This application provides lash adjustment structures and techniques for an overhead cam switching roller finger follower.
An overhead cam switching roller finger follower is designed to switch between two motion modes. A spring biases an inner arm with respect to an outer arm so that the inner arm returns to a starting position. It is difficult to set the starting position of the inner arm because of variances in spring strength and tolerance stack up. So, it is desirable to set the starting position with means for accommodating variances and stack up.
The methods and devices disclosed herein overcome the above disadvantages and improves the art by way of a switching roller finger follower which comprises an innerarm assembly comprising an axle and an inner port through the axle. A pair of outer arms surround the inner arm assembly. Each of the pair of outer arms comprise inner shoulders facing the inner arm assembly. A pivot axle connects the inner arm assembly to pivot with respect to the pair of outer arms from a starting position to a lost motion position. A latch assembly comprises a latch selectively movable from a latched position latching the inner arm assembly to move dependent with the outer arms and an unlatched position unlatching the inner arm assembly to pivot independent of the outer arms. A stop pin spans between the pair of outer arms and through the inner port. The stop pin comprises a clearance fit with the inner port, and the stop pin is configured pivotable independent of the outer arms. At least one return spring biases the stop pin toward the inner shoulders so as to bias the inner arm assembly toward the starting position.
Additional objects and advantages will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the disclosure. The objects and advantages will also be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claimed invention.
Reference will now be made in detail to the examples which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. Directional references such as “left” and “right” are for ease of reference to the figures.
This application provides lash adjustment structures and techniques for an overhead cam switching roller finger follower (“SRFF”), sometimes called a “rocker arm.” While a 3-roller rocker arm is shown in the figures, it is possible to use the techniques disclosed herein with other SRFFs, such as those comprising slider pads instead of rollers. As an example of these alternative SRFFS, the outer rollers can be replaced with slider pads. Alternatively or additionally, the inner roller can be replaced with a slider pad. And, the disclosed lash adjustment structures and techniques can be used with these alternative SRFFs.
A strategy was developed to provide a stop of motion between the inner arm assembly 10 and outer arms 120, 130 on a Switching Roller Finger Follower (SRFF). The design involves a single stop pin 314, select fit for size to manage lash and set a starting position, passing through the inner arm assembly 10 and contacting shoulders 138, 139 on both inner sides of the outer arms. The stop pin 314 is retained by outer roller retainers 500 and is crowned on the ends 3141, 3142 to prevent sticking during operation. The stop pin 314 can be assembled in the SRFF as by drop-in assembly through bores 125, 135 in-line with the shoulders 138, 139.
In a SRFF, lash management is an important design consideration. In a 3 lobe SRFF, such as the 3-roller rocker arm shown in the Figures, there are two areas where lash is introduced in the rocker arm: at the latch 901 of the latch assembly 900; and between the inner roller assembly 30 and the outer rollers 400, 410. The lash at the latch 901 can result from the return spring, or as drawn with two return springs 5060, 5070, pushing the latching arm 220 of the inner arm assembly 10 above the latch 901 so that the latching arm 220 doesn't drag against the latch 910 during latch assembly actuation. This “latch lash” can vary forces pushing up on the overhead cam and can cause uneven presentation of the inner roller assemblies 30 to the overhead cam rail when a series of such SRFFs are assembled into a valvetrain.
The “roller lash” between the inner roller assembly 30 and outer arm rollers 400, 410 can be a difference in where the inner roller 310 aligns with respect to an overhead cam versus where the outer rollers 400, 410 align with respect to that overhead cam. Said in broader terms, the second kind of lash is related to a difference in outer arms 120, 130 position with respect to inner arm assembly 10 position.
The design of the stop pin 314 manages both kinds of lash. The design uses a stop pin 314 in an inner port 3162 through an axle 316 of the inner roller assembly 30. As shown, the axle 316 is fitted to inner arms 200, 210, such as at opening 3161, so that axle 316 is stationary with respect to the inner arms. Optional needle bearings 312 can surround axle 316. Outer layer of inner roller assembly 30 is a roller 310 that is acted on by an overhead cam during use. The stop pin 314 sets the location of the outer diameter of the roller 310 relative to the outer arms, which is a calibratable location corresponding to the starting position.
