Information
-
Patent Grant
-
6459594
-
Patent Number
6,459,594
-
Date Filed
Wednesday, June 21, 200024 years ago
-
Date Issued
Tuesday, October 1, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Ostrolenk, Faber, Gerb & Soffen, LLP
-
CPC
-
US Classifications
Field of Search
US
- 363 21
- 363 20
- 363 97
- 363 98
- 363 127
- 363 132
- 323 222
- 323 285
- 307 125
- 307 130
-
International Classifications
-
Abstract
A switching power supply apparatus has a transformer having a primary winding, a secondary winding and a tertiary winding; a primary switching element connected to the primary winding of the transformer for providing the primary winding with an input voltage in accordance with an on-off operation of the main switching element; an output circuit connected to the secondary winding of the transformer for receiving a voltage based on the input voltage from the secondary winding, rectifying the voltage and outputting an output voltage; a detection circuit in which the output voltage output from the output circuit is indirectly detected using the tertiary winding, and the detected voltage is output; a compensating-voltage-superposition circuit which generates a compensating voltage, in accordance with the detection voltage, for compensating a deviation of the detection voltage of the detection circuit to the output voltage of the output circuit in accordance with a change of the input voltage and which superposes the compensating voltage on the detection voltage output from the detection circuit; and a control circuit which controls the on-off operation of the primary switching element so that the output voltage of the output circuit is stabilized based on the detection voltage having the compensating voltage superposed thereon.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a switching power supply apparatus provided with a converter, such as a DC-DC converter or an AC-DC converter.
2. Description of the Related Art
FIG. 9
shows an example of a circuit construction of a converter which is a basic circuit element of a conventional switching power supply apparatus. The converter shown in
FIG. 9
is an isolated and has a transformer
1
therein. A primary winding N
1
of the transformer
1
is connected to a primary circuit
2
while a secondary winding N
2
thereof is connected to a secondary circuit (output circuit)
3
.
The primary circuit
2
includes a primary switching element Q (a MOS-FET in the example shown in
FIG. 9
) and a resistor
4
and has an input thereof connected to an input power supply
5
. The secondary circuit
3
includes diodes
6
and
7
, a choke inductor
8
, and a smoothing capacitor
10
and has output terminals
3
a
and
3
b
thereof connected to a load (not shown). The direct-current input voltage Vin of the input power supply
5
is applied across the primary winding N
1
of the transformer
1
in accordance with on-off operations of the primary switching element Q, and an output voltage is produced from the secondary winding N
2
in accordance with the input voltage Vin. This output voltage from the secondary winding N
2
is rectified and smoothed by the secondary circuit
3
, and a direct-current voltage Vout is applied across the load.
As shown in
FIG. 9
, the gate of the primary switching element Q is connected to a control circuit
11
. A tertiary winding N
3
is provided in the transformer
1
, and this tertiary winding N
3
is connected to a detection circuit
12
. This detection circuit
12
includes diodes
13
and
14
, a choke inductor
15
and a smoothing capacitor
16
. These circuit elements form the same circuit as the secondary circuit
3
. Since a voltage substantially corresponding to a voltage generated across the secondary winding N
2
is generated across the tertiary winding N
3
, the voltage across the tertiary winding N
3
is rectified and smoothed by the same type circuit as the secondary circuit
3
, whereby a voltage corresponding to the output voltage Vout of the secondary circuit
3
is generated across the smoothing capacitor
16
. In addition to the above construction, the detection circuit
12
includes a diode
17
and voltage-dividing resistors
18
and
19
. The voltage across the smoothing capacitor
16
is voltage-divided by the voltage-dividing resistors
18
and
19
, and the divided voltage is applied as a detection voltage of the output voltage Vout to the control circuit
11
.
The control circuit
11
controls the on-off operations of the primary switching element Q so that the output voltage Vout, which is output based on the detection voltage from the secondary circuit
3
, has a stable set voltage value. In
FIG. 9
, N
1
′ denotes a primary winding and reference numeral
20
denotes a diode.
