1. Technical Field
The present invention relates to a switching device used to control electrical systems and/or devices and, more particularly, relates to a switch for selectively adjusting or varying a state of a current load.
2. Description of Related Art
Switches and controls for electrical systems and devices have been developed that control more than one state of an electrical load or device. While it is now commonplace for devices to control a plurality of states, such as the ON/OFF/DIM/BRIGHT state of a lighting load, the integration of multiple control features in a single device typically requires more complicated manufacturing processes to accommodate the different features.
The present disclosure relates to an integrated control device that is simple to manufacture and less expensive to produce.
According to an embodiment of the present disclosure, a switching device includes a housing adapted to be mounted within a single gang electrical box and a paddle actuator operably coupled to a front face of the housing and adapted to control a state of a load. The paddle actuator has a pair of opposing long sides and a pair of opposing short sides. The paddle actuator is biased to a neutral position and is configured to pivot relative to the front face of the housing about a hinge disposed proximate to one of the short sides of the paddle actuator. At least one component is operably coupled to the housing and is disposed adjacent to the short side of the paddle actuator that is disposed proximate to the hinge. The at least one component is configured to sense at least one condition and cause the switching device to control the state of the load based on the at least one sensed condition. A control element is operably coupled to the at least one component and is configured to control at least one of a sensing range and a sensitivity of the at least one component. The paddle actuator occupies at least 50% of the front face of the housing and the at least one component substantially occupies a remainder of the front face.
According to another embodiment of the present disclosure, a switching device includes a paddle actuator adapted to control a first state of a load and having a pair of opposing long sides and a pair of opposing short sides. The paddle actuator is operably coupled to a housing adapted to be mounted within a single gang electrical box. A rocker actuator is operably coupled to the housing and is disposed at least partially within an aperture that is at least partially defined by the paddle actuator. The rocker actuator is configured to control a second state of the load. The switching device also includes at least one component configured to sense at least one condition. The at least one component is operably coupled to the housing and is disposed adjacent the paddle actuator. The at least one component is configured to cause the switching device to control at least one of the first and second states of the load based on the at least one sensed condition. The switching device also includes a wallplate mountable to the housing. The wallplate defines an aperture that surrounds the paddle actuator and the at least one component when the wallplate is mounted to the housing such that the paddle actuator and the at least one component are exposed relative to the wallplate.
According to another embodiment of the present disclosure, a switching device includes a paddle actuator adapted to control a first state of a load. The paddle actuator has a pair of opposing long sides and a pair of opposing short sides. The paddle actuator is operably coupled to a housing adapted to be mounted within a single gang electrical box. A rocker actuator is operably coupled to the housing and is disposed at least partially within an aperture defined at least partially by the paddle actuator. The rocker actuator is configured to control a second state of the load. The switching device also includes at least one sensor configured to sense at least one condition. The at least one sensor is operably coupled to the housing and is disposed adjacent the paddle actuator. The at least one sensed condition is selected from the group consisting of motion, occupancy, humidity, infrared light, ambient light, heat, barometric pressure, ultrasonic conditions, sound, imagery, and temperature. The at least one sensor is configured to cause the switching device to control at least one of the first and second states of the load based on the at least one sensed condition.
Various embodiments of the presently disclosed switching device are described herein with reference to the drawings wherein:
Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings wherein like reference numerals identify similar or identical elements. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
The switching device described herein in accordance with the present disclosure relates to a dimmer-like switch characterized by a large paddle actuator having an intensity actuator embedded therein. The paddle actuator is preferably substantially rectangular in shape having a pair of opposing long sides and top and bottom short sides. The paddle actuator is biased to a rest or neutral position by a one or more springs (e.g., leaf springs) formed in a sub-panel below the paddle. A user may press the paddle to overcome the bias and cause the paddle to rotate about one or more pivots to a depressed position wherein an ON/OFF switch is actuated. When released, the paddle returns to a biased rest position. Thus, the ON/OFF switch is actuated only momentarily. In this way, the paddle has a depressed position and a rest position rather than alternating between an “ON” position and an “OFF” position common to most household switches.
