The present disclosure relates generally to switching roller finger followers or rocker arms in internal combustion engines.
Variable valve actuation (VVA) technologies have been introduced and documented. One VVA device may be a variable valve lift (VVL) system, a cylinder deactivation (CDA) system such as that described in U.S. Pat. No. 8,215,275 entitled “Single Lobe Deactivating Rocker Arm” hereby incorporated by reference in its entirety, or other valve actuation systems. Such mechanisms are developed to improve performance, fuel economy, and/or reduce emissions of the engine. Several types of the VVA rocker arm assemblies include an inner rocker arm within an outer rocker arm that are biased together with torsion springs.
Switching rocker arms allow for control of valve actuation by alternating between latched and unlatched states. A latch, when in a latched position causes both the inner and outer rocker arms to move as a single unit. When unlatched, the rocker arms are allowed to move independent of each other. In some circumstances, these arms can engage different cam lobes, such as low-lift lobes, high-lift lobes, and no-lift lobes. Mechanisms are required for switching rocker arm modes in a manner suited for operation of internal combustion engines.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
A switching rocker arm constructed in accordance to one example of the present disclosure includes an outer arm, an inner arm, a latch, an inner roller and a first torsion spring. The outer arm has a pair of outer arm portions and a connecting arm extending therebetween. The connecting arm includes an outwardly extending tab. The inner arm is pivotally secured to the outer arm and has an outwardly extending protrusion. The latch is slidably connected to the inner arm and is configured to selectively extend to engage the outwardly extending tab of the outer arm. The inner roller and bearing is configured on the inner arm. The first torsion spring is disposed between the outer arm and the inner arm. The first torsion spring has a first end and a second end. The first end is engaged to the connecting arm and is restrained from outward movement by the outer arm and restrained from inward movement by the outwardly extending tab. The second end is restrained by the outwardly extending protrusion.
According to additional features, the first torsion spring includes an inner diameter that is received by a first post extending from the inner arm. A second torsion spring is disposed between the outer arm and the inner arm. The second torsion spring has a first end and a second end. The first end is engaged to the connecting arm and is restrained from outward movement by the outer arm and restrained from inward movement by the outwardly extending tab. The second end is restrained by the outwardly extending protrusion. The first and second torsion springs are lost motion torsion springs. The outer arm includes a pair of outer rollers mounted thereon. The pair of outer rollers are rotatably mounted on an outer arm roller axle.
According to other features, the bearing is a needle bearing having a hollow axle and a plurality of needles. The outer arm roller axle is positioned eccentrically relative to the hollow axle to account for lost motion. The outer arm has a pair of stopper bushings configured thereon at an interface with the outer arm roller axle.
A switching rocker arm constructed in accordance to another example of the present disclosure includes an outer arm, an inner arm, a latch, an inner roller, a first torsion spring and a second torsion spring. The outer arm has a pair of outer arm portions and a connecting arm extending therebetween. Each outer arm has a hook extending therefrom. The inner arm is pivotally secured to the outer arm and has an outwardly extending protrusion. The latch is slidably connected to the inner arm and is configured to selectively extend to engage the outwardly extending tab of the outer arm. The inner roller and bearing is configured on the inner arm. The first torsion spring is disposed between the outer arm and the inner arm. The first torsion spring has a first end and a second end. The first end is engaged to the connecting arm and is restrained from outward movement by the outer arm and restrained from inward movement by the outwardly extending tab. The second end is restrained by the outwardly extending protrusion. The second torsion spring is disposed between the outer arm and the inner arm. The second torsion spring has a first end and a second end. The first end is engaged to the connecting arm and is restrained from outward movement by the outer arm and restrained from inward movement by the outwardly extending tab. The second end is restrained by the outwardly extending protrusion.
According to additional features, the first and second torsion springs are received by respective posts extending from the inner arm. The first and second torsion springs are lost motion torsion springs. The outer arm includes a pair of outer rollers mounted thereon. The pair of outer rollers are rotatably mounted on an outer arm roller axle. The bearing is a needle bearing having a hollow axle and a plurality of needles. The outer arm roller axle is positioned eccentrically relative to the hollow axle to account for lost motion. The outer arm has a pair of stopper bushings configured thereon at an interface with the outer arm roller axle.