As described above, the switching power supply apparatus shown in
FIG. 9
performs stabilization control on the output voltage Vout of the secondary circuit
3
by causing the detection circuit
12
to indirectly detect the output voltage Vout of the secondary circuit
3
, and by causing the control circuit
11
to perform switching control of the primary switching element Q based on the detection voltage.
However, in the circuit shown in
FIG. 9
, since the switching power supply apparatus is constructed such that the output voltage Vout of the secondary circuit
3
is indirectly detected, there has been a problem that the output voltage Vout deviates from a set output voltage value Vsp because of a change of the input voltage Vin.
This problem may arise for the following reasons. For example, there is a case in which the number of turns of the secondary winding N
2
and that of the tertiary winding N
3
are different. In this case, a voltage induced across the secondary winding N
2
and a voltage induced across the tertiary winding N
3
are different. Therefore, it is necessary to use devices individually having various different characteristics, such as an endurance voltage, a forward voltage, and a reverse current, as the diodes
6
and
7
of the secondary circuit
3
and the diodes
13
and
14
of the detection circuit
12
. Even when the number of turns of the secondary winding N
2
and that of the tertiary winding N
3
are the same, in the same manner as described above. there are some cases in which devices having various different characteristics are used as the diodes
6
,
7
,
13
, and
14
.
When the input voltage Vin is changed, for example, the reverse current of each of the diodes
6
,
7
,
13
, and
14
is changed. When the characteristics of each of the diodes
6
,
7
,
13
, and
14
are different, differences in changes of the reverse currents occur among the diodes
6
,
7
,
13
, and
14
.
For example, when the input voltage Vin has a voltage value “a”, circuit constants of the control circuit
11
and the like are supposed to be set so that the output voltage Vout having the set output voltage value Vsp is stably output in accordance with switching control operations of the control circuit
11
based on the detection voltage of the detection circuit
12
. Even though the control circuit
11
is formed as such, when the input power supply
5
supplying the input voltage Vin having a voltage value “b”, which is different from the voltage value “a”, is connected to the primary circuit
2
, concerning a case in which the input voltage Vin has the voltage value “a” and a case in which the input voltage Vin has the voltage value “b”, there is a deviation between the detection voltages of the detection circuit
12
to the output voltage Vouts in accordance with a difference in the change of the reverse current of each of the diodes in response to the change of the input voltage Vin.
Since the control circuit
11
controls the on-off operations of the primary switching element Q based on the detection voltage, the output voltage Vout is obtained having a voltage value which deviates from the set output voltage value Vsp. Therefore, the output voltage Vout having the set output voltage value Vsp cannot be stably output.
As the input voltage Vin increases, the deviation of the detection voltage of the detection circuit
12
to the output voltage Vout increases. Therefore, as indicated by the dashed lines in FIG.
2
and
FIG. 4
, the greater the input voltage Vin becomes, the greater the deviation of the output voltage Vout to the set output voltage value Vsp becomes.
Recently, the operating voltages in ICs and LSIs tend to be lower, and lowvoltage driven and high-current outputs are demanded. Because of this demand, there are some cases in which, instead of the diodes
6
,
7
,
13
, and
14
, a synchronous rectifier, such as a power MOS-FET, is used. In this case, when the input voltage Vin is changed, the drive voltage of the synchronous rectifier is changed, and the resistance of the on-resistor of the synchronous rectifier is changed, whereby the voltage drop of the synchronous rectifier is changed. Likewise, because of this, there arises a problem in that the output voltage Vout cannot be stably output due to the change of the input voltage Vin.
SUMMARY OF THE INVENTION
The present invention is made to solve the foregoing problems, and an object of the present invention is to provide a switching power supply in which an output voltage having a set voltage value can be stably output regardless of changes in the input voltage.
To achieve the foregoing objects, this invention provides a method for solving the above problems using the construction described below. That is, a first aspect of the invention provides a method for solving the above problems using a construction in which in a switching power supply apparatus is provided for outputting a voltage from the secondary winding of a transformer based on an input voltage in accordance with on-off operations of a primary switching element, and for rectifying, smoothing, and outputting the voltage by an output circuit; the switching power supply apparatus including a tertiary winding provided in the transformer; a detection circuit in which the output voltage output from the output circuit is indirectly detected using the tertiary winding, and the detected voltage is output; a compensating-voltage-superposition circuit which generates a compensating voltage, in accordance with the detection voltage, for compensating for a deviation of the detection voltage of the detection circuit to the output voltage of the output circuit in accordance with a change of the input voltage and which superposes the compensating voltage on the detection voltage output from the detection circuit; and a control circuit which controls the on-off operations of the primary switching element so that the output voltage of the output circuit is stabilized based on the detection voltage having the compensating voltage superposed thereon.
