1. Field of the Invention
The invention relates to a switch element for valve shut-off, fabricated as a cam follower for a plunger rod valve drive of an internal combustion engine.
2. Description of the Related Art
Such a switch element has been disclosed in DE 199 15 531 A1. A disadvantage of this is that only a one-sided coupling is provided over a piston. Therefore, there is an unnecessarily high component load to be reckoned with in the coupling area. Besides, coupling involves an undesirable tilting of the inner element relative to the outer part. At the same time, it is found that the twist safety inserted in the radial bore of the inner element is relatively costly, particularly as its pressing in leads to undesirable deformation of the radial bore, which may adversely affect a proper lengthwise motion of the piston. Since the piston with its cylindrical jacket enters a bore in the outer part for coupling, the latter undesirably has only a very small bearing area, and in this case it is necessary to work with a very fine tolerance. When the piston is not properly run out, it may also happen, owing to the geometry in the transition to the bore, that only two edges bear. Here wear must be reckoned with. Last but not least, the switch element, because of its one-sided oil supply, must be built into its guide directionally.
The object of the invention, then, is to create a switch element of the kind above mentioned, in which the cited disadvantages are eliminated by simple means.
The switch element proposed eliminates the disadvantages described above.
Two pistons are provided as coupling means, running in the receptacle, configured as a radial bore, of the inner element, and there diametrically opposed to each other. As a result, we have an especially tilt-proof mechanism, generating only a small component load when coupled. Instead of the radial bore in the inner element, a blind hole or similar conformation is also conceivable. Besides, it is a subject matter of claim 1 for the receptacle of the outer part to be advantageously fabricated as an annular groove in its bore.
Further, the inner element is to be secured against rotation relative to the outer part, for example by means of a pin-like element. Thus the coupling means as regards their receptacle are positioned alike over the entire operating period of the switch element.
Likewise, it is proposed that the annular groove be intersected by two diametrically opposed oil ports, such as bores, offset 90° in circumferential direction from the piston. If two leads, opposed to each other, are provided in an oil gallery of a surrounding structure such as for example a cylinder head or guide for the switch element, connected to the internal combustion engine, then it does not matter which oil port of the switch element communicates with which lead. Preferably, the oil paths have equal lengths to achieve equal switch times. In the case of only one lead, of course, a directional installation of the switch element is necessary. Here, suitable markings can be placed on the latter to facilitate assembly.
As suitable means of rotationally securing the switch element relative to the surrounding structure, in a further aspect of the invention, flattenings are proposed on the outer jacket of the outer part.
Also, it is advantageous to provide a roller as cam counterpart.
Instead of the pistons as coupling means, other elements such as latches, balls, wedges and the like geometrical locking elements may be employed. If desired, a dynamic closure is conceivable as well.
The invention is illustrated in more detail with reference to the drawings, in which
In the axial position of the outer part 2, graphically shown distant from the inner element 4, their receptacles 6, 7 are in line. The receptacle 6 of the outer part 2 is fabricated as an encircling annular groove. The receptacle 7 on the inner element 4, by contrast, is configured as a through bore extending radially. In this, two diametrically opposed coupling means 8 are arranged, here configured as pistons. A radially outer face of the coupling means 8 is shown bulbous, having on its under side segmentally a plane transverse surface as contact area for a facing under side 27 of the annular groove 6 (see
The couplers 8 are acted upon radially outward by the force of a compression spring means 10 (coupling direction). Radially inward, i.e. in uncoupling direction, the couplers 8 can be displaced by hydraulic means. For this purpose, the outer part 2 may suitably have two diametrically opposed oil ports 11 (see
Further, one skilled in the art will see from the figures that on the outer jacket 12 of the outer part 2, means 13 of security against rotation are applied. These are configured as mutually opposed flattenings. This measure is necessary firstly to connect the oil ports 11 with their supply lines, and secondly to orient a roller 14 with a cam, not shown.
According to another aspect of the invention, a further port 28 is formed in a lower portion of the inner element 4, and is in communication with the radial bore 7. Also, the inner element 4 includes a lower end defining a raised pad 29.