A switching rocker arm constructed in accordance to another example of the present disclosure includes an outer arm, an inner arm, a latch, an inner roller, a first torsion spring and a second torsion spring. The outer arm has a pair of outer arm portions and a connecting arm extending therebetween. The connecting arm has a first notch and a second notch. The inner arm is pivotally secured to the outer arm and has an outwardly extending protrusion. The latch is slidably connected to the inner arm and is configured to selectively extend to engage the outwardly extending tab of the outer arm. The inner roller and bearing is configured on the inner arm. The first torsion spring is disposed between the outer arm and the inner arm. The first torsion spring has a first end and a second end. The first end of the first torsion spring is received by the first notch. The second end is restrained by the outwardly extending protrusion. The second torsion spring is disposed between the outer arm and the inner arm. The second torsion spring has a first end and a second end. The first end of the second torsion spring is received by the second notch. The second end is restrained by the outwardly extending protrusion.
According to other features, the first notch has first notch outer walls. The second notch has second notch outer walls. The first end of the first torsion spring is restrained from inward and outward movement by the first notch outer walls. The first end of the second torsion spring is restrained from inward and outward movement by the second notch outer walls. The first and second torsion springs are received by respective posts extending from the inner arm. The first and second torsion springs are lost motion torsion springs. The outer arm includes a pair of outer rollers mounted thereon. The pair of outer rollers are rotatably mounted on an outer arm roller axle. The bearing is a needle bearing having a hollow axle and a plurality of needles.
In other features, the outer arm roller axle is positioned eccentrically relative to the hollow axle to account for lost motion. The outer arm has a pair of stopper bushings configured thereon at an interface with the outer arm roller axle. The bearing is a needle bearing having a hollow axle and a plurality of needles. The outer arm roller axle is positioned eccentrically relative to the hollow axle to account for lost motion. The outer arm has a pair of stopper bushings configured thereon at an interface with the outer arm roller axle.
A switching rocker arm constructed in accordance to another example of the present disclosure includes an outer arm, an inner arm, a latch, an inner roller, a first torsion spring and a second torsion spring. The outer arm has a pair of outer arm portions and a connecting arm extending therebetween. The outer arm portions each have a connecting pin extending inwardly therefrom. The inner arm is pivotally secured to the outer arm and has an outwardly extending protrusion. The latch is slidably connected to the inner arm and is configured to selectively extend to engage the outwardly extending tab of the outer arm. The inner roller and bearing is configured on the inner arm. The first torsion spring is disposed between the outer arm and the inner arm. The first torsion spring has a first end and a second end. The first end of the first torsion spring contacts a respective connecting pin. The second end is restrained by the outwardly extending protrusion. The second torsion spring is disposed between the outer arm and the inner arm. The second torsion spring has a first end and a second end. The first end of the second torsion spring contacts a respective connecting pin. The second end is restrained by the outwardly extending protrusion.
According to additional features, the first and second torsion springs are received by respective posts extending from the inner arm. The first and second torsion springs are lost motion torsion springs. The outer arm includes a pair of outer rollers mounted thereon. The pair of outer rollers are rotatably mounted on an outer arm roller axle. The bearing is a needle bearing having a hollow axle and a plurality of needles. In other features, the outer arm roller axle is positioned eccentrically relative to the hollow axle to account for lost motion. The outer arm has a pair of stopper bushings configured thereon at an interface with the outer arm roller axle. The bearing is a needle bearing having a hollow axle and a plurality of needles. The outer arm roller axle is positioned eccentrically relative to the hollow axle to account for lost motion. The outer arm has a pair of stopper bushings configured thereon at an interface with the outer arm roller axle.
A switching rocker arm constructed in accordance to another example incudes an outer arm, an inner arm, a latch, an inner roller and a pair of outer rollers. The outer arm has a pair of integrally formed axles extending outwardly therefrom. The inner arm is pivotally secured to the outer arm. The latch is slidably connected to the outer arm and is configured to selectively extend to engage the inner arm. The inner roller is configured on the inner arm. The pair of outer rollers are mounted on the respective integrally formed axles on the outer arm. The outer rollers are cantilevered relative to the outer arm.