A second aspect of the invention is the provision of a switching power supply apparatus according to the first aspect of the invention and is constructed such that the compensating-voltage-superposition circuit generates the compensating voltage using a voltage output from the tertiary winding and superposes the compensating voltage on the detection voltage of the detection circuit.
A third aspect of the invention is the provision of the switching power supply apparatus according to the first aspect of the invention and is constructed such that the transformer is provided with a compensating-voltage-generation winding, and the compensating-voltage-superposition circuit generates the compensating voltage using a voltage output from the compensating-voltage-generation winding and superposes the compensating voltage on the detection circuit of the detection circuit.
According to this invention, in a case in which a switching power supply apparatus is constructed in which an output voltage is indirectly detected, since the device is constructed such that the compensating-voltage-superposition circuit is provided, the device generates a compensating voltage for compensating for a deviation of the detection voltage to the output voltage in accordance with the input voltage, performs compensation for the detection voltage by superposing this compensating voltage on the detection voltage, and applies the compensated detection voltage to a control circuit. The control circuit can thereby perform stabilization control of the output voltage so that the output voltage having a set voltage value is stably output based on the compensated detection voltage.
Thus, even though the input voltage may change, the output voltage having the set voltage value can be stably output without adverse influences of the changes of the input voltage, which enables the reliability of the switching power supply apparatus to be considerably improved.
In a switching device having a construction in which the compensating-voltage-superposition circuit generates the compensating voltage using a voltage across the tertiary winding, the compensating voltage can be output without more turns in the transformer. Therefore, an increase in the number of parts can be avoided.
In a switching device having a construction in which the transformer is provided with a compensating-voltage-generation winding, and the compensating-voltage-superposition circuit generates the compensating voltage using a voltage across the compensating-voltage-generation winding, since a voltage across the compensating-voltage-generation winding is sufficient to be generated in accordance with the input voltage, the voltage across the compensating-voltage-generation winding may be below the voltage across the tertiary winding. Compared with a case in which the voltage across the tertiary winding is used, reducing the voltage across the compensating-voltage-generation winding so that it is smaller than the voltage across the tertiary winding can decrease power consumption occurring in the compensating-voltage-superposition circuit. Because of this, the compensating-voltage-superposition circuit is constituted using low-voltage-endurance parts, which can prevent conductive loss in the compensating-voltage-superposition circuit from occurring. Therefore, reduction of the circuit efficiency of the switching power supply apparatus can be avoided.
For the purpose of illustrating the invention, there is shown in the drawings several forms which are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
BRIEF DESCRIPTION OF THE DRAWING(S)
FIG. 1
is a circuit diagram showing the basic circuit construction of a switching power supply apparatus in a first embodiment.
FIG. 2
is a graph showing a relation shape between an input voltage Vin and an output voltage Vout.
FIG. 3
is a circuit diagram showing the basic circuit construction of a switching power supply apparatus in a second embodiment.
FIG. 4
is a graph showing another relationship between the input voltage Vin and the output voltage Vout, which is different from that shown in FIG.
2
.
FIGS. 5A and 5B
are circuit diagrams showing a third embodiment which prevents the output voltage Vout from rising above a set voltage value Vsp in accordance with the input voltage Vin.
FIGS. 6A and 6B
are circuit diagrams showing the third embodiment which prevents the output voltage Vout from lowering to below the set voltage value Vsp in accordance with the input voltage Vin.
FIGS. 7A and 7B
are circuit diagrams showing an embodiment in a case in which the present invention is applied to the switching power supply apparatus having a flyback converter incorporated therein.
FIGS. 8A and 8B
are circuit diagrams showing another embodiment in a case in which the present invention is applied to the switching power supply apparatus having the flyback converter incorporated therein.