The stop pin 314 is select fit for size to achieve the proper lash. By “select fit,” the stop pin 314 can vary from customer application to customer application to adjust the lash and set the starting position of the inner arm assembly 10 with respect to the outer arms 120, 130. If more lash is desired or if the roller assembly 30 should have a starting position lowered, the stop pin 314 can comprise a larger diameter D to draw the inner arm down closer to the latch 901. If less lash is desired or if the starting position should be raised closer to the overhead cam, the pin can comprise a smaller diameter D, which increases the gap G between stop pin 314 and inner port 3161 and enables the inner roller assembly 30 to be biased closer to the overhead cam. At times, there are variances even in the stop pins themselves, requiring exchange of stop pins sold or manufactured as “same size.” Gap G persists despite which stop pin is select fit so that the stop pin can slide into the axle 316 without being stuck, as would occur with an interference, friction, or press-fitting. Gap G can be a clearance fitting, and gap G can result in a large clearance between axle 316 and stop pin 314. Grinding or other machining or manufacturing techniques can be used to form the different sized stop pins 314.
The unitary stop pin 314 and pin selection and alternative exchange techniques improve over the art because the “same size” stop pins, even if requiring exchange, are cheaper pieces to stock and exchange than some other components of the SRFF. Even if exchanging the stop pin, the SRFF is not scrapped in total due to tolerance stack up. And, having an array of different sized stop pins is a low scrap way to provide customer-specific variation without complete re-design or re-manufacture of the SRFF. While part count stock overall may increase for manufacture of some SRFFs, the part count of the SRFF itself remains low and the quantity of scrap during manufacture can be restricted to the stop pins and thereby total scrap can be kept low.
The inner roller assembly 30 can be installed with respect to the outer arm assembly with a pivot axle 302 provided to set relative motion therebetween. The outer arm assembly can comprise a valve end 12 and a pivot end 11. The pivot end 11 can comprise a latch body for receiving the latch assembly 900 herein shown as an electromechanical latch, though numerous alternative latch assemblies exist such as hydraulic and mechanical latch assemblies. A hydraulic lash adjuster cup 117 is shown for when a hydraulic lash adjuster is mounted to the SRFF. The pivot end can pivot on the HLA during engine system use.
The valve end 12 can comprise the pivot axle 302 and an integrally formed valve seat or a valve seat insert 601 for mounting a stem end of a valve. Valve seat insert can comprise, among numerous valve seat insert alternatives, a valve surface 6012 for seating valve stem end, valve guides 6015, 6016 for constraining valve stem end, and mounting cusps 2601 for securing the valve seat 601 with respect to the pivot axle 302.
At least one return spring biases the stop pin 314 toward the inner shoulders 123, 133 so as to bias the inner arm assembly 10 toward the starting position. While pivot end return springs or a single return spring on the pivot axle 302 among other variations of return spring arrangements can be used in alternative SRFFs, the illustrated example comprises valve end return springs 5060, 5070 coiled around the pivot axle 302. Spring caps 5050 can secure the return springs in place. The outer arms 120, 130 can comprise bias points, or shoulders 152, 153, for biasing ends 5010, 520 of the return springs. Inner arms 200, 210 can comprise inner arm extensions 202, 212 comprising notches 222 configured for biasing other ends 503, 504 of the return springs. An outer arm connector 145 can span across the valve end 12 of the outer arms 120, 130 and restrict the motion of the inner arm assembly 10 with respect to the outer arms as by abutting the inner arm extensions 202, 212 at an extrema of lost motion movement of the inner arm assembly 10. Numerous return spring alternatives and return spring mounting alternatives are compatible with the disclosure to return the inner arm assembly 10 to a starting position with respect to outer arms.
The inner sides of the outer arms 120, 130 can be formed with inner grooves 126, 136 to serve as pump-down guides for the stop pin 314. During lost motion travel of the stop pin 314, it can move through the inner grooves 126, 136 as the inner arms 200, 210 pivot within the outer arms 120, 130. The crowned ends 3141, 3142 slide against the inner grooves 126, 136 without sticking when the overhead cam actuates to move an unlatched inner arm assembly 30, and the stop pin 314 returns to a position abutting shoulders 138, 139 when the overhead cam is at base circle or when the inner arm assembly 30 is latched. Because of the clearance fit and gap G, the stop pin 314 can move, and the inner grooves can guide the stop pin without causing the inner arm assembly pivoting motion to be dependent on the outer arms motion.
