The present invention relates to mechanisms for altering the actuation of valves in internal combustion engines; more particularly, to finger follower type rocker arms having means for changing between high and low valve lifts; and most particularly, to a two-step finger follower type rocker arm assembly, having a fixed central cam follower and a pair of pivotal lateral cam followers disposed on the finger follower body, and having locking means for latching and unlatching the lateral cam followers from the finger follower body to shift between high lift and low lift modes.
Variable valve activation (VVA) mechanisms for internal combustion engines are well known. It is known to be desirable to lower the lift of one or more valves of a multiple-cylinder engine, especially intake valves, during periods of light engine load. Such deactivation can substantially improve fuel efficiency.
Various approaches have been disclosed for changing the lift of valves in a running engine. One known approach is to provide an intermediary cam follower arrangement which is rotatable about the engine camshaft and is capable of changing both the valve lift and timing, the cam shaft typically having both high-lift and low-lift lobes for each such valve. Such an arrangement can be complicated and costly to manufacture and difficult to install onto a camshaft during engine assembly.
Another known approach is to provide a deactivation mechanism in the hydraulic lash adjuster (HLA) upon which a cam follower rocker arm pivots. Such an arrangement is advantageous in that it can provide variable lift from a single cam lobe by making the HLA either competent or incompetent to transfer the motion of the cam eccentric to the valve stem. A shortcoming of providing deactivation at the HLA end of a rocker arm is that, because the cam lobe actuates the rocker near its longitudinal center point, the variation in lift produced at the valve-actuating end can be only about one-half of the extent of travel of the HLA deactivation mechanism.
Still another known approach is to provide a deactivation mechanism in the valve-actuating end of a rocker arm cam follower (opposite from the HLA pivot end) which locks and unlocks the valve actuator portion from the follower body. Unlike the HLA deactivation approach, this approach typically requires both high-lift and low-lift cam lobes to provide variable lift.
Another known approach is to provide a rocker arm cam follower with a finger body having a first cam follower positioned within the finger body and a secondary cam follower. In some designs, the first cam follower is selectively moveable relative to the finger body and in other designs, the secondary cam followers are selectively moveable relative to the finger body. The moveable members generally are axially moveable or pivot about a secondary axis which adds complexity to the design or fails to provide smooth motion.
The present invention provides a two-step finger follower rocker arm assembly for variably activating a gas valve of in an internal combustion engine having a camshaft having a central lobe and at least one lateral lobe adjacent a first side of the central lobe. The finger follower rocker arm assembly comprises a follower body having a first end for engaging the engine and a second end for engaging a valve stem of the gas valve. The follower body has a passage formed in the body between the first and second ends and has a first bore traversing the passage. A central follower is positioned in the passage and is configured for engagement with the central lobe. A first lateral follower is pivotally supported on a shaft extending through the first bore and is configured to engage the at least one lateral cam lobe. A latching mechanism is positioned on the follower body for latching the lateral follower to the body to cause the motion of the at least one lateral cam lobe to be translated to the body in a first rocker assembly mode having a first valve lift capability and for unlatching the lateral follower from the body to cause engagement of the central follower with the central camshaft lobe to provide a second rocker assembly mode having a second valve lift capability.
The present invention will be described with reference to the accompanying drawing figures wherein like numbers represent like elements throughout. Certain terminology, for example, “top”, “bottom”, “right”, “left”, “front”, “frontward”, “forward”, “back”, “rear” and “rearward”, is used in the following description for relative descriptive clarity only and is not intended to be limiting.