FIG. 9
is a circuit diagram showing a conventional example.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
Hereinafter, the preferred embodiments of the present invention are explained in detail with reference to the drawings.
FIG. 1
shows a basic circuit construction of a forward converter provided in the switching power supply apparatus according to the first embodiment.
Characteristic features of this first embodiment are that, as shown in
FIG. 1
, a compensating-voltage-generation winding Ns and a compensating-voltage-superposition circuit
22
are provided. Otherwise, the construction of the switching power supply apparatus is substantially identical to that shown in FIG.
9
. In this first embodiment, elements which are identical to corresponding elements in
FIG. 9
have the same reference numerals. The repeated-descriptions of identical elements are omitted.
If the compensating-voltage-generation winding Ns and the compensating-voltage-superposition circuit
22
were not assumed to be provided in the circuit shown in
FIG. 1
, it is observed that the detection voltage of the detection circuit
12
to the output voltage Vout of the secondary circuit
3
would upwardly deviate due to a change of the input voltage Vin based on a variety of predetermined circuit conditions, such as characteristics such as, for example, the forward voltage characteristic of each of the diodes
6
and
7
of an output circuit, i.e., the secondary circuit
3
, and the diodes
13
and
14
of the detection circuit
12
; the strength of the coupling of the secondary winding N
2
to the primary winding N
1
; and the strength of the coupling of the tertiary winding N
3
to the primary winding N
1
. If an unmodified detection voltage of the detection circuit
12
were applied to the control circuit
11
, as indicated by the dashed line in
FIG. 2
, in accordance with the switching control operations of the primary switching element Q caused by the control circuit
11
, the voltage value of the output voltage Vout would deviate downward from the set voltage value Vsp as the input voltage Vin becomes greater. Accordingly, a problem may arise in that the output voltage Vout having the set voltage value Vsp cannot be produced.
Therefore, to prevent the foregoing problems, the compensating-voltage-generation winding Ns and the compensating-voltage-superposition circuit
22
are provided in this first embodiment. That is, as shown in
FIG. 1
, the transformer
1
is provided with the compensating-voltage-generation winding Ns in which a voltage corresponding to the input voltage Vin is generated.
The compensating-voltage-superposition circuit
22
is constructed by including a diode
23
, a capacitor
24
, and a resistor
25
in which the cathode of the diode
23
is connected to one end of the compensating-voltage-generation winding Ns, one end of the capacitor
24
is connected to the other end of this compensating-voltage-generation winding Ns, and the other end of this capacitor
24
is connected to the anode of the diode
23
.
A connection part between the compensating-voltage-generation winding Ns and the capacitor
24
, and an output end
22
a
of the compensating-voltage-superposition circuit
22
establish a conductive connection. The anode of the diode
23
is connected to one end of the resistor
25
, and the other end of this resistor
25
is conductive-connected to an output end
22
b
of the compensating-voltage-superposition circuit
22
.
In the compensating-voltage-superposition circuit
22
having the above-described construction, the voltage generated across the compensating-voltage-generation winding Ns is rectified and smoothed by the diode
23
and the capacitor
24
. This rectified and smoothed voltage is dropped by the resistor
25
to a compensating voltage described below. In other words, the resistor
25
has a resistance which enables the rectified and smoothed voltage to be dropped to the compensating voltage.
The compensating voltage is a voltage which compensates for the deviation of the detection voltage of the detection circuit
12
to the output voltage Vout in accordance with the change of the input voltage Vin. Since the voltage is generated across the compensating-voltage-generation winding Ns in accordance with the input voltage Vin, the compensating-voltage-superposition circuit
22
can generate the compensating voltage using the voltage across the compensating-voltage-generation winding Ns.
In this first embodiment, as described above, since the detection voltage of the detection circuit
12
relating to the output voltage Vout deviates upwardly due to the change of the input voltage Vin, the compensating-voltage-superposition circuit
22
is connected to the detection circuit
12
so that the upward deviation can be compensated for by the compensation voltage. That is, as shown in
FIG. 1
, in order to cause the compensating voltage to drop the detection voltage of the detection circuit
12
, the output end
22
a
of the compensating-voltage-superposition circuit
22
is connected to a connection part between the voltage-dividing resistor
18
and the capacitor
16
, and the output end
22
b
is connected to a connection part between the voltage-dividing resistors
18
and
19
.