The latch assembly 900 comprises the latch 901, and the latch is selectively movable from a latched position shown in
The stop pin 314 is “select fit,” which can comprise having a stock of stop pins of different diameters D. Depending upon the chosen customer lash, stop pins of one diameter or another can be inserted into bores 125, 135 in the outer arms 120, 130 and into axle 316 to set the starting position. Likewise, if assembly measurements indicate the inner arm assembly 10 should move with respect to the outer arms, due to tolerance stack up or other variances, the stop pins 314 can be exchanged or selected to achieve a desired starting position. A gauge, mount, caliper, or other calibration device or technique can be used to aid in selecting an appropriate diameter stop pin 314.
The bores 125, 135 aligned with the inner port 3162 of hollow axle 316 achieve a design that is conducive to the select fit process. Once the stop pin of appropriate diameter is installed in the hollow port, the retention of the stop pin 314 is accomplished by utilizing retainers 500. The retainers can achieve multiple functions of retaining the stop pin 314 inside the SRFF, providing a sliding surface for the ends 3141, 3142 of the stop pin 314, and securing the outer rollers 400, 410.
Retainers 500 can be pressed into bores 125, 135 in cantilevered posts 123, 133 on the outer arms 120, 130. The retainers 500 can be identical, as drawn, or can be “left handed” and “right handed” as when the bores are not identically sized, as when stop pin 314 is installed or exchanged from only one side of the SRFF instead of from either side as drawn. A flat head 501 can be used for a low footprint and can be used to retain the outer rollers 400, 410 in position on the cantilevered posts 123, 133. A shank 503 with a crowned end 502 can seat in the bore 125 or 135. The crowned end 502 provides a non-stick surface against with the stop pin ends 3141, 3142 can slide. When the inner arm assembly 10 moves down, the stop pin 314 moves out of the range of the retainers 500. To keep the stop pin 314 aligned when the inner arm assembly 10 moves back to the starting position, the ends 502 of the stop pin 314 can be crowned to ensure that the stop pin is centered if the stop pin contacts the retainer 500 on its way back.
The SRFF can be used in a Type II overhead cam valvetrain. A lash adjuster can be seated beneath the latch assembly 900. The latch can be, for example, hydraulic, electromechanical, mechanical, among variations. When the SRFF is latched, the inner arm assembly 10 and outer arms 120, 130 move together with the cam lobe to provide motion to the affiliated valve. When the latch 901 on the SRFF is unlatched, the inner arm assembly 10 moves downward with the cam lobe relative to the outer arms 120, 130. Depending on the cam lobe arrangement, the outer arms can remain stationary or can provide a variable valve actuation (“VVA”) functionality. The pivot axle 302 can connect the inner arm assembly 10 to pivot with respect to the pair of outer arms 120, 130 from the starting position to a “lost motion” position. Valve deactivation (lack of motion) or early or late opening or closing can be accomplished by selecting the “lost motion” position and the functionality ascribed thereto. Variables comprise, among others, the presence or absence of outer rollers or outer sliders, the shape and number of overhead lobes, and the location of the inner arm assembly with respect to the outer arms.
Methods of select-fitting a stop pin within a switching roller finger follower can comprise biasing an inner arm assembly 10 toward a starting position with respect to an outer arm. A calibratable device, such as a gauge, caliper, micrometer, chuck, or other testing device, can be applied to the SRFF to gauge where the inner arm assembly is with relation to a preselected starting position. A stop pin of a diameter that sets the inner arm assembly in the starting position can be selected. As above, this can comprise selection from a stock of stop pins of different diameters. The stop pin can be inserted within the inner arm assembly 10 to set the inner arm assembly at the starting position. The starting position can be re-gauged with the calibratable device. If needed, the stop pin can be exchanged with a selected second stop pin to re-set the starting position.
In an alternative select-fitting or lash setting method, inner arm assembly 10 is biased toward a starting position with respect to an outer arm. The starting position is gauged with a calibratable device. Because the inner arm assembly already comprises a stop pin, the stop pin is exchanged with a second stop pin of a diameter that re-sets the starting position of the inner arm assembly.
Other implementations will be apparent to those skilled in the art from consideration of the specification and practice of the examples disclosed herein.
