Swivel and eccentric weight to orient a roller sub

Information

  • Patent Grant
  • 6779598
  • Patent Number
    6,779,598
  • Date Filed
    Monday, July 22, 2002
    22 years ago
  • Date Issued
    Tuesday, August 24, 2004
    20 years ago
Abstract
A downhole device, adapted for use in wireline or slickline application, is provided for incorporation into a downhole string and movement in a wellbore. The device comprises means to orient the device in a wellbore, and one or more conveying means arranged to engage the inner surface of the wellbore and reduce the frictional coefficient. It may also incorporate an eccentric weight and/or a vibrator.
Description




DESCRIPTION OF THE RELATED ART




In conventional wireline and slickline operations, a workstring with different tools is lowered into casing, tubing or other tubulars in a borehole from a wire or cable spooled from a drum at surface. Wireline and slickline operations can be performed for many reasons during completion, maintenance and servicing, installation and retrieval of downhole apparatus, intervention and for well logging. Most strings of wireline tools comprise one or more devices that e.g. collect data from the well-bore concerning the characteristics of recovered fluids etc such as temperature, salinity etc, or perform other functions. In addition to suspending the string of tools, the wire or cable may also act as a conduit for power required by the tools to carry out their functions in the well-bore, and may include signal cables for conveying data gathered by the downhole sensors back to surface.




Wireline strings operate satisfactorily in vertical and near vertical wells, but problems arise when they are used in deviated wells, because when the well deviates beyond about 55°, the suspended string of tools no longer penetrates satisfactorily under gravity, as the frictional forces retarding it exceed the gravitational forces propelling it. Also, the string tends to snag on the tubular connections or other upsets on the inner wall of the casing.




BRIEF SUMMARY OF THE INVENTION




According to the present invention there is provided a downhole device for incorporation into a downhole string and movement in a well-bore, the device comprising means to orient the device in a well-bore, and one or more conveying means arranged on the device to engage the inner surface of the well-bore.




The device can comprise a downhole sub for incorporation into a string or tool. The means to orient the device or sub can be eccentric means such as an eccentric weight or shape to the sub or a portion thereof. Typical eccentric orientation means can be ballast means such as a weight eccentrically positioned in the sub to favour adoption by the sub of one or more orientations rather than others. Typically the orientations favoured are those in which the conveying means are in contact with the inner surface of the well-bore. However, in other embodiments of the invention, the means for orienting the sub can be an external shape of the sub or a portion thereof e.g. an egg or oval shape that favours orientation of the sub on a wider portion of the sub than on a narrow portion e.g. at the tips of the oval. In that embodiment the conveying means can be associated with the wider portion of the sub so that they are brought into contact with the well-bore surface when the sub orientates itself on the wider portions of the sub.




The conveyors can be wheels, rollers or similar, but other types of conveyors can equally be useful, for example skis, endless tracks etc. Anything that reduces the frictional coefficient of the device is suitable for basic embodiments of the invention. It is preferred that the conveying means are provided in pairs in a side-by-side arrangement and that several pairs of conveying means are provided on the device or tool as a whole. The wheels or other conveyors etc are typically provided on the lower surface of the sub i.e. the lower surface when it has been oriented by the ballast.




The device can be made up into a tool or tool string, but can be incorporated into other strings to reduce frictional resistance to movement of the tool string in the well.




In a second aspect the invention also provides a downhole device for incorporation into a tool or work string and movement in a well-bore, the device having friction reducing means on its outer surface to facilitate passage of the device through a well-bore.




The friction reducing means can comprise the conveying means of the first aspect of the invention and the sub of the second aspect can also incorporate orientation means in certain embodiments.




A motor can be provided optionally in a separate module in the sub body. The motor can be powered by a battery also contained within a separate module in the sub.




The sub, tool or string in which it is incorporated may have a vibrator or oscillator which may typically be in the form of an eccentric rotor that can be rotated by the motor. The motor can drive either or both of the vibrator and the conveyor, and need not drive both even when both are provided in a particular embodiment. The vibrator typically induces vibrations in the tool body at a desired frequency, which may optionally be varied e.g. by adjusting mass or position of weights on the rotor or its rpm, or other vibration means.




The sub, tool or string in which it is incorporated may have a sensor coupled to a switch for controlling the motor and/or the vibrator. The sensor may be adapted to sense one or more characteristics of the tool or its environment. One preferred characteristic that the sensor can detect is the attitude of the sub or tool. For example, in a preferred embodiment, the sensor detects the vertical attitude of the sub or tool and sends a signal to the motor and/or the rotor to function if the sub or tool body deviates more than a fixed amount beyond the vertical. This automatically switches on the motor to drive the wheels and/or the vibrator when the sub or tool encounters a deviated well which might tend to retard the progress of the sub or tool through the well-bore. A typical deviation that can be chosen to activate the sensor is approximately 50° to 75°. Thus, when the sub or tool enters a region of the well-bore which is deviated, say, by 70°, the sensor detects the deviation in the attitude, and as the sub or tool enters the deviated well-bore, the motor drives the wheels or the vibrator to reduce the friction of the sub or tool against the well-bore inner surface and avoiding or reducing the possibility of retarding the sub or tool on the inner surface of the well-bore.




The wheels or other conveyors are preferably disposed in side-by-side relationship and are arranged to contact the well-bore inner surface at or very near the circumference of the sub or tool. For example, in preferred embodiments, the wheels do not protrude substantially beyond the outer circumference of the body of the sub or tool, so that they substantially coincide with the outer circumference of the cylindrical body. Typically they extend through cut-away sections of the side-walls of the body, and follow the shape of the outer diameter of the body and/or the inner surface of the well-bore. The side-walls of the cylindrical body are typically formed with slots etc from which the wheels or other conveyors protrude very slightly so as to engage the inner surface of the well-bore. In preferred embodiments, the slots match the protruding portions of the wheels etc very closely, so as to avoid or minimise flat areas where the sub or tool can rest on the inner surface of the well-bore without contacting the well-bore inner surface with the wheels or other conveyors. The well-bore-engaging surfaces of the wheels are typically shaped to conform to the inner surface of the tubular through which the sub will be run.




In one preferred embodiment of the invention the wheels are of large diameter and are arranged to extend through the body of the sub at opposite sides, so that each wheel extends through opposing sides of the body and contacts opposing sides of the well-bore. Larger wheels can be more resistant to wear downhole, and can also reduce frictional coefficients. Typically the large wheels are positioned in pairs side-by-side, with each pair on the same axis through the sub.




In the above embodiments each wheel can be arranged on a central axle to extend through opposite sides of the sub, so that one large diameter wheel, or one side-by-side pair of wheels, can suffice. In some other preferred embodiments of the invention with wheels extending through opposite sides of the sub, smaller wheels are used with each wheel only extending through a single side to contact the well-bore surface only at one point, and typically wheels on opposing sides are mounted on different axles and optionally at the same axial position along the sub, so that an axial core can