Thus, since the connection between the compensating-voltage-superposition circuit
22
and the detection circuit
12
leads to the superposition of the compensating voltage of the compensating-voltage-superposition circuit
22
to the detection voltage of the detection circuit
12
, the upward deviation of the detection voltage to the output voltage Vout in accordance with the input voltage Vin is compensated for. The compensated for detection voltage is supplied to the control circuit
11
.
In the example shown in this
FIG. 1
, the control circuit
11
is constructed by including an error amplifier
26
, a comparator
27
, a standard voltage source
28
, and a triangular wave generation circuit
29
. The on-off operations of the primary switching element Q is controlled so that the output voltage Vout having the set voltage value Vsp is stably output based on the detection voltage superposed by the compensating voltage. Since operations of each of the error amplifier
26
, the comparator
27
, and the standard voltage source
28
are known, descriptions thereof are omitted.
According to this first embodiment, since the switching power supply apparatus has a construction in which the compensating voltage for compensating for the deviation of the detection voltage to the output voltage Vout is generated in accordance with the input voltage Vin, the detection voltage is compensated for by the superposition of the compensating voltage to the detection voltage, and this compensated detection voltage is output to the control circuit
11
. Even though the input voltage Vin may change, as indicated by the solid line in
FIG. 2
, the output voltage Vout having the set voltage value Vsp can be stably applied to the load without adverse influences.
Also, according to this first embodiment, since the switching power supply apparatus is constructed so that the output voltage Vout is indirectly detected, the number of parts thereof can be reduced compared to a case in which it is constructed so that the output voltage Vout is directly detected. Moreover, since the circuit which indirectly detects the output voltage Vout can be constructed without expensive parts, there can be obtained an advantage in that the cost of the circuit can be reduced.
Furthermore, since the voltage across the compensating-voltage-generation winding Ns is sufficient to be generated in accordance with the input voltage Vin, it may be low. That is, a low number of turns of the compensating-voltage-generation winding Ns is sufficient, which can prevent the transformer
1
from being large. In addition, since the compensating-voltage-superposition circuit
22
has a small number of parts and a simple circuit construction, the switching power supply apparatus can be prevented from being large.
Furthermore, since, as described above, the voltage supplied from the compensating-voltage-generation winding Ns to the compensating-voltage-superposition circuit
22
is sufficient to be low, the compensating-voltage-superposition circuit
22
can be constructed using low-voltage-endurance parts. Accordingly, the conductive loss in the compensating-voltage-superposition circuit
22
can be suppressed by use of the low-voltage-endurance parts, which prevents the circuit efficiency of the switching power supply apparatus from being worsened.
Hereinafter a second embodiment is described. In the description of this second embodiment, elements which are identical to corresponding elements in the first embodiment have the same reference numerals. The repeated-descriptions of identical elements are omitted.
Characteristics which distinguish the first embodiment from the second embodiment are that, as shown in
FIG. 3
, the output end
22
a
of the compensating-voltage-superposition circuit
22
is connected to the connection part between the voltage-dividing resistors
18
and
19
, and the output end
22
b
is connected to a connection part between the voltage-dividing resistor
19
and the smoothing capacitor
16
. Otherwise, the construction thereof is the same as the construction according to the first embodiment.
In this second embodiment, if the compensating-voltage-generation winding Ns and the compensating-voltage-superposition circuit
22
were not provided, and if the unmodified detection voltage of the detection circuit
12
were applied to the control circuit
11
, the detection voltage to the output voltage Vout would deviate downwardly due to a change of the input voltage Vin. Because of this deviation, there would arise a problem in that the output voltage Vout deviates upwardly from the set voltage value Vsp, as indicated by the dashed line in FIG.
4
.