This is a § 371 National Stage entry of Patent Cooperation Treaty Application No. PCT/EP2019/025050, filed Feb. 21, 2019, which claims the benefit of U.S. provisional application No. 62/634,748, filed Feb. 23, 2018, all of which are incorporated herein by reference and relied upon for the benefit of priority.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/025050 | 2/21/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/161976 | 8/29/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5544626 | Diggs et al. | Aug 1996 | A |
6314928 | Baraszu et al. | Nov 2001 | B1 |
6325030 | Spath et al. | Dec 2001 | B1 |
6439179 | Hendriksma et al. | Aug 2002 | B2 |
6481400 | Hendriksma et al. | Nov 2002 | B2 |
6502536 | Lee et al. | Jan 2003 | B2 |
6532920 | Sweetnam et al. | Mar 2003 | B1 |
6604498 | Fernandez et al. | Aug 2003 | B2 |
6901894 | Haas et al. | Jun 2005 | B2 |
6948466 | Haas et al. | Sep 2005 | B2 |
7318402 | Harman et al. | Jan 2008 | B2 |
7377247 | Seitz | May 2008 | B2 |
7484487 | Zurface et al. | Feb 2009 | B2 |
7712443 | Gemein | May 2010 | B2 |
7798112 | Zurface et al. | Sep 2010 | B2 |
7798113 | Fischer et al. | Sep 2010 | B2 |
7882814 | Spath et al. | Feb 2011 | B2 |
8215275 | Church | Jul 2012 | B2 |
8251032 | Manther | Aug 2012 | B2 |
8327750 | Keller et al. | Dec 2012 | B2 |
8534182 | Keller et al. | Sep 2013 | B2 |
8607753 | Krause et al. | Dec 2013 | B2 |
8635980 | Church | Jan 2014 | B2 |
8726862 | Zurface et al. | May 2014 | B2 |
8752513 | Zurface et al. | Jun 2014 | B2 |
8783219 | Gunnel et al. | Jul 2014 | B2 |
8915225 | Zurface et al. | Dec 2014 | B2 |
8985074 | Zurface et al. | Mar 2015 | B2 |
9016252 | Zurface et al. | Apr 2015 | B2 |
9038586 | Schultheis et al. | May 2015 | B2 |
9140148 | Church | Sep 2015 | B2 |
9194260 | Zurface | Nov 2015 | B2 |
9194261 | McCarthy, Jr. | Nov 2015 | B2 |
9228454 | VanDeusen | Jan 2016 | B2 |
9267396 | Zurface et al. | Feb 2016 | B2 |
9284859 | Nielsen et al. | Mar 2016 | B2 |
9291075 | Zurface et al. | Mar 2016 | B2 |
9470116 | Cecur | Oct 2016 | B2 |
9581058 | Radulescu et al. | Feb 2017 | B2 |
9644503 | Zurface et al. | May 2017 | B2 |
9664075 | McCarthy, Jr. | May 2017 | B2 |
9702279 | Zurface et al. | Jul 2017 | B2 |
9708942 | Zurface et al. | Jul 2017 | B2 |
9726052 | Zurface et al. | Aug 2017 | B2 |
9765657 | VanDeusen | Sep 2017 | B2 |
9790823 | Zurface | Oct 2017 | B2 |
10138763 | Miyazawa | Nov 2018 | B2 |
10253657 | Uckermark et al. | Apr 2019 | B2 |
20010023675 | Lee et al. | Sep 2001 | A1 |
20010027765 | Hendriksma et al. | Oct 2001 | A1 |
20020011225 | Hendriksma et al. | Jan 2002 | A1 |
20040237919 | Haas et al. | Dec 2004 | A1 |
20050132989 | Hendriksma et al. | Jun 2005 | A1 |
20050132990 | Haas et al. | Jun 2005 | A1 |
20060157008 | Lechner et al. | Jul 2006 | A1 |
20070101958 | Seitz | May 2007 | A1 |
20070113809 | Harman et al. | May 2007 | A1 |
20070186890 | Zurface et al. | Aug 2007 | A1 |
20070283914 | Zurface et al. | Dec 2007 | A1 |
20090217895 | Spath et al. | Sep 2009 | A1 |
20100018482 | Keller et al. | Jan 2010 | A1 |
20100319657 | Dodi et al. | Dec 2010 | A1 |
20110226208 | Zurface et al. | Sep 2011 | A1 |
20110226209 | Zurface et al. | Sep 2011 | A1 |
20120037107 | Church | Feb 2012 | A1 |
20120260875 | Moeck et al. | Oct 2012 | A1 |
20130000582 | Church | Jan 2013 | A1 |