A variable valve lift rocker arm comprises an outer arm comprises a pair of outer arm portions, each outer arm portion comprising a cantilevered axle extending therefrom. An inner arm comprises an inner roller, and the inner roller is seated between the outer arm portions. A pair of outer rollers are respectively mounted on the pair of outer arm portions. The rocker arm is configured to switch between the outer arm and the inner arm being fixed for concurrent rotation and the outer arm and the inner arm being rotatable relative to each other.
A rocker arm for variable valve lift comprises an outer arm comprising outer arm portions, rollers mounted in a cantilevered manner to the outer arm portions, and an inner arm seated between the outer arm portions, the inner arm comprising an inner roller. A pivot axle connects the outer arm and the inner arm. The inner arm and the outer arm are pivotable with respect to one another about the pivot axle.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
With initial reference to
The inner arm 22 and the outer arm 24 are both mounted to a pivot axle 50 (
The switching rocker arm assembly 10 enables the variability in valve lift by inducing lost motion for one lift profile while transmitting the secondary lift profile to the valve or vice versa. Generally, the latching pin or connecting mechanism tightly controlled to minimize the effect of the clearance on to the valve lift. However, depending on the application and purpose of the secondary valve lift, not all designs need to be tightly controlled. In one such application, where latch clearance to the interfacing arm is not having a wider pronounced effect on the valve. A design that could achieve this configuration has optimal requirements in the manufacturing process. There are also benefits in terms of compactness, cost and better kinematic performance with further optimization of the rocker arm parameters layout.
The rocker arm assembly 10 achieves the main valve lift in the roller 60 and the secondary valve lift on the outer rollers 70, 72 due to the application duty cycle. A normally unlatched design employed to selectively use the secondary valve lift when required per the engine duty cycle. The inner arm 22 houses the bearing 60 and roller 62, while the outer arm 24 includes a connecting arm 26. The pivot axle 50 connects both the inner and outer arms 22, 24 and is placed over the top of the engine valve.
The inner arm 22 is mounted over the hydraulic lash adjuster and interfaces with a ball socket area of the lash adjuster in a tangential contact. The latch pin 32 is positioned at the rear side of the inner arm 22 extending outward, away from the rocker arm 10 for latching, and a pair of engagement wings or tabs 28 extend outwardly from inner arm sidewalls 30. The outer arm 24 is connected to the inner arm 22 on either side through a torsion spring first end 34 while a second end 36 (
The rocker arm assembly 10 includes a compact design for improved kinematics. The rocker arm assembly 10 provides reduced mass over valve for improved dynamics. The main rocker event is over roller design for optimized friction. The overall rocker arm packaging is optimized specifically for a given engine.
With reference to
The inner arm 122 and the outer arm 124 are both mounted to a pivot axle (not shown) similar to that shown herein, for example,
The switching rocker arm assembly 100 enables the variability in valve lift by inducing lost motion for one lift profile while transmitting the secondary lift profile to the valve or vice versa. Generally, the latching pin or connecting mechanism tightly controlled to minimize the effect of the clearance on to the valve lift. However, depending on the application and purpose of the secondary valve lift, not all designs need to be tightly controlled. In one such application, where latch clearance to the interfacing arm is not having a wider pronounced effect on the valve. A design that could achieve this configuration has optimal requirements in the manufacturing process. There are also benefits in terms of compactness, cost and better kinematic performance with further optimization of the rocker arm parameters layout.
The rocker arm assembly 100 achieves the main valve lift in the roller and the secondary valve lift in slider pads 180 due to the application duty cycle. A normally unlatched design employed to selectively use the secondary valve lift when required per the engine duty cycle. The inner arm 122 houses the bearing and roller, while the outer arm 124 includes a connecting arm 126 and encompasses the slider pads 180 in the cam interface area. The pivot axle connects both the inner and outer arms 122, 124 and is placed over the top of the engine valve.