Therefore, in this second embodiment, to avoid the above problem, the compensating-voltage-generation winding Ns and the compensating-voltage-superposition circuit
22
are provided in the same manner as in the first embodiment. The output ends
22
a
and
22
b
of the compensating-voltage-superposition circuit
22
are connected to one of the ends, respectively, of the voltage-dividing resistor
19
of the detection circuit
12
, as described above. That is, the compensating-voltage-superposition circuit
22
is connected to the detection circuit
12
so that the compensating voltage of the compensating-voltage-superposition circuit
22
raises the detection voltage of the detection circuit
12
, whereby the deviation is compensated for.
Thus, the compensating-voltage-superposition circuit
22
is connected to the detection circuit
12
, which superposes the compensating voltage on the detection voltage. Because of this, the deviation of the detection voltage to the output voltage Vout is compensated for in accordance with the input voltage Vin, and this compensated for detection voltage is applied to the control circuit
11
.
According to this second embodiment, since the switching power supply apparatus is constructed such that the compensating-voltage-superposition circuit
22
is provided; this compensating-voltage-superposition circuit
22
generates the compensating voltage to compensate for the downward deviation of the detection voltage of the detection circuit
12
to the output voltage Vout; it compensates for the detection voltage by superposing this compensated for voltage to the detection voltage of the detection circuit
12
; and the superposition of this compensated detection voltage is applied to the control circuit
11
, in the same manner as in the first embodiment, as indicated by the solid line in
FIG. 4
, regardless of the change of the input voltage Vin, the output voltage Vout having the set voltage value Vsp can be stably output without adverse influence due to the change of the input voltage Vin.
Hereinafter, a third embodiment is described. In this third embodiment, characteristic features about this third embodiment are that the switching power supply apparatus is constructed in which the reduction of the number of the parts thereof is achieved by the omission of the compensating-voltage-generation winding Ns shown in the first embodiment or the second embodiment. Otherwise, the construction thereof is the same as the construction according of the above embodiments. Elements identical to corresponding elements in each of the above embodiments have the same reference numerals. The repeated descriptions of identical elements are omitted.
In this third embodiment, as shown in FIG.
5
A and
FIG. 6A
, a switching power supply apparatus is constructed in which the above-described compensating-voltage-generation winding Ns is omitted; the compensating-voltage-superposition circuit
22
including the diode
23
, the capacitor
24
, and the resistor
25
is connected to the tertiary winding N
3
; and the compensating-voltage-superposition circuit
22
generates the compensating voltage using the voltage generated across the tertiary winding N
3
and superposes this compensated for voltage on the detection voltage of the detection circuit
12
.
The circuit shown in
FIG. 5A
is a variation in which the compensating-voltage-generation winding Ns is omitted from the circuit in
FIG. 1
shown in the first embodiment, and the compensating-voltage-superposition circuit
22
is connected to the tertiary winding N
3
. The circuit shown in
FIG. 6A
is a variation in which the compensating-voltage-generation winding Ns is omitted from the circuit in
FIG. 3
shown in the second embodiment, and the compensating-voltage-superposition circuit
22
is connected to the tertiary winding N
3
.
In the circuit example shown in
FIG. 5A
, the diode
23
and the capacitor
24
, which constitute the compensating-voltage-superposition circuit
22
, establish a series connection between the anode of the diode
23
and the capacitor
24
. This series connection part, constituted by the diode
23
and the capacitor
24
, is connected to the tertiary winding N
3
in parallel so that the capacitor
24
is connected to the end “a” of the tertiary winding N
3
. The connection part between the diode
23
and the capacitor
24
is connected to one end of the resistor
25
, and the other end of this resistor
25
is connected to the connection part of the voltage-dividing resistors
18
and
19
of the detection circuit
12
.
In the circuit example shown in
FIG. 6A
, the diode
23
and the capacitor
24
, which constitute the compensating-voltage-superposition circuit
22
, establish a series connection between the cathode of the diode
23
and the capacitor, and this series connection part is connected to the tertiary winding N
3
in parallel so that the diode
23
is connected to the end “a” of the tertiary winding N
3
. In this respect, the circuit is different from the circuit shown in
FIG. 5A
; otherwise, it is identical to the circuit shown in FIG.
5
A.