20130068182 | Keller et al. | Mar 2013 | A1 |
20130146008 | Stoody | Jun 2013 | A1 |
20130220250 | Gunnel et al. | Aug 2013 | A1 |
20130233265 | Zurface et al. | Sep 2013 | A1 |
20130255612 | Zurface et al. | Oct 2013 | A1 |
20130306013 | Zurface et al. | Nov 2013 | A1 |
20130312506 | Nielsen et al. | Nov 2013 | A1 |
20130312681 | Schultheis et al. | Nov 2013 | A1 |
20130312686 | Zurface et al. | Nov 2013 | A1 |
20130312687 | Zurface et al. | Nov 2013 | A1 |
20130312688 | VanDeusen | Nov 2013 | A1 |
20130312689 | Zurface et al. | Nov 2013 | A1 |
20140041608 | Zurface | Feb 2014 | A1 |
20140150745 | Church | Jun 2014 | A1 |
20140190431 | McCarthy, Jr. | Jul 2014 | A1 |
20140283768 | Keller et al. | Sep 2014 | A1 |
20150128890 | Cecur | May 2015 | A1 |
20150135893 | Evans | May 2015 | A1 |
20150211394 | Zurface et al. | Jul 2015 | A1 |
20150267574 | Radulescu et al. | Sep 2015 | A1 |
20150369095 | Spoor et al. | Dec 2015 | A1 |
20150371793 | Sheren et al. | Dec 2015 | A1 |
20150377093 | Church | Dec 2015 | A1 |
20160061067 | Schultheis et al. | Mar 2016 | A1 |
20160061068 | Zurface | Mar 2016 | A1 |
20160084117 | Zurface et al. | Mar 2016 | A1 |
20160108766 | Zurface et al. | Apr 2016 | A1 |
20160115831 | Spoor et al. | Apr 2016 | A1 |
20160130991 | Zurface et al. | May 2016 | A1 |
20160138435 | Zurface et al. | May 2016 | A1 |
20160138438 | Genise et al. | May 2016 | A1 |
20160138484 | Nielsen et al. | May 2016 | A1 |
20160146064 | Spoor et al. | May 2016 | A1 |
20160169065 | VanDeusen | Jun 2016 | A1 |
20160230619 | McCarthy, Jr. | Aug 2016 | A1 |
20160273413 | Sheren et al. | Sep 2016 | A1 |
20170002698 | Cecur | Jan 2017 | A1 |
20170248073 | McCarthy, Jr. | Aug 2017 | A1 |
20180045081 | Rehm et al. | Feb 2018 | A1 |
20180156140 | Vance et al. | Jun 2018 | A1 |
20180238198 | Uckermark et al. | Aug 2018 | A1 |
20180320603 | Vance et al. | Nov 2018 | A1 |
20190063268 | Buonocore et al. | Feb 2019 | A1 |
20190284971 | Vance et al. | Sep 2019 | A1 |
20190309659 | Vance | Oct 2019 | A1 |
20190309660 | Vance | Oct 2019 | A1 |
20200056512 | Vance | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
WO-2013156610 | Oct 2013 | WO |
WO-201 4134601 | Sep 2014 | WO |
WO-2014134601 | Sep 2014 | WO |
WO-2016155978 | Oct 2016 | WO |
WO-2016176300 | Nov 2016 | WO |
WO-2017024249 | Feb 2017 | WO |
WO-2017144706 | Aug 2017 | WO |
WO-2018068041 | Apr 2018 | WO |
WO-2018068043 | Apr 2018 | WO |
WO-2018068045 | Apr 2018 | WO |
WO-2018068046 | Apr 2018 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/EP2019/025050 dated May 8, 2019; pp. 1-13. |
International Search Report and Written Opinion for PCT/US2016/045842 dated Oct. 28, 2016 pp. 1-23. |
International Search Report and Written Opinion for PCT/US2017/055766; dated Jan. 22, 2018; pp. 1-21. |
International Search Report and Written Opinion for PCT/US2017/055777 dated Jan. 24, 2018; pp. 1-23. |
International Search Report and Written Opinion for PCT/US2017/055785 dated Jan. 17, 2018; pp. 1-18. |
International Search Report and Written Opinion for PCT/US2017/055788; dated Jan. 24, 2018; pp. 1-17. |
Melfast, Inc.; Top 5 Basic Elements of Dowel Pins; Oct. 5, 2013; pp. 1-6. |
Number | Date | Country | |
---|---|---|---|
20200392875 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62634748 | Feb 2018 | US |