Distributed Intelligent Agent-Based Spatial Decision Support System,” Dec. 31, 1998, Proceedings of the Americas Conference on Information systems (AMCIS), 4 pages.
Sycara, K., et al., “Coordination of Multiple Intelligent Software Agents,” International Journal of Cooperative Information Systems (IJCIS), vol. 5, Nos. 2 & 3, Jun. & Sep. 1996, 33 pages.
Sycara, K., et al., “Distributed Intelligent Agents,” IEEE Expert, vol. 11, No. 6, Dec. 1996, 32 pages.
Sycara, K., et al., “Dynamic Service Matchmaking Among Agents in Open Information Environments ,” 1999, SIGMOD Record, 7 pages.
Sycara, K., et al., “The RETSINA MAS Infrastructure,” 2003, Autonomous Agents and Multi-Agent Systems, vol. 7, 20 pages.
Tyson, M., et al., “Domain-Independent Task Specification in the TACITUS Natural Language System,” May 1990, SRI International, Artificial Intelligence Center, 16 pages.
Wahlster, W., et al., “Smartkom: multimodal communication with a life-like character,” 2001 EUROSPEECH—Scandinavia, 7th European Conference on Speech Communication and Technology, 5 pages.
Waldinger, R., et al., “Deductive Question Answering from Multiple Resources,” 2003, New Directions in Question Answering, published by AAAI, Menlo Park, 22 pages.
Walker, D., et al., “Natural Language Access to Medical Text,” Mar. 1981, SRI International, Artificial Intelligence Center, 23 pages.
Waltz, D., “An English Language Question Answering System for a Large Relational Database,” © 1978 Acm, vol. 21, No. 7, 14 pages.
Ward, W., et al., “A Class Based Language Model for Speech Recognition,” © 1996 IEEE, 3 pages.
Ward, W., et al., “Recent Improvements in the CMU Spoken Language Understanding System,” 1994, ARPA Human Language Technology Workshop, 4 pages.
Ward, W., “The CMU Air Travel Information Service: Understanding Spontaneous Speech,” 3 pages.
Warren, D.H.D., et al., “An Efficient Easily Adaptable System for Interpreting Natural Language Queries,” Jul.-Dec. 1982, American Journal of Computational Linguistics, vol. 8, No. 3-4, 11 pages. Best Copy Available.
Weizenbaum, J., “ELIZA—A Computer Program for the Study of Natural Language Communication Between Man and Machine,” Communications of the ACM, vol. 9, No. 1, Jan. 1966, 10 pages.
Winiwarter, W., “Adaptive Natural Language Interfaces to FAQ Knowledge Bases,” Jun. 17-19, 1999, Proceedings of 4th International Conference on Applications of Natural Language to Information Systems, Austria, 22 pages.
Wu, X. et al., “KDA: A Knowledge-based Database Assistant,” Data Engineering, Feb. 6-10, 1989, Proceeding of the Fifth International Conference on Engineering (IEEE Cat. No. 89CH2695-5), 8 pages.
Yang, J., et al., “Smart Sight: A Tourist Assistant System,” 1999 Proceedings of Third International Symposium on Wearable Computers, 6 pages.
Zeng, D., et al., “Cooperative Intelligent Software Agents,” The Robotics Institute, Carnegie-Mellon University, Mar. 1995, 13 pages.
Zhao, L., “Intelligent Agents for Flexible Workflow Systems,” Oct. 31, 1998 Proceedings of the Americas Conference on Information Systems (AMCIS), 4 pages.
Zue, V., et al., “From Interface to Content: Translingual Access and Delivery of On-Line Information,” 1997, EUROSPEECH, 4 pages.
Zue, V., et al., “Jupiter: A Telephone-Based Conversational Interface for Weather Information,” Jan. 2000, IEEE Transactions on Speech and Audio Processing, 13 pages.
Zue, V., et al., “Pegasus: A Spoken Dialogue Interface for On-Line Air Travel Planning,” 1994 Elsevier, Speech Communication 15 (1994), 10 pages.
Zue, V., et al., “The Voyager Speech Understanding System: Preliminary Development and Evaluation,” 1990, Proceedings of IEEE 1990 International Conference on Acoustics, Speech, and Signal Processing, 4 pages.
Japanese Office Action dated Jun. 18, 2013 for application No. 2012-126444, 7 pages.
Korean Notice of Allowance dated Sep. 16, 2013 for application No. 10-2012-60060, 7 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/029810, dated Oct. 3, 2013, 9 pages.
“Interactive Voice”, available online at <http://www.helloivee.com/company/> retrieved from internet on Feb. 10, 2014, 2 pages.
“Meet Ivee Your Wi-Fi Voice Activated Assistant”, available online at <http://www.helloivee.com/> retrieved from internet on Feb. 10, 2014, 8 pages.
Apple Computer, “Knowledge Navigator”, available online at <http://www.youtube.com/watch?v=QRH8eimU_20>, Uploaded on Apr. 29, 2008, 7 pages.
Bellegarda et al., “Tied Mixture Continuous Parameter Modeling for Speech Recognition”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 38, No. 12, Dec. 1990, pp. 2033-2045.
Bellegarda, Jerome R., “Latent Semantic Mapping”, IEEE Signal Processing Magazine, Sep. 2005, pp. 70-80.
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Agent Architecture”, available online at <http://www.youtube.com/watch?v=x3TptMGT9EQ&feature=youtu.be>, published on 1996, 6 pages.
Cheyer et al., “Demonstration Video of Multimodal Maps Using an Open-Agent Architecture”, available online at <http://www.youtube.com/watch?v=JUxaKnyZyM&feature=youtu.be>, published on 1996, 6 pages.
Cheyer, Adam, “Demonstration Video of Vanguard Mobile Portal”, available online at <http://www.youtube.com/watch?v=ZTMsvg_0oLQ&feature=youtu.be>, published on 2004, 10 pages.
Kickstarter, “Ivee Sleek: Wi-Fi Voice-Activated Assistant”, available online at <https://www.kickstartercom/discover/categories/hardware?ref=category> retrieved from internet on Feb. 10, 2014, 13 pages.
Anonymous, “Speaker Recognition”, Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 3 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/029810, dated Aug. 17, 2012, 11 pages.
Extended European Search Report (inclusive of the Partial European Search Report and European Search Opinion) received for European Patent Application No. 12729332.2, dated Oct. 31, 2014, 6 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/040801, dated Dec. 19, 2013, 16 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/040801, dated Oct. 22, 2012, 20 pages.
Amano Junko, “A User-Friendly Authoring System for Digital Talking Books”, IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, vol. 103, No. 418, Nov. 6, 2003, pp. 33-40.
Amano et al., “A User-friendly Multimedia Book Authoring System”, The Institute of Electronics, Information and Communication Engineers Technical Report, vol. 103, No. 416, Nov. 2003, pp. 33-40.
Related Publications (1)
Number Date Country
20120310649 A1 Dec 2012 US
Provisional Applications (2)
Number Date Country
61493372 Jun 2011 US
61494375 Jun 2011 US