The invention relates to a switching device having a contact system comprising a movable contact and a stationary contact and an arc quenching device.
Switching devices having a contact system comprising a movable contact and a stationary contact and an arc quenching device are known from the general prior art, for example in the area of low voltage as switches with a stationary contact and a rotatably mounted movable contact, wherein an arc quenching device in the form of arc splitters is provided. In the area of medium voltage, switching devices are known, for example, as vacuum interrupters, which have a movable contact which is led out of a vacuum-tight housing in a vacuum-tight and movable fashion and a stationary contact which is likewise led out of the vacuum-tight housing in a vacuum-tight fashion, which contacts form a contact system within the vacuum-tight housing, wherein the arc quenching device is formed by slots in the contacts of the contact system, which slots are provided to generate a magnetic field and lead to widening or rotation of an electrical arc, which is quenched in the event of a zero crossing of the current.
The problem addressed by the present invention is to design a switching device which has better arc quenching properties.
This problem is solved according to the invention by a switching device having a contact system comprising a movable contact, which can move along a movement direction, and a stationary contact, and an arc quenching device with an arrangement for generating a magnetic field formed in a plane perpendicular to the movement direction and an electrode arrangement comprising a first electrode, which is conductively connected to the movable contact, and a second electrode, which is conductively connected to the stationary contact, wherein the first electrode and the second electrode are arranged such that an electric field is formable between the first electrode and the second electrode perpendicular to the movement direction and perpendicular to the magnetic field.
A switching device such as this has improved arc quenching properties because, owing to the arrangement for generating a magnetic field and the electrode arrangement, an arc occurring in the event of a short-circuit current when the contact system is separated, which arc has electrically conductive particles as plasma, and since the magnetic field formed in the arrangement for generating the magnetic field an electric field is generatable in the electrode arrangement comprising first and second electrode, because the charged electrically conductive particles of the plasma of the arc move to the electrodes, because of the movement in the magnetic field, and create an electric field there, which causes the generation of a countercurrent, which is formed counter to the externally applied voltage and thus counteracts the arc voltage and causes or supports the arc quenching. What is particularly advantageous in the case of a switching device such as this is that it can be used both for DC-voltage operation and AC-voltage operation because the electric field formed by the magnetic-field generating arrangement and the electrode arrangement is sufficient to quench arcs during DC-voltage operation and the same effect during a half-cycle of the alternating current is likewise sufficient during AC-voltage operation to counteract the arc voltage and to support the arc quenching. The principle on which the invention is based here is that of a magnetohydrodynamic generator which is known in and of itself and in the case of which the movement of a current of conductive particles in a magnetic field caused by the force of the magnetic field on the conductive particles generates an electric field at an electrode arrangement and leads to direct current flow. Said electric field generated in the electrode arrangement is, in the case of the switching device according to the invention, advantageously of the voltage present externally and hence oriented counter to the arc voltage and hence advantageously causes or supports arc quenching.
In an advantageous configuration of the invention, the arrangement for generating the magnetic field has a U-shaped iron core the base of which is arranged between the stationary contact and an electrical connection line, which forms a current loop, of the stationary contact and the two limbs of which extend along the contact system around said core.
In other words, a type of slot motor is formed by the U-shaped iron core in the arrangement according to the advantageous configuration, in the case of which slot motor a magnetic field is generated when a sufficiently high current occurs between the limbs of the U-shaped iron core, which magnetic field exerts a force on the movable contact of the contact system, which leads to the contact system being opened. Furthermore, by means of this arrangement of the U-shaped iron core and the magnetic field generated thereby, a force is also ensured on the electrically conductive particles of the plasma current, which force can be used to form the opposing field at the electrode arrangement.
In a particularly advantageous configuration of the invention, the first electrode extends laterally from the movable contact in the direction of the stationary contact and the second electrode extends laterally from the stationary contact in the direction of the movable contact such that, when the contact system is interrupted, the first electrode and the second electrode extend along and around an intermediate space formed between the movable contact and the stationary contact. Owing to such an arrangement of first electrode and second electrode, a geometrically simple design is realized, with which the formation of the electric field between the first electrode and the second electrode perpendicular to the movement direction of the movable contact and perpendicular to the magnetic field is made possible according to the cross product of current direction and magnetic field direction.