Referring to
A central cam follower 20 is mounted in the opening 15 with a lateral follower 30 on each side thereof. Each lateral follower 30 is positioned between the central cam follower 20 and a respective side wall 14 of the finger body 11. The central cam follower 20 and the lateral followers 30 are supported on a single shaft 17 extending through a bore 18 extending through the side walls 14 transverse to the opening 15. The preferred central cam follower 20 includes a cylindrical race 22 with a roller complement 24 positioned therein such that the cylindrical race 22 is rotatable about the shaft 17. The central cam follower 20 is positioned to contact the low or zero lift cam lobe 8 of a camshaft 7, as illustrated in
Referring to
A locking tab 38 is provided on each lateral follower 30. Each locking tab 38 is configured to be selectively engaged by a locking mechanism 40 to prevent pivoting of the lateral followers 30 about the shaft 17. The locking tab 38 protrudes from the lateral follower body portion 32. When positioned in the finger body the end faces of each locking tab 38 contact each other forming an opening of the proper size for the cam roller 20. This prevents the lateral followers 30 from “pinching” the cam roller during operation. In the locked condition, see
A preferred locking mechanism 40 will be described with reference to
In order to accurately control the motion of the engine valve, the position of the lateral follower contact surfaces 37 needs to be precisely positioned relative to the finger body valve stem contact surface 23 and the lash adjuster contact surface 22. Variation in this position may cause the locking mechanism 40 to not engage or not allow the valve to completely open in the high lift mode. This variation can be caused by normal deviations during the manufacture of the finger body 11 and lateral followers 30. The surface 49 of the locking bar 48 that contacts the lateral followers 30 preferably has a slightly tapered shape with the locking tabs 38 locking surfaces 39 having a matching taper. The further the locking bar 48 moves under the locking tabs 38, the higher the lateral follower contact surface 37 is relative to the finger body 11. Located on the actuator piston 45 is an adjusting ring 50 that limits the travel of the piston 45 by contacting the actuator end cap 52 which is attached to the actuator body. This ring 50 is moveable on the piston 45 only by a force which is significantly higher than the force exerted by the piston 45 under high pressure oil conditions. During the manufacture of the finger follower assembly 10, when the actuator 42 is first assembled onto the finger body 11, the adjusting ring 50 is positioned significantly towards the locking bar 48 end of the piston 45. The assembled finger assembly 10 can then be put in a fixture that locates the lateral followers 30 to accurately represent the position of the contact surface 37 as when assembled into an engine. The locking bar 48 is then positioned under the locking tabs 38 the proper distance such that the tapered surfaces 49, 39 of the locking bar 48 and locking tabs 38, respectively, cause the lateral follower contact surfaces to rise to the proper cam contact height. While the locking bar 48 and piston 45 are being moved, the adjusting ring 50 is forced to slide down the piston 45 by contact with the end cap 52. The adjusting ring 50 will thereby be set to a desired stop position such that during normal operation in the engine, the adjusting ring 50 provides a stop for the piston travel, thus ensuring the lateral follower contact surfaces 37 are at the proper height.
Referring to
The follower body 112 is provided with a passage 128 therethrough between socket 120 and pad 124, passage 128 being generally configured to receive a cam follower 132. Body 112 is further provided with a first bore 134 transverse of passage 128 for supporting a shaft 140 extending through bore 134 and a central bore 133 in the cam follower 132 to support the cam follower 132 in passage 128 for rotation about the shaft 140 axis X. The central bore 133 is preferably provided with a roller bearing assembly (not shown) to facilitate rotation about the shaft 140, but may otherwise be configured for rotation.
First and second lateral slider followers 142a,b are mounted on opposite ends, respectively, of shaft 140 such that the slider followers 142a,b are supported for rotational motion about the shaft 140 axis X. Each slider follower 142a,b has an arcuate outer surface 144 for engaging an outer cam lobe 9 of the engine camshaft 7, as will be described hereinafter. The arcuate outer surfaces 144 are such that the center of the curve is located offset from the shaft 140 axis X such that a rotating force is created on the slider followers 142a,b when a force is applied by the cam lobes 9.