The outer part 2 also has a further annular groove 30 facing the bore 3. The groove 30 is disposed below the inner element 4, at least when the couplers 8 couple the inner element 4 to the outer part 2. Also, part of an outer surface of the part 2, disposed proximate to a lower end of the outer part 2, forms an annular recess 31, and a lower surface of the outer part has a further bore 32 formed therethrough. The further bore 32 is in communication with the bore 3 of the outer part 2. Futhermore, a recess 34 is formed in a lower surface of the outer part 2 facing the bore 3, and the recess 34 forms a seat for receiving a lower end of at least part of the lost-motion spring 5. The outer part 2 also includes at its lower end a U-shaped configuration 33 for engaging roller 14, which is adapted to engage the cam (not shown).
Number | Date | Country | Kind |
---|---|---|---|
102 04 672 | Feb 2002 | DE | national |
This application is a divisional of U.S. application Ser. No. 10/498,481, Jan. 27, 2005 the priority of which is hereby claimed under 35 U.S.C. § 120. U.S. application Ser. No. 10/498,481 is a National Stage filing under 35 U.S.C. § 371 of International Application No. PCT/EP03/00307, filed Jan. 15, 2003. International Application No. PCT/EP03/00307 claims priority of both German Application No. DE 102 04 672.7, filed Feb. 6, 2002, and U.S. Provisional Patent Application No. 60/354,628, filed Feb. 6, 2002, the priorities of each of which are hereby claimed, said International Application having been published in German, but not in English, as International Publication No. WO 03/067038 A1. U.S. application Ser. No. 10/498,481 is hereby incorporated by reference in its entirety, as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
3108580 | Crane | Oct 1963 | A |
3886808 | Weber | Jun 1975 | A |
4054109 | Herrin et al. | Oct 1977 | A |
4083334 | Roncon | Apr 1978 | A |
4089234 | Henson et al. | May 1978 | A |
4098240 | Abell, Jr. | Jul 1978 | A |
4133332 | Benson et al. | Jan 1979 | A |
4164917 | Glasson | Aug 1979 | A |
4207775 | Lintott | Jun 1980 | A |
4228771 | Krieg | Oct 1980 | A |
4231267 | Van Slooten | Nov 1980 | A |
4386806 | Axen et al. | Jun 1983 | A |
4463714 | Nakamura | Aug 1984 | A |
4546734 | Kodama | Oct 1985 | A |
4576128 | Kenichi | Mar 1986 | A |
4615307 | Kodama et al. | Oct 1986 | A |
4739675 | Connell | Apr 1988 | A |
4768475 | Ikemura | Sep 1988 | A |
4790274 | Inoue et al. | Dec 1988 | A |
4905639 | Konno | Mar 1990 | A |
4913106 | Rhoads | Apr 1990 | A |
4941438 | Muto | Jul 1990 | A |
4942855 | Muto | Jul 1990 | A |
5085182 | Nakamura et al. | Feb 1992 | A |
5088455 | Moretz | Feb 1992 | A |
5090364 | McCarroll et al. | Feb 1992 | A |
5099806 | Murata et al. | Mar 1992 | A |
5245958 | Krieg et al. | Sep 1993 | A |
5247913 | Manolis | Sep 1993 | A |
5253621 | Dopson et al. | Oct 1993 | A |
5255639 | Shirey et al. | Oct 1993 | A |
5261361 | Speil | Nov 1993 | A |
5307769 | Meagher et al. | May 1994 | A |
5345904 | Dopson et al. | Sep 1994 | A |
5351662 | Dopson et al. | Oct 1994 | A |
5357916 | Matterazzo | Oct 1994 | A |
5361733 | Spath et al. | Nov 1994 | A |
5398648 | Spath et al. | Mar 1995 | A |
5402756 | Bohme et al. | Apr 1995 | A |
5419290 | Hurr et al. | May 1995 | A |
5429079 | Murata et al. | Jul 1995 | A |
5431133 | Spath et al. | Jul 1995 | A |
5501186 | Hara et al. | Mar 1996 | A |
5544626 | Diggs et al. | Aug 1996 | A |
