This patent application is a national phase filing under section 371 of PCT/EP2019/059545, filed Apr. 12, 2019, which claims the priority of German patent application 102018109403.5, filed Apr. 19, 2018, each of which is incorporated herein by reference in its entirety.
A switching device is specified.
The switching device is embodied, in particular, as a remotely operated, electromagnetically acting switch which can be operated by electrically conductive current. The switching device can be activated via an electrical control circuit and can switch an electrical load circuit. In particular, the switching device can be embodied as a relay or as a contactor, in particular as a power contactor. The switching device may particularly preferably be embodied as a gas-filled power contactor.
One possible application for switching devices of this kind, in particular power contactors, is opening and isolating electrical battery circuits, for example in motor vehicles such as electrically or partially electrically driven motor vehicles. These may be, for example, purely battery-operated vehicles (BEV: “battery electric vehicle”), hybrid electric vehicles which can be charged via a power outlet or charging station (PHEV: “plug-in hybrid electric vehicle”) and hybrid electric vehicles (HEV). In general here, both the positive and the negative contact of the battery are isolated using a power contactor. This disconnection is performed in normal operation for example when the vehicle is at a standstill and also in the event of a disturbance such as an accident or the like. The main task of the power contactor here is to switch the vehicle to a deenergized state and to interrupt the flow of current.
The service life of switches of this kind generally ends when the switch no longer has a sufficient insulation resistance in the open state. A switch is usually considered to have failed when a resistance of 50 MΩ is undershot in the open state. At system voltages of, for example, 900 V, powers in the milliwatt range can therefore already occur across the insulation resistor.
A frequent cause of the reduction in the insulation resistance may be erosion of contact materials in the interior of the switch since the materials of the contacts can be removed by switching arcs during the switching processes. These materials are then deposited on the inner walls and form conductive coatings which can lead to bridging of the switching contacts.
Embodiments provide a switching device, particularly preferably a switching device in which described disadvantages can be prevented or at least reduced.
According to one embodiment, a switching device has at least two stationary contacts and at least one movable contact. The at least two stationary contacts and the at least one movable contact are intended and embodied to switch on and switch off an electrical load circuit which can be connected to the switching device and, in particular, to the at least two stationary contacts. The movable contact can move in the switching device in a corresponding manner between a non-switched-through state and a switched-through state of the switching device in such a way that the movable contact is at a distance from the at least two stationary contacts and is therefore DC-isolated in the non-switched-through state of the switching device and is in mechanical contact with the at least two stationary contacts and is therefore electrically conductively connected to said contacts in the switched-through state. The at least two stationary contacts are therefore arranged in the switching device in a manner isolated from one another and can be electrically conductively connected to one another or electrically isolated from one another by the movable contact depending on the state of the movable contact. The stationary contacts and/or the movable contact can, for example, contain or consist of copper, a copper alloy, one or more high melting metals such as, for example, tungsten, nickel and/or chromium, or a mixture of said materials, for example of copper with at least one further metal, for example tungsten, nickel and/or chromium.
According to a further embodiment, the switching device has a switching chamber in which the movable contact and the at least two stationary contacts are arranged. The movable contact can be arranged, in particular, entirely in the switching chamber. The fact that a stationary contact is arranged in the switching chamber can mean, in particular, that at least one contact region of the stationary contact, which is in mechanical contact with the movable contact in the switched-through state, is arranged within the switching chamber. For connection of a supply line of an electrical circuit which is to be switched by the switching device, electrical contact can be made with a stationary contact, which is arranged in the switching chamber, from the outside, that is to say from outside the switching chamber. To this end, a stationary contact which is arranged in the switching chamber can project out of the switching chamber by way of one portion and have a connection facility for a supply line outside the switching chamber.
According to a further embodiment, the switching device has a housing in which the movable contact and the at least two stationary contacts are arranged. The movable contact can be arranged, in particular, entirely in the housing. The fact that a stationary contact is arranged in the housing can mean, in particular, that at least one contact region of the stationary contact, which is in mechanical contact with the movable contact in the switched-through state, is arranged within the housing. For connection of a supply line of an electrical circuit which is to be switched by the switching device, electrical contact can be made with a stationary contact, which is arranged in the housing, from the outside, that is to say from outside the housing. To this end, a stationary contact which is arranged in the housing can project out of the housing by way of one portion and have a connection facility for a supply line outside the housing.