As mentioned above, an intensity actuator is disposed on a surface of the paddle actuator and is configured to rock about one or more additional pivots. The intensity actuator is biased to a rest position by one or more springs formed in the sub-panel. Springs are configured to bias the intensity actuator in a neutral, generally central position. A user may press the intensity actuator to overcome the bias of either leaf spring to adjust (decrease or increase) intensity (e.g., an INTENSITY state) as desired. More specifically, this action may be configured to change the state of a load connected to the switching device from DIM to BRIGHT and/or any one or more levels therebetween (e.g., greater than DIM and less than BRIGHT). When the intensity actuator is released, it returns to the neutral position.
The intensity actuator is located within an opening defined in the paddle actuator and is configured to operate independently of the paddle actuator. In embodiments, the opening is defined horizontally relative to the paddle actuator. That is, the opening is defined parallel to the top and bottom short sides of the paddle actuator. Further, opening may be defined close to the top short side of the paddle actuator or, alternatively, close to the bottom short side of the paddle actuator.
Referring now to
Referring now to
With continued reference to
Light pipe 111, peg 142A, leaf springs 138 and 140, and micro-switches 136 and 134 together form a rocker switch assembly that, when activated, may be used to control the intensity of a light, the relevant speed of a fan, the temperature setting of a thermostat, or any other similar electrical device and/or system connected to the switch of the present disclosure. In embodiments, light pipe 111, peg 142A, leaf springs 138 and 140, and micro-switches 136 and 134 together form a rocker switch assembly that, when activated, may be used to actuate an ON/OFF switch.
Referring now to
Referring now to
An air-gap switch interface 248 extends through a cut out in printed circuit board 131 as shown. Micro-switches 134 and 136 and their corresponding spring-loaded plungers 134A and 136A are also disposed on printed circuit board 131 and positioned to correspond to the placement of leaf springs 138 and 140 (
In use, when rocker switch 108 is depressed to pivot, any one or more of LEDs 534, 536, 538, 540, 542, 544, and 546 is configured to illuminate to provide a visual status of a load connected to the switching device 10. By way of example, a first depression of rocker switch 108 may illuminate LED 546 and a second depression of rocker switch 108 may illuminate LED 544 and turn off LED 546. Alternatively, the second depression of rocker switch 108 may illuminate LED 544 such that LEDs 546 and 544 are illuminated simultaneously and/or in sequence from left to right. In this scenario, each subsequent depression of rocker switch 108 illuminates the LED to the right (e.g., LED 542, LED 540, etc.) or the LED following the LED illuminated by the previous depression of rocker switch 108 (e.g., a third depression of rocker switch 108 illuminates LED 542). In embodiments, LEDs 534, 536, 538, 540, 542, 544, and 546 may illuminate individually or in sequence from right to left. For example, a first depression of rocker switch 108 may illuminate LED 534 and each subsequent depressions of rocker switch 108 illuminates the LED to the left (e.g., LED 536, LED 538, etc.) or the LED following the LED illuminated by the previous depression of rocker switch 108.