5544628 | Voigt | Aug 1996 | A |
5546899 | Sperling et al. | Aug 1996 | A |
5555861 | Mayr et al. | Sep 1996 | A |
5615651 | Miyachi | Apr 1997 | A |
5651335 | Elendt et al. | Jul 1997 | A |
5655487 | Maas et al. | Aug 1997 | A |
5660153 | Hampton et al. | Aug 1997 | A |
5669342 | Speil | Sep 1997 | A |
5682848 | Hampton et al. | Nov 1997 | A |
5709180 | Spath | Jan 1998 | A |
5720244 | Faria | Feb 1998 | A |
5782216 | Haas et al. | Jul 1998 | A |
5803040 | Biesinger et al. | Sep 1998 | A |
5832884 | Haas et al. | Nov 1998 | A |
5875748 | Haas et al. | Mar 1999 | A |
5893344 | Church | Apr 1999 | A |
5934232 | Greene et al. | Aug 1999 | A |
6032643 | Hosaka et al. | Mar 2000 | A |
6039017 | Hendriksma | Mar 2000 | A |
6053133 | Faria et al. | Apr 2000 | A |
6076491 | Allen | Jun 2000 | A |
6092497 | Preston et al. | Jul 2000 | A |
6095696 | Foldi | Aug 2000 | A |
6164255 | Maas et al. | Dec 2000 | A |
6196175 | Church | Mar 2001 | B1 |
6196176 | Groh et al. | Mar 2001 | B1 |
6213076 | Fischer et al. | Apr 2001 | B1 |
6244229 | Nakano et al. | Jun 2001 | B1 |
6247433 | Faria et al. | Jun 2001 | B1 |
6257185 | Groh et al. | Jul 2001 | B1 |
6273039 | Church | Aug 2001 | B1 |
6318324 | Koeroghlian et al. | Nov 2001 | B1 |
6321704 | Church et al. | Nov 2001 | B1 |
6321705 | Fernandez et al. | Nov 2001 | B1 |
6325030 | Spath et al. | Dec 2001 | B1 |
6345596 | Kuhl | Feb 2002 | B1 |
6405699 | Church | Jun 2002 | B1 |
6412460 | Sato et al. | Jul 2002 | B1 |
6427652 | Faria et al. | Aug 2002 | B2 |
6439176 | Payne et al. | Aug 2002 | B1 |
6460499 | Mason et al. | Oct 2002 | B1 |
6477997 | Wakeman | Nov 2002 | B1 |
6497207 | Spath et al. | Dec 2002 | B2 |
6513470 | Hendriksma et al. | Feb 2003 | B1 |
6578535 | Spath et al. | Jun 2003 | B2 |
6588394 | Zheng | Jul 2003 | B2 |
6591796 | Scott | Jul 2003 | B1 |
6595174 | Schnell | Jul 2003 | B2 |
6606972 | Wenisch et al. | Aug 2003 | B2 |
6615783 | Haas et al. | Sep 2003 | B2 |
6655487 | Mallette et al. | Dec 2003 | B2 |
6668776 | Hendriksma et al. | Dec 2003 | B2 |
6745737 | Evans et al. | Jun 2004 | B2 |
6748914 | Spath et al. | Jun 2004 | B2 |
6802288 | Spath | Oct 2004 | B2 |
6814040 | Hendriksma et al. | Nov 2004 | B2 |
6866014 | Spath | Mar 2005 | B2 |
6920857 | Spath | Jul 2005 | B2 |
6976463 | Spath et al. | Dec 2005 | B2 |
6997154 | Geyer et al. | Feb 2006 | B2 |
7007651 | Spath | Mar 2006 | B2 |
20010009145 | Faria et al. | Jul 2001 | A1 |
20020038642 | Haas et al. | Apr 2002 | A1 |
20020195072 | Spath et al. | Dec 2002 | A1 |
20030070636 | Evans et al. | Apr 2003 | A1 |
20030075129 | Spath et al. | Apr 2003 | A1 |
20030101953 | Hendriksma et al. | Jun 2003 | A1 |
20050081811 | Spath et al. | Apr 2005 | A1 |
20050103300 | Spath et al. | May 2005 | A1 |
20060191503 | Geyer et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
42 06 166 | Sep 1992 | DE |
43 32 660 | Mar 1995 | DE |
43 33 927 | Apr 1995 | DE |
198 04 952 | Aug 1999 | DE |
199 15 531 | Oct 2000 | DE |
199 15 532 | Oct 2000 | DE |
199 19 245 | Nov 2000 | DE |
0 318 151 | May 1989 | EP |
0 608 925 | Aug 1994 | EP |
1 149 989 | Oct 2001 | EP |
574 852 | Jan 1946 | GB |
2 272 022 | May 1994 | GB |
WO 9530081 | Nov 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20060219199 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60354628 | Feb 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10498481 | US | |
Child | 11402904 | US |