The inner arm 122 is mounted over the hydraulic lash adjuster and interfaces with a ball socket area of the lash adjuster in a tangential contact. The latch pin 132 is positioned at the rear side of the inner arm 122 extending outward, away from the rocker arm 100 for latching. The outer arm 124 is connected to the inner arm 122 on either side through a torsion spring first end 134 while a second end (not shown) is restrained by the inner arm 122 in a manner similar to that shown herein, for example,
With reference to
The inner arm 222 and the outer arm 224 are both mounted to a pivot axle 250. The pivot axle 250 can be located adjacent to a first end of the rocker arm assembly 200, which secures the inner arm 222 to the outer arm 224 while also allowing a rotational degree of freedom pivoting about the pivot axle 250 when the rocker arm assembly 200 is in a deactivated state. In addition to the illustrated example having a separate pivot axle 250 mounted to the outer arm 224 and the inner arm 222, the pivot axle 250 may be integral to the outer arm 224 or to the inner arm 222. The rocker arm assembly 200 can include a bearing 260 having an inner roller 262 that is mounted between inner side arms that form the inner arm 222 on a bearing axle that, during normal operation of the rocker arm assembly 200 serves to transfer energy from a rotating cam to the rocker arm assembly 200. A pair of outer rollers 264, 266 are mounted on the outer arm 224.
The switching rocker arm assembly 200 enables the variability in valve lift by inducing lost motion for one lift profile while transmitting the secondary lift profile to the valve or vice versa. Generally, the latching pin or connecting mechanism tightly controlled to minimize the effect of the clearance on to the valve lift. However, depending on the application and purpose of the secondary valve lift, not all designs need to be tightly controlled. In one such application, where latch clearance to the interfacing arm is not having a wider pronounced effect on the valve. A design that could achieve this configuration has optimal requirements in the manufacturing process. There are also benefits in terms of compactness, cost and better kinematic performance with further optimization of the rocker arm parameters layout.
The rocker arm assembly 200 achieves the main valve lift in the inner roller 262 on the inner arm 222 and the secondary valve lift on the outer rollers 264, 266 on the outer arm 224 due to the application duty cycle. A normally unlatched design employed to selectively use the secondary valve lift when required per the engine duty cycle. The inner arm 222 houses the bearing 260 and roller 262, while the outer arm 224 includes outer arm portions 225 and a connecting arm 226. The pivot axle 250 connects both the inner and outer arms 222, 224 and is placed over the top of the engine valve.
The inner arm 222 is mounted over the hydraulic lash adjuster and interfaces with a ball socket area of the lash adjuster in a tangential contact. The latch pin is positioned at the rear side of the inner arm 222 extending outward, away from the rocker arm 200 for latching. The outer arm 224 is connected to the inner arm 222 on either side through a torsion spring first end 234 while a second end 236 is restrained by the inner arm 222. As shown in
With reference to
The inner arm 322 and the outer arm 324 are both mounted to a pivot axle (not shown) similar to that described herein. The pivot axle can be located adjacent to a first end of the rocker arm assembly 300, which secures the inner arm 322 to the outer arm 324 while also allowing a rotational degree of freedom pivoting about the pivot axle when the rocker arm assembly 300 is in a deactivated state. In addition to the example having a separate pivot axle mounted to the outer arm 324 and the inner arm 322, the pivot axle may be integral to the outer arm 324 or to the inner arm 322. The rocker arm assembly 300 can include a bearing 360 having a roller 362 that is mounted between inner side arms that form the inner arm 322 on a bearing axle that, during normal operation of the rocker arm assembly 300 serves to transfer energy from a rotating cam to the rocker arm assembly 300.
The switching rocker arm assembly 300 enables the variability in valve lift by inducing lost motion for one lift profile while transmitting the secondary lift profile to the valve or vice versa. Generally, the latching pin or connecting mechanism tightly controlled to minimize the effect of the clearance on to the valve lift. However, depending on the application and purpose of the secondary valve lift, not all designs need to be tightly controlled. In one such application, where latch clearance to the interfacing arm is not having a wider pronounced effect on the valve. A design that could achieve this configuration has optimal requirements in the manufacturing process. There are also benefits in terms of compactness, cost and better kinematic performance with further optimization of the rocker arm parameters layout.