According to a further embodiment, the contacts are arranged in a gas atmosphere in the housing. This can mean, in particular, that the movable contact is arranged entirely in the gas atmosphere in the housing, and that furthermore at least portions of the stationary contacts, for example the contact regions of the stationary contacts, are arranged in the gas atmosphere in the housing. The switching device can accordingly particularly preferably be a gas-filled switching device such as a gas-filled contactor. The gas atmosphere can promote, in particular, quenching of arcs which can be produced during the switching processes. The gas of the gas atmosphere can preferably have an H2 content of at least 50%. In addition to hydrogen, the gas can include an inert gas, particularly preferably N2 and/or one or more noble gases.
According to a further embodiment, the switching chamber is located within the housing. Furthermore, in particular, the gas, that is to say at least a portion of the gas atmosphere, can be located in the switching chamber.
According to a further embodiment, the movable contact can be moved by means of a magnet armature. To this end, the magnet armature can have, in particular, a shaft which, at one end, is connected to the movable contact in such a way that the movable contact can be moved by means of the shaft, that is to say is likewise moved by the shaft in the event of movement of said shaft. The shaft can, in particular, project into the switching chamber through an opening in the switching chamber. In particular, the switching chamber can have a switching chamber base which has an opening through which the shaft projects. The magnet armature can be moved by a magnetic circuit in order to affect the above-described switching processes. To this end, the magnetic circuit can have a yoke which has an opening through which the shaft of the magnet armature projects.
The shaft can preferably include or consist of stainless steel. The yoke can preferably include or consist of pure iron or a low-doped iron alloy. The switching chamber, that is to say in particular the switching chamber wall and/or the switching chamber base, can preferably at least partially include or consist of a metal oxide ceramic such as, for example, Al2O3 or a plastic. Suitable plastics are, in particular, those with a sufficient temperature resistance. For example, the switching chamber can include, as plastic, polyether ether ketone (PEEK), a polyethylene (PE) and/or glass-filled polybutylene terephthalate (PBT). Furthermore, the switching chamber can also at least partially include a polyoxymethylene (POM), in particular with the structure (CH2O)n. A plastic of this kind can be distinguished by a comparatively low carbon content and a very low tendency to form graphite. Owing to the identical contents of carbon and oxygen, in particular in the case of (CH2O)n, predominantly gaseous CO and H2 can be produced in the case of heat- and, in particular, arc-induced decomposition. The additional hydrogen can boost arc quenching.
According to a further embodiment, the switching chamber has an inner side which faces the movable contact. In particular, the switching chamber wall has a corresponding inner side which faces the movable contact. The switching chamber base likewise has a corresponding inner side which faces the movable contact. The inner side of the switching chamber wall and the inner side of the switching chamber base can together form at least a portion and preferably the entire inner side of the switching chamber.
In the region of the openings through which the stationary contacts project into the switching chamber, the inner side of the switching chamber wall adjoins the stationary contacts. If electrically conductive deposits form on the inner side, for example owing to removal of contact material, an electrically conductive connection can form between the stationary contacts in principle. In order to prevent this, the switching chamber has, on the inner side of the switching chamber that faces the movable contact, a continuous surface region, which is occluded from the stationary contacts, between the openings in the switching chamber wall. This means, in particular, that there is no point of the occluded surface region that can be connected to any point on the surfaces of the stationary contacts via a direct connection through the interior of the switching chamber. Material which can be removed from the contacts during an arc can therefore not directly reach the occluded surface region and therefore cannot deposit on said surface region. The fact that the occluded surface region is continuous can mean, in particular, that any possible path between the stationary contacts via the inner side of the switching chamber wall that would form a leakage current path given a corresponding coating with conductive material is interrupted by the surface region, so that no continuous leakage current path can form between the stationary contacts on the inner side in spite of material being deposited on the inner side of the switching chamber wall.
In particular, the occluded surface region can be formed at least by a portion of a trench which, as seen from the stationary contacts, forms an undercut. Therefore, the occluding effect is achieved by the undercut. The occluded surface region can include or be formed by at least a portion of a base surface of the trench or else the entire base surface. Furthermore, the trench can have trench walls which can form at least a portion of the occluded surface region.
The trench can have, for example, a polygonal cross section. For example, the cross section can be rectangular. Furthermore, the trench can also have a wave-like cross section. A trench with a wave-like cross section can be associated with easier production on account of the lack of edges.