In a particularly advantageous configuration of the invention, the movable contact is mechanically coupled to a drive in an electrically insulated manner and is conductively connected to a first electrical connection of the switching device by means of a first sliding contact. It is also possible for a flexible conductor to be used for connection instead of a sliding contact. A sliding contact or flexible conductor of this type is a simple possibility for electrically conductively connecting a first electrical connection of the switching device to the movable contact and simultaneously ensuring the movement of the movable contact for opening or closing the contact system of the switching device.
In another advantageous configuration of the invention, the first electrode is conductively connected to the first electrical connection of the switching device by means of a second sliding contact. It is also possible for a second flexible conductor to be used for connection instead of the second sliding contact. A second sliding contact or a second flexible conductor for electrically conductive connection of the first electrode to the first electrical connection of the switching device likewise enables an electrically conductive connection in a simple fashion while simultaneously ensuring the mobility of the movable contact.
The contact system and the arc quenching device can be arranged differently, for example in an air-insulated housing. In a particularly advantageous configuration of the invention, the contact system and the arc quenching device are arranged in a vacuum-tight housing, wherein a movable contact connection bolt is led out of the vacuum-tight housing in a vacuum-tight and movable fashion. The arrangement of the contact system and the arc quenching device in a vacuum-tight housing is particularly advantageous if the switching device is intended to be used in the medium-voltage range because in such a vacuum interrupter, an arc in the form of a metal-vapor plasma with extremely high conductivity occurs when the contact system is interrupted, owing to a short-circuit current. Furthermore, the short-circuit current which is intended to be interrupted is high in the medium-voltage range, with the result that a large magnetic field is generatable by the arrangement for generating the magnetic field. In the case of a simultaneously relatively low arc voltage of the arc in the vacuum interrupter, the electric field generatable between the electrode arrangement is sufficient to cause or support arc quenching.
The invention is explained in more detail below on the basis of the drawing and an exemplary embodiment with reference to the appended figures, in which:
The function of the switching device 1 is explained in more detail with reference to
Although it is not illustrated further in the figures, what is particularly advantageous is the arrangement of the switching device 1 in a vacuum-tight housing, with the result that, in other words, a vacuum interrupter is formed which correspondingly accommodates the contact system 4, the arrangement 13 for generating the magnetic field and the electrode arrangement comprising first electrode 16 and second electrode 18 in a vacuum-tight housing. In the case of the conditions prevailing in the medium-voltage range, an arrangement of this type supports arc quenching in a particularly effective manner. For this purpose, both the drive rod 10 and the electrical lines 8 to the movable contact and optionally to the first electrode 16 are configured such that both the movement and the electrical connection of the movable contact 7 are introduced movably in a vacuum-tight fashion into the vacuum-tight housing of the vacuum interrupter.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 222 328 | Dec 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/074356 | 11/21/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/086587 | 6/12/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4021628 | Kimblin | May 1977 | A |
4560848 | Arimoto | Dec 1985 | A |
4743720 | Takeuchi et al. | May 1988 | A |
5138122 | Moldovan | Aug 1992 | A |
5420555 | Toguchi | May 1995 | A |
5680084 | Kishi | Oct 1997 | A |
5877466 | Bolongeat-Mobleu et al. | Mar 1999 | A |
8390410 | Kojima et al. | Mar 2013 | B2 |
8395463 | Ito | Mar 2013 | B2 |
8816801 | Tachikawa | Aug 2014 | B2 |
8866034 | Fasano | Oct 2014 | B2 |
20120261382 | Fasano | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
101887823 | Nov 2010 | CN |
102737914 | Oct 2012 | CN |
2600683 | Jul 1976 | DE |
19714655 | Oct 1998 | DE |
69728709 | Apr 2005 | DE |
0231600 | Aug 1987 | EP |
1760744 | Mar 2007 | EP |
S6178016 | Apr 1986 | JP |
Number | Date | Country | |
---|---|---|---|
20150318129 A1 | Nov 2015 | US |