The rocker arm assembly 300 achieves the main valve lift in the roller 360 and the secondary valve lift in slider pads 380 due to the application duty cycle. It will be appreciated that a three-roller configuration, such as described herein, may be incorporated instead of the single roller, slider pad configuration. A normally unlatched design employed to selectively use the secondary valve lift when required per the engine duty cycle. The inner arm 322 houses the bearing 360 and roller 362, while the outer arm 324 includes a connecting arm 326 and encompasses the slider pads 380 in the cam interface area. The pivot axle connects both the inner and outer arms 322, 324 and is placed over the top of the engine valve.
The inner arm 322 is mounted over the hydraulic lash adjuster and interfaces with a ball socket area of the lash adjuster in a tangential contact. The latch pin 332 is positioned at the rear side of the inner arm 322 extending outward, away from the rocker arm 300 for latching. The outer arm 324 is connected to the inner arm 322 on either side through a torsion spring first end 334 while a second end (not shown) is restrained by the inner arm 322 in a similar manner as described herein. As shown in
With reference to
The inner arm 422 and the outer arm 424 are both mounted to a pivot axle 450. The pivot axle 450 can be located adjacent to a first end of the rocker arm assembly 400, which secures the inner arm 422 to the outer arm 424 while also allowing a rotational degree of freedom pivoting about the pivot axle 450 when the rocker arm assembly 400 is in a deactivated state. In addition to the illustrated example having a separate pivot axle 450 mounted to the outer arm 424 and the inner arm 422, the pivot axle 450 may be integral to the outer arm 424 or to the inner arm 422. The rocker arm assembly 400 can include a bearing 460 having a roller 462 that is mounted between inner side arms that form the inner arm 422 on a bearing axle that, during normal operation of the rocker arm assembly 400 serves to transfer energy from a rotating cam to the rocker arm assembly 400.
The switching rocker arm assembly 400 enables the variability in valve lift by inducing lost motion for one lift profile while transmitting the secondary lift profile to the valve or vice versa. Generally, the latching pin or connecting mechanism tightly controlled to minimize the effect of the clearance on to the valve lift. However, depending on the application and purpose of the secondary valve lift, not all designs need to be tightly controlled. In one such application, where latch clearance to the interfacing arm is not having a wider pronounced effect on the valve. A design that could achieve this configuration has optimal requirements in the manufacturing process. There are also benefits in terms of compactness, cost and better kinematic performance with further optimization of the rocker arm parameters layout.
The rocker arm assembly 400 achieves the main valve lift in the roller 460 and the secondary valve lift in slider pads 478 due to the application duty cycle. A normally unlatched design employed to selectively use the secondary valve lift when required per the engine duty cycle. The inner arm 422 houses the bearing 460 and roller 462, while the outer arm 424 includes a connecting arm 426 and encompasses the slider pads 478 in the cam interface area. The pivot axle 450 connects both the inner and outer arms 422, 424 and is placed over the top of the engine valve.
The inner arm 422 is mounted over the hydraulic lash adjuster and interfaces with a ball socket area of the lash adjuster in a tangential contact. The latch pin 432 is positioned at the rear side of the inner arm 422 extending outward, away from the rocker arm 400 for latching. The outer arm 424 is connected to the inner arm 422 on either side through a torsion spring first end 434 while a second end 436 is restrained by the inner arm 422. In one example, the respective second ends 436 are restrained by outwardly extending protrusions or wings 438 extending from the inner arm 422. As shown in
With reference to
The inner arm 522 and the outer arm 524 are both mounted to a pivot axle 550. The pivot axle 550 can be located adjacent to a first end of the rocker arm assembly 500, which secures the inner arm 522 to the outer arm 524 while also allowing a rotational degree of freedom pivoting about the pivot axle 550 when the rocker arm assembly 500 is in a deactivated state. In addition to the illustrated example having a separate pivot axle 550 mounted to the outer arm 524 and the inner arm 522, the pivot axle 550 may be integral to the outer arm 524 or to the inner arm 522. The rocker arm assembly 500 can include a bearing 560 having an inner roller 562 that is mounted between inner side arms that form the inner arm 522 on a bearing axle that, during normal operation of the rocker arm assembly 500 serves to transfer energy from a rotating cam to the rocker arm assembly 500. A pair of outer rollers 564, 566 are mounted on the outer arm 524.