According to a further embodiment, the trench has a width B and a depth T. In particular, B<T, and particularly preferably 2·B<T. In other words, the trench is preferably deeper than wide, and particularly preferably more than twice as deep as wide. For example, B can be greater than or equal to 0.5 mm and less than or equal to 2 mm. Furthermore, T can be greater than or equal to 1 mm and less than or equal to 4 mm.
The surface region can be embodied in a recessed manner in relation to the surrounding region of the inner side of the switching chamber wall, that is to say as a region of a channel-like, recessed trench. Furthermore, the surface region can also be arranged between at least two dam-like raised portions which extend above the inner side of the switching chamber.
The surface region can particularly preferably be arranged symmetrically in relation to the stationary contacts. This can mean, in particular, that the surface region is arranged centrally and therefore at an equal distance between the stationary contacts.
According to a further embodiment, the switching chamber base has a continuous occluded surface region which can have one or more of the above-described features for the surface region of the switching chamber wall. In particular, the occluded surface region of the switching chamber wall and the occluded surface region of the switching chamber base can form a coherent occluded surface region, so that no continuous leakage current path can form between the stationary contacts on the inner side of the switching chamber.
The problem of a conductive coating being formed can be solved by the continuous occluded surface region since the surface region is formed by an undercut, on which vapor cannot deposit, in the switching chamber. Said undercut is particularly preferably arranged in an encircling manner in the chamber and separates the two stationary contacts in an effective manner even in the event of vapor being deposited on the inner side of the switching chamber.
Further advantages, advantageous embodiments and developments can be found in the exemplary embodiments described below in conjunction with the figures:
In the embodiments and figures, identical, similar or identically acting elements are provided in each case with the same reference numerals. The elements illustrated and their size ratios to one another should not be regarded as being to scale, but rather individual elements, such as for example layers, components, devices and regions, may have been made exaggeratedly large to illustrate them better and/or to aid comprehension.
The switching device 100 has two stationary contacts 2, 3 and one movable contact 4 in a housing 1. The movable contact 4 is embodied as a contact plate. The stationary contacts 2, 3 together with the movable contact 4 form the switching contacts. The housing 1 serves primarily as protection against contact with the components which are arranged in the interior and includes or consists of a plastic, for example PBT or glass-filled PBT. The contacts 2, 3, 4 can, for example, contain or consist of copper, a copper alloy or a mixture of copper with at least one further metal, for example tungsten, nickel and/or chromium.
The switching device wo has a movable magnet armature 5 which substantially performs the switching movement. The magnet armature 5 has a magnetic core 6, for example comprising or consisting of a ferromagnetic material. Furthermore, the magnet armature 5 has a shaft 7 which is guided through the magnetic core 6 and, at one shaft end, is fixedly connected to the magnetic core 6. At the other shaft end which is situated opposite the magnetic core 6, the magnet armature 5 has the movable contact 4 which is likewise connected to the shaft 7. The shaft 7 can preferably be manufactured with or from stainless steel.
The magnetic core 6 is surrounded by a coil 8. A current flow, which can be introduced from outside, in the coil 8 generates a movement of the magnetic core 6 and therefore of the entire magnet armature 5 in an axial direction until the movable contact 4 makes contact with the stationary contacts 2, 3. The magnet armature 5 therefore moves from a first position, which corresponds to the inoperative state and simultaneously to the isolating, that is to say non-switched-through, state, to a second position, which corresponds to the active, that is to say switched-through, state. In the active state, the contacts 2, 3, 4 are electrically conductively connected to one another. In another embodiment, the magnet armature 5 can alternatively also execute a rotary movement. The magnet armature 5 can be embodied, in particular, as a tie rod or as a hinged armature. If the current flow in the coil 8 is interrupted, the magnet armature 5 is moved back to the first position by one or more springs 10. The switching device 100 is then back in the inoperative state in which the contacts 2, 3, 4 are open.