On an opposite lower surface 143, each slider follower 142a,b is provided with a retaining notch 145 configured to receive an end of a spring member 160. Referring to
Each slider follower 142a,b is also provided with a locking notch 148 along an end of the slider 142 proximate the first end 114 of the follower body 112. Each locking notch 148 includes a flat engagement surface 149 configured for selective engagement by a flat engagement surface 155 of a locking pin 150 extending through the follower body 112. Referring to
As shown in
Referring to
The locking pin 150 is preferably rotated between the unlocked position and the locked position by a hydraulic actuator 170, however, the locking pin 150 may be rotated by other mechanical or electromechanical means, for example, an electric solenoid actuator. The hydraulic actuator 170 will be described with reference to
The actuator body 172 has an internal bore 176 configured to receive and support a piston member 178 having a piston head 80 and a piston shaft 182. The piston head 180 seals against the inside surface of the bore 176 such that the bore 176 and the piston head 180 define a fluid chamber 177. A fluid passage 179 extends from an external surface of the actuator body 172 to the fluid chamber 177. A fluid channel 190 extends from the lash socket 120 and is in sealed communication with the fluid passage 179 such that a sealed fluid path is formed between the lash socket 120 and the fluid chamber 177. As fluid pressure passing through the lash adjuster 2 increases, the pressure in the fluid chamber 177 increases and causes the piston member 178 to move toward the locking pin 150. The amount of fluid pressure passing through the lash adjuster 2 may be controlled in various manners, for example, through command from an engine control module (not shown).
Referring to
Having described the components of the finger follower assembly 110, its operation will now be described with reference to
When the engine is operating in a low oil pressure mode, such that a low-lift condition is desired, the oil pressure passing through the latch socket 120 will be low, thereby maintaining the piston member 178 in a retracted position. As shown in
When the engine is operating in a higher oil pressure mode, such that a high-lift condition is desired, the oil pressure passing through the latch socket 120 increases and causes the piston member 178 to move to the extended position. As shown in
This application is a 371 of PCT/US 2005/006709 filed Mar. 2, 2005, which claims the benefit of U.S. Provisional Patent Application 60/549,783 filed Mar. 3, 2004, and U.S. Provisional Patent Application 60/635,503 filed Dec. 13, 2004.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/006709 | 3/2/2005 | WO | 00 | 8/9/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/093224 | 10/6/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3742921 | Rendine | Jul 1973 | A |
4151817 | Mueller | May 1979 | A |
4607600 | Yoshizaki | Aug 1986 | A |
4768467 | Yamada et al. | Sep 1988 | A |
5287830 | Dopson et al. | Feb 1994 | A |
5529033 | Hampton | Jun 1996 | A |
5655488 | Hampton et al. | Aug 1997 | A |
5875748 | Haas et al. | Mar 1999 | A |
6314928 | Baraszu et al. | Nov 2001 | B1 |
6439179 | Hendriksma et al. | Aug 2002 | B2 |
6467445 | Harris | Oct 2002 | B1 |
6532920 | Sweetnam et al. | Mar 2003 | B1 |
6591798 | Hendriksma et al. | Jul 2003 | B2 |
6615782 | Hendriksma et al. | Sep 2003 | B1 |
6668775 | Harris | Dec 2003 | B2 |
6668779 | Hendriksma et al. | Dec 2003 | B2 |
6691657 | Hendriksma et al. | Feb 2004 | B2 |
6708660 | Seitz | Mar 2004 | B2 |
6755167 | Krieg et al. | Jun 2004 | B2 |
6810844 | Sellnau | Nov 2004 | B2 |
6925978 | Gerzseny et al. | Aug 2005 | B1 |
20030209217 | Hendriksma et al. | Nov 2003 | A1 |
20030217715 | Pierik | Nov 2003 | A1 |
20040003789 | Kreuter | Jan 2004 | A1 |
20040103869 | Harris | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
1149988 | Oct 2001 | EP |
1338760 | Aug 2003 | EP |
60 159318 | Aug 1985 | JP |
03042510 | May 2003 | WO |
WO 2005075797 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080149059 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60549783 | Mar 2004 | US | |
60635503 | Dec 2004 | US |