The switching rocker arm assembly 500 enables the variability in valve lift by inducing lost motion for one lift profile while transmitting the secondary lift profile to the valve or vice versa. Generally, the latching pin or connecting mechanism tightly controlled to minimize the effect of the clearance on to the valve lift. However, depending on the application and purpose of the secondary valve lift, not all designs need to be tightly controlled. In one such application, where latch clearance to the interfacing arm is not having a wider pronounced effect on the valve. A design that could achieve this configuration has optimal requirements in the manufacturing process. There are also benefits in terms of compactness, cost and better kinematic performance with further optimization of the rocker arm parameters layout.
The rocker arm assembly 500 achieves the main valve lift in the inner roller 562 on the inner arm 522 and the secondary valve lift on the outer rollers 564, 566 due to the application duty cycle. A normally unlatched design employed to selectively use the secondary valve lift when required per the engine duty cycle. The inner arm 522 houses the bearing 560 and roller 562, while the outer arm 524 accommodates the outer rollers 564, 566. The pivot axle 550 connects both the inner and outer arms 522, 524 and is placed over the top of the engine valve. It will be appreciated that the three roller configuration described for use on the rocker arm assembly 500 can be incorporated on any of the other rocker arm assemblies such as the rocker arm assemblies 100 and 300 described herein.
The inner arm 522 is mounted over the hydraulic lash adjuster and interfaces with a ball socket area of the lash adjuster in a tangential contact. The latch pin 532 is positioned at the rear side of the inner arm 522 extending outward, away from the rocker arm 500 for latching. The outer arm 524 is connected to the inner arm 522 on either side through a torsion spring first end 534 while a second end 536 is restrained by the inner arm 522. In one example, the respective second ends 536 are restrained by an outwardly extending protrusion or wings 538 extending from the inner arm 522.
As shown in
With reference now to
Turning now to
The outer rocker arm 824 is mounted over the hydraulic lash adjuster and interfaces with a ball socket area 857 of the lash adjuster in a tangential contact. The socket area 857 is proximal to the latch pin 846. The latch pin 846 is positioned at the rear side of the outer rocker arm 824 extending inward, toward the inner rocker arm 822 for latching. The inner and outer rocker arms 822, 824 are arranged to pivot about a pivot axle 850 on the valve end 854 wherein the latch 846 is aligned on the HLA end 852. The valve end 854 is on a first side of the inner axle 838 and the latch 846 is on a second side of the inner axle 838.
The foregoing description of the examples has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular example are generally not limited to that particular example, but, where applicable, are interchangeable and can be used in a selected example, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
IN3342/DEL/2015 | Oct 2015 | IN | national |