According to this third embodiment, since the compensating-voltage-superposition circuit
22
is provided in the same manner as in each of the above embodiments, the same advantages as obtained in each of the above embodiments can be achieved. Furthermore, since the compensating-voltage-superposition circuit
22
is constructed in which the compensating voltage is generated by use of the voltage generated across the tertiary winding N
3
, the compensating-voltage-generation winding Ns does not need to be provided. Because of this, a reduction in the number of parts can be achieved.
This invention is not limited to each of the embodiments, and can take various embodiment forms. For example, although the resistor
25
is provided in the compensating-voltage-superposition circuit
22
in each of the above embodiments, a variable resistor may be provided instead.
Although, in each embodiment, the detection circuit
12
is provided with a cathode-common type rectifier unit in which the cathodes of the diodes
13
and
14
are connected, the detection circuit
12
may be provided with an anode-common type rectifier unit in which the anodes of the diodes
13
and
14
are connected. For example,
FIG. 5B
shows a circuit example in a case in which an anode-common type detection circuit
12
is provided instead of the cathode-common type detection circuit
12
shown in FIG.
5
A.
FIG. 6B
shows a circuit example in a case in which an anode-common type detection circuit
12
is provided instead of the cathode-common type detection circuit
12
shown in FIG.
6
A.
In addition, although each embodiment is described as an example in a case in which a converter constituting a switching power supply apparatus is a forward converter, this invention may be applied to a switching power supply having a flyback converter incorporated therein.
For example,
FIGS. 7A
,
7
B,
8
A, and
8
B individually show circuit examples in cases in which the present invention is applied to the switching power supply apparatus having the flyback converter incorporated therein. The circuits shown in
FIGS. 7A and 7B
have a circuit construction in which the output voltage Vout would deviate upwardly in accordance with the input voltage Vin, as indicated by the dashed line in
FIG. 2
, if the compensating-voltage-superposition circuit
22
were not provided therein. In the same manner as in each embodiment, the provision of the compensating-voltage-superposition circuit
22
constituted by the diode
23
, the capacitor
24
, and the resistor
25
can prevent the problem of the deviation of the output voltage Vout caused by the change of input voltage Vin. There are differences between the circuit in FIG.
7
A and the circuit in
FIG. 7B
regarding the position of each diode
14
therein. Otherwise, the circuits are substantially identical.
The circuits shown in
FIGS. 8A and 8B
have a construction in which the output voltage Vout would deviate downwardly in accordance with the input voltage Vin, as indicated by the dashed line in
FIG. 4
, if the compensating-voltage-superposition circuit
22
were not provided therein. In the same manner as in each embodiment, the provision of the compensating-voltage-superposition circuit
22
constituted by the diode
23
, the capacitor
24
, and the resistor
25
can prevent the problem of the deviation of the output voltage Vout caused by the change of input voltage Vin. There are differences between the circuit in FIG.
8
A and the circuit in
FIG. 8B
regarding the position of each diode
14
therein. Otherwise, the circuits are substantially identical.
Although in the examples shown in
FIGS. 7A
,
7
B,
8
A, and
8
B, the compensating-voltage-superposition circuit
22
generates the compensating voltage using the voltage across the tertiary winding N
3
, of course, the switching power supply apparatus provided with the flyback converter therein may be constructed in which the compensating-voltage-generation winding Ns is provided in the transformer
1
, and the compensating-voltage-superposition circuit
22
generates the compensating voltage using the voltage across the compensating-voltage-generation winding Ns.
Furthermore, a synchronous rectifier, such as a MOS-FET, may be used instead of the diodes
6
and
7
of the secondary circuit
3
and the diodes
13
and
14
of the detection circuit
12
shown in each embodiment. In this case, in the same manner as in each embodiment, there can be obtained an advantage in that the output voltage Vout can be stably output regardless of the change of the input voltage Vin.
Although the above embodiments show a DC-DC converter, in which the converter is incorporated in the switching power supply, this invention may be applied to a switching power supply apparatus having an AC-DC converter incorporated therein.
While preferred embodiments of the invention have been disclosed, various modes of carrying out the principles disclosed herein are contemplated as being within the scope of the following claims. Therefore, it is understood that the scope of the invention is not to be limited except as otherwise set forth in the claims.