When the contacts 2, 3, 4 are opened, an arc may be formed which can damage the contact areas. As a result, there may be a risk of the contacts 2, 3, 4 remaining “stuck” to one another owing to welding caused by the arc and no longer being separated from one another. In order to prevent the formation of arcs of this kind or at least to assist in extinguishing of arcs which occur, the contacts 2, 3, 4 are arranged in a gas atmosphere, so that the switching device 100 is embodied as a gas-filled relay or gas-filled contactor. To this end, the contacts 2, 3, 4 are arranged within a switching chamber 11, formed by a switching chamber wall 12 and a switching chamber base 13, in a hermetically sealed portion of the housing 1. The housing 1 and, in particular, the hermetically sealed portion of the housing 1 completely surrounds the magnet armature 5 and the contacts 2, 3, 4. The hermetically sealed portion of the housing 1 and therefore also the switching chamber 11 are filled with a gas 14. The gas 14, which can be introduced via a gas-filling port 15 within the scope of the production of the switching device 100, can particularly preferably contain hydrogen, for example with 50% or more H2 in an inert gas or even with 100% H2, since hydrogen-containing gas can promote extinguishing of arcs. Furthermore, there may be so-called blowout magnets (not shown), that is to say permanent magnets which can extend the arc path and therefore improve extinguishing of the arcs, inside or outside the switching chamber 11. The switching chamber wall 12 and the switching chamber base 13 can be manufactured, for example, with or from a metal oxide such as Al2O3. Furthermore, plastics with a sufficiently high temperature resistance, for example a PEEK, a PE and/or a glass-filled PBT, are also suitable. As an alternative or in addition, the switching chamber 11 can also at least partially include a POM, in particular with the structure (CH2O)n.
An exemplary embodiment of a switching chamber wall 12 of a switching device 100 with which the described problem can be avoided is shown in connection with
The switching chamber wall 12 has an inner side 121 which forms a portion of the inner side of the switching chamber. The switching chamber base, not shown in
As can be seen in
In addition to the switching chamber wall 12 shown, the switching chamber base of the switching chamber can also have a continuous occluded surface region which can have the features described above.
In the exemplary embodiment shown, the switching chamber wall 12 can have, for example, external dimensions with a length of approximately 54 mm, a width of approximately 24 mm and a height of approximately 25 mm. The structure which forms the occluded region, which structure is illustrated on an enlarged scale in
The features and exemplary embodiments described in conjunction with the figures can be combined with one another according to further exemplary embodiments, even if not all combinations have been explicitly described. Furthermore, the exemplary embodiments described in conjunction with the figures may alternatively or additionally include further features in accordance with the description in the general part.
The invention is not restricted to the exemplary embodiments by the description on the basis of said exemplary embodiments. Rather, the invention encompasses any novel feature and any combination of features, which in particular includes any combination of features in the patent claims, even if this feature or this combination is not itself explicitly specified in the patent claims or exemplary embodiments.
Number | Date | Country | Kind |
---|---|---|---|
102018109403.5 | Apr 2018 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/059545 | 4/12/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/201806 | 10/24/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8093974 | Nagura | Jan 2012 | B2 |
9831053 | Haehnel et al. | Nov 2017 | B2 |
20060151439 | Shea | Jul 2006 | A1 |
20100060392 | Cho et al. | Mar 2010 | A1 |
20120234624 | Takeuchi | Sep 2012 | A1 |
20130057377 | Yano | Mar 2013 | A1 |
20130301181 | Naka et al. | Nov 2013 | A1 |
20150022291 | Osamu et al. | Jan 2015 | A1 |
20160071670 | Thomas et al. | Mar 2016 | A1 |
20160233039 | Kenji et al. | Aug 2016 | A1 |
20160365210 | Blackmon | Dec 2016 | A1 |
20180358188 | Xiaobin et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
102737914 | Oct 2012 | CN |
104221115 | Dec 2014 | CN |
104966646 | Oct 2015 | CN |
105070590 | Nov 2015 | CN |
105340044 | Feb 2016 | CN |
105531783 | Apr 2016 | CN |
105762022 | Jul 2016 | CN |
106981400 | Jul 2017 | CN |
107204254 | Sep 2017 | CN |
107204257 | Sep 2017 | CN |
107452551 | Dec 2017 | CN |
206921752 | Jan 2018 | CN |
207217414 | Apr 2018 | CN |
102013210195 | Dec 2014 | DE |
2549498 | Jan 2013 | EP |
2003308773 | Oct 2003 | JP |
2012104356 | May 2012 | JP |
2012199132 | Oct 2012 | JP |
2015109180 | Jun 2015 | JP |
2016046007 | Apr 2016 | JP |
2016520248 | Jul 2016 | JP |
2015191373 | Dec 2015 | WO |
2017185525 | Nov 2017 | WO |
Entry |
---|
Hongfa, “High Voltage Direct Current Relay,” HFE 18V-100, 5 pages, 2016. |
Number | Date | Country | |
---|---|---|---|
20210202197 A1 | Jul 2021 | US |