This application claims the benefit of U.S. Patent Application No. 62/201,555 filed on Aug. 5, 2015, U.S. Patent Application No. 62/203,374 filed on Aug. 10, 2015, U.S. Patent Application No. 62/203,879 filed on Aug. 11, 2015, and Indian Patent Application No. 3342/DEL/2015 filed on Oct. 16, 2015. This application is a Bypass Continuation under 35 U.S.C. § 111(a) of PCT/US2016/045842 filed Aug. 5, 2016. The disclosures of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5148783 | Shinkai et al. | Sep 1992 | A |
5544626 | Diggs et al. | Aug 1996 | A |
6314928 | Baraszu et al. | Nov 2001 | B1 |
6325030 | Spath et al. | Dec 2001 | B1 |
6439179 | Hendriksma et al. | Aug 2002 | B2 |
6481400 | Hendriksma et al. | Nov 2002 | B2 |
6502536 | Lee et al. | Jan 2003 | B2 |
6532920 | Sweetnam | Mar 2003 | B1 |
6604498 | Fernandez et al. | Aug 2003 | B2 |
6901894 | Haas et al. | Jun 2005 | B2 |
6948466 | Haas et al. | Sep 2005 | B2 |
7318402 | Harman et al. | Jan 2008 | B2 |
7377247 | Seitz | May 2008 | B2 |
7484487 | Zurface et al. | Feb 2009 | B2 |
7712443 | Gemein | May 2010 | B2 |
7798112 | Zurface et al. | Sep 2010 | B2 |
7798113 | Fischer et al. | Sep 2010 | B2 |
7882814 | Spath et al. | Feb 2011 | B2 |
8215275 | Church | Jul 2012 | B2 |
8251032 | Manther | Aug 2012 | B2 |
8327750 | Keller et al. | Dec 2012 | B2 |
8534182 | Keller et al. | Sep 2013 | B2 |
8607753 | Krause et al. | Dec 2013 | B2 |
8635980 | Church | Jan 2014 | B2 |
8726862 | Zurface et al. | May 2014 | B2 |
8752513 | Zurface et al. | Jun 2014 | B2 |
8783219 | Gunnel et al. | Jul 2014 | B2 |
8915225 | Zurface et al. | Dec 2014 | B2 |
8985074 | Zurface et al. | Mar 2015 | B2 |
9016252 | Zurface et al. | Apr 2015 | B2 |
9038586 | Schultheis et al. | May 2015 | B2 |
9140148 | Church | Sep 2015 | B2 |
9194260 | Zurface | Nov 2015 | B2 |
9194261 | McCarthy, Jr. | Nov 2015 | B2 |
9228454 | VanDeusen | Jan 2016 | B2 |
9267396 | Zurface et al. | Feb 2016 | B2 |
9284859 | Nielsen et al. | Mar 2016 | B2 |
9291075 | Zurface et al. | Mar 2016 | B2 |
9470116 | Cecur | Oct 2016 | B2 |
9581058 | Radulescu et al. | Feb 2017 | B2 |
9644503 | Zurface et al. | May 2017 | B2 |
9664075 | McCarthy, Jr. | May 2017 | B2 |
D791190 | McCarthy, Jr. et al. | Jul 2017 | S |
9702279 | Zurface et al. | Jul 2017 | B2 |
9708942 | Zurface et al. | Jul 2017 | B2 |
9726052 | Zurface et al. | Aug 2017 | B2 |
9765657 | VanDeusen | Sep 2017 | B2 |
9790823 | Zurface | Oct 2017 | B2 |
10253657 | Uckermark et al. | Apr 2019 | B2 |
20010023675 | Lee | Sep 2001 | A1 |
20010027765 | Hendriksma et al. | Oct 2001 | A1 |
20020011225 | Hendriksma et al. | Jan 2002 | A1 |
20040035381 | Burch | Feb 2004 | A1 |
20040103869 | Harris | Jun 2004 | A1 |
20040206324 | Artmann | Oct 2004 | A1 |
20040237919 | Haas et al. | Dec 2004 | A1 |
20050132989 | Hendriksma | Jun 2005 | A1 |
20050132990 | Haas et al. | Jun 2005 | A1 |
20060157008 | Lechner et al. | Jul 2006 | A1 |
20070101958 | Seitz | May 2007 | A1 |
20070113809 | Harman et al. | May 2007 | A1 |
20070186890 | Zurface | Aug 2007 | A1 |
20070283914 | Zurface et al. | Dec 2007 | A1 |
20080283003 | Hendriksma | Nov 2008 | A1 |
20080314340 | Fischer | Dec 2008 | A1 |
20090217895 | Spath et al. | Sep 2009 | A1 |
20100018482 | Keller et al. | Jan 2010 | A1 |
20100043737 | Elnick | Feb 2010 | A1 |
20100319657 | Dodi et al. | Dec 2010 | A1 |