In embodiments, paddle actuator 100 may be configured to cause any one or more of LEDs 534, 536, 538, 540, 542, 544, and 546 to illuminate in the same manner as described above with respect to rocker switch 108 (e.g., individually, sequentially from right to left, sequentially left to right, or any other possible combination, etc.). The seven LED 534, 536, 538, 540, 542, 544, and 546 configuration (
With returned reference to
When paddle actuator 100, housing cover 102 and circuit board 131 are cooperatively assembled, paddle actuator 100 pivots along mechanical interfaces 110A, 110B which are snap-fit into wells 144 and 146, respectively. Located directly beneath the point of resilient contact between tab 113A and leaf spring 124 is micro-switch 132 and spring-loaded plunger 132A. This arrangement, depicted in
The sloping ramp configuration of locking surface 113C shown in
Still referring to
Referring now to
Referring now to
Referring now to
Referring now to
In the embodiment shown, switching device further includes a sub-housing 208 including an aperture (not shown) disposed on the front face of housing 204. The aperture is shown in the illustrated embodiment at least partially covered by a lens or window 210. In other embodiments, the lens or window 210 may be omitted. The sub-housing 208 is configured to house any one or more suitable components configured to operate in cooperation with switching device 200. In the illustrated embodiment of
More specifically, in one embodiment, the respective percentages of total area of aperture 218 and/or the front face of housing 204 occupied by paddle actuator 206 and sub-housing 208 (and/or sensor 212), respectively, is about 60% and about 40%, respectively. In another embodiment, the respective percentages of total area of aperture 218 and/or the front face of housing 204 occupied by paddle actuator 206 and sub-housing 208 (and/or sensor 212), is about 70% and about 30%, respectively.
In certain embodiments, any one or more control elements may be included to limit the range, sensitivity, and/or response of the sensor based on the requirements of the user. An example of such an clement is a so-called “blinder” that is used to adjust or limit the field of view of sensor 212. An example of a blinder is disclosed in U.S. Pat. No. 5,739,753, the entirety of which is incorporated herein by reference. In addition to or in lieu of sensor 212, sub-housing 208 may house any one or more other suitable components configured for use with switching device 200 such as, for example, an illumination device (e.g., a guide light, a night light, etc.), a timer mechanism, one or more indicators (e.g., LED) configured to generate visual and/or audible feedback to a user and/or provide a visual/audible status of switching device 200. In embodiments wherein a timer mechanism is included, the timer mechanism may be configured to automatically control the state of a load (e.g., a light fixture) connected to switching device 200. Control of the state of a load connected to switching device 200 may include, but is not limited to, changing the state of the load between DIM and BRIGHT (in the scenario of a light fixture) and between ON AND OFF at specific time intervals as dictated by user-controlled timer mechanism settings. Further, the timer mechanism is not limited to controlling a load connected directly to the switching device 200. That is, the timer mechanism may be configured to control the state of any suitable load remote from switching device 200 through any suitable wireless communication protocol (e.g., Bluetooth, WiFi, Z-Wave, IEEE 802.11, etc.).
In embodiments, switching device 200 may include suitable mechanical components (not shown) operably coupled to the sensor 212 such that sensor 212 is movable relative to housing to enable the field-of-view of sensor 212 to be adjusted and/or aimed as desired. In the illustrated embodiment of
Suitable circuitry from the sensor element 212 is electrically connected to the circuit board 131 such that operation (e.g., dimming, ON, OFF, etc.) of switching device 200 may be controlled based on sensed information received, as input, at the circuit board 131 from the sensor 212. By way of example, sensor 212 may be configured to sense a condition such as motion and/or occupancy in the field-of-view of sensor 212 and/or window 210. Based on this sensed information, the sensor 212 generates a feedback signal to the circuit board 131 to cause switching device 200 to change the state of a load connected thereto and/or cause one or more indicators housed within aperture 208 to provide visual and/or audible feedback. More specifically, based on signals received, as input, at the circuit board 131 from the sensor 212, the switching device 200 may be configured to change the state of a load (e.g., light fixture) connected to the switching device 200 from ON to OFF, from OFF to ON, from DIM to BRIGHT, from BRIGHT to DIM, and/or any one or more levels therebetween (e.g., greater than DIM and less than BRIGHT).
It should be understood that the embodiment of
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments.
This application is a continuation-in-part of U.S. Patent Application entitled “DIMMER SWITCH” filed in the United States Patent and Trademark Office on Jul. 8, 2008 and assigned Ser. No. 12/169,233, which claims priority to Provisional Patent Application entitled “DIMMER SWITCH” filed in the United States Patent and Trademark Office on Jul. 18, 2007 and assigned Ser. No. 60/961,188, the entire contents of all of which being incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60961188 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12169233 | Jul 2008 | US |
Child | 12637425 | US |