Claims
- 1. A switching power supply apparatus comprising:a transformer having a primary winding, a secondary winding and a tertiary winding; a primary switching element connected to the primary winding of the transformer for providing the primary winding with an input voltage in accordance with an on-off operation of the main switching element; an output circuit connected to the secondary winding of the transformer for receiving a voltage based on the input voltage from the secondary winding, rectifying the voltage and outputting an output voltage; a detection circuit in which the output voltage output from the output circuit is indirectly detected by sensing an output from the tertiary winding, and a detection voltage is output; a compensating-voltage-superposition circuit which generates a compensating voltage, in accordance with the detection voltage, for compensating a deviation of the detection voltage of the detection circuit to the output voltage of the output circuit in accordance with a change of the input voltage and which superposes the compensating voltage on the detection voltage output from the detection circuit; and a control circuit which controls the on-off operation of the primary switching element so that the output voltage of the output circuit is stabilized based on the detection voltage having the compensating voltage superposed thereon.
- 2. The switching power supply apparatus of claim 1, wherein the compensating-voltage-superposition circuit provides the compensating voltage using a voltage output from the tertiary winding and the compensating voltage is superposed on the detection voltage of the detection circuit.
- 3. The switching power supply apparatus of claim 1, wherein the transformer is provided with a compensating-voltage-generation winding, and the compensating-voltage-superposition circuit generates the compensating voltage using a voltage output from the compensating-voltage-generation winding and superposes the compensating voltage on the detection voltage of the detection circuit.
- 4. The switching power supply apparatus of claim 1, wherein, in the absence of the compensating voltage, the output voltage would tend to fall and the compensating voltage is superposed on the detection voltage so as to cause the output voltage to be stable.
- 5. The switching power supply apparatus of claim 1, wherein, in the absence of the compensating voltage, the output voltage would tend to rise, and the compensating voltage is superposed on the detection voltage so as to cause the output voltage to be stable.
- 6. The switching power supply apparatus of claim 1, wherein the compensating voltage superposition circuit comprises a rectifier and a capacitor coupled in series across a voltage source related to the output voltage.
- 7. The switching power supply apparatus of claim 6, wherein the voltage source comprises the tertiary winding.
- 8. The switching power supply apparatus of claim 6, wherein the voltage source comprises a compensating voltage generation winding of the transformer.
- 9. A method of controlling a switching power supply, the switching power supply comprising:a transformer having a primary winding, a secondary winding and a tertiary winding; a primary switching element connected to the primary winding of the transformer for providing the primary winding with an input voltage in accordance with an on-off operation of the main switching an output circuit connected to the secondary winding of the transformer for receiving a voltage based on the input voltage from the secondary winding, rectifying the voltage and outputting an output voltage; and a detection circuit, in which the output voltage output from the output circuit is indirectly detected by sensing an output from the tertiary winding, and a detection voltage is output; the method comprising: generating a compensating voltage, in accordance with the detection voltage, for compensating a deviation of the detection voltage of the detection circuit to the output voltage of the output circuit in accordance with a change of the input voltage and superposing the compensating voltage on the detection voltage output from the detection circuit; and controlling the on-off operation of the primary switching element so that the output voltage of the output circuit is stabilized based on the detection voltage having the compensating voltage superposed thereon.
- 10. The method of claim 9, further comprising providing the compensating voltage using a voltage output from the tertiary winding and superposing the compensating voltage on the detection voltage of the detection circuit.
- 11. The method of claim 9, wherein the transformer is provided with a compensating-voltage-generation winding, and further comprising generating the compensating voltage using a voltage output from the compensating-voltage-generation winding and superposing the compensating voltage on the detection voltage of the detection circuit.
- 12. The method of claim 9, wherein, in the absence of the compensating voltage the output voltage would tend to fall and superposing the compensating voltage on the detection voltage so as to cause the output voltage to be stable.
- 13. The method of claim 9, wherein, in the absence of the compensating voltage the output voltage, would tend to rise, and superposing the compensating voltage on the detection voltage so as to cause the output voltage to be stable.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-189022 |
Jul 1999 |
JP |
|
US Referenced Citations (7)