20110139099 | Roe | Jun 2011 | A1 |
20110226208 | Zurface et al. | Sep 2011 | A1 |
20110226209 | Zurface et al. | Sep 2011 | A1 |
20120037107 | Church | Feb 2012 | A1 |
20120222639 | Knauf | Sep 2012 | A1 |
20120260875 | Moeck et al. | Oct 2012 | A1 |
20130000582 | Church | Jan 2013 | A1 |
20130068182 | Keller et al. | Mar 2013 | A1 |
20130146008 | Stoody | Jun 2013 | A1 |
20130220250 | Gunnel et al. | Aug 2013 | A1 |
20130233265 | Zurface et al. | Sep 2013 | A1 |
20130255612 | Zurface et al. | Oct 2013 | A1 |
20130306013 | Zurface et al. | Nov 2013 | A1 |
20130312506 | Nielsen et al. | Nov 2013 | A1 |
20130312681 | Schultheis et al. | Nov 2013 | A1 |
20130312686 | Zurface et al. | Nov 2013 | A1 |
20130312687 | Zurface et al. | Nov 2013 | A1 |
20130312688 | VanDeusen | Nov 2013 | A1 |
20130312689 | Zurface et al. | Nov 2013 | A1 |
20140041608 | Zurface | Feb 2014 | A1 |
20140150745 | Church | Jun 2014 | A1 |
20140190431 | McCarthy, Jr. | Jul 2014 | A1 |
20140283768 | Keller et al. | Sep 2014 | A1 |
20150128890 | Cecur | May 2015 | A1 |
20150211394 | Zurface et al. | Jul 2015 | A1 |
20150267574 | Radulescu et al. | Sep 2015 | A1 |
20150369095 | Spoor et al. | Dec 2015 | A1 |
20150371793 | Sheren et al. | Dec 2015 | A1 |
20150377093 | Church | Dec 2015 | A1 |
20160061067 | Schultheis et al. | Mar 2016 | A1 |
20160061068 | Zurface | Mar 2016 | A1 |
20160084117 | Zurface et al. | Mar 2016 | A1 |
20160108766 | Zurface et al. | Apr 2016 | A1 |
20160115831 | Spoor et al. | Apr 2016 | A1 |
20160130991 | Zurface et al. | May 2016 | A1 |
20160138435 | Zurface et al. | May 2016 | A1 |
20160138438 | Genise et al. | May 2016 | A1 |
20160138484 | Nielsen et al. | May 2016 | A1 |
20160146064 | Spoor et al. | May 2016 | A1 |
20160169065 | VanDeusen | Jun 2016 | A1 |
20160230619 | Mccarthy, Jr. | Aug 2016 | A1 |
20160273413 | Sheren et al. | Sep 2016 | A1 |
20170002698 | Cecur | Jan 2017 | A1 |
20170248073 | McCarthy | Aug 2017 | A1 |
20190284971 | Vance et al. | Sep 2019 | A1 |
20190309659 | Vance | Oct 2019 | A1 |
20190309660 | Vance | Oct 2019 | A1 |
20200056512 | Vance | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
104321503 | Mar 2017 | CN |
10310219 | Sep 2004 | DE |
102010006420 | Aug 2011 | DE |
102012220216 | May 2014 | DE |
2013156610 | Oct 2013 | WO |
2014134601 | Sep 2014 | WO |
2014134601 | Sep 2014 | WO |
WO-2016155978 | Oct 2016 | WO |
2018068041 | Apr 2018 | WO |
2018068043 | Apr 2018 | WO |
2018068045 | Apr 2018 | WO |
2018068046 | Apr 2018 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2016/045842 dated Oct. 28, 2016; pp. 1-23. |
International Search Report and Written Opinion for PCT/US2017/055766; dated Jan. 22, 2018; pp. 1-21. |
International Search Report and Written Opinion for PCT/US2017/055777 dated Jan. 24, 2018; pp. 1-23. |
International Search Report and Written Opinion for PCT/US2017/055785 dated Jan. 17, 2018; pp. 1-18. |
International Search Report and Written Opinion for PCT/US2017/055788; dated Jan. 24, 2018; pp. 1-4. |
Number | Date | Country | |
---|---|---|---|
20180320603 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62203879 | Aug 2015 | US | |
62203374 | Aug 2015 | US | |
62201555 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2016/045842 | Aug 2016 | US |
Child | 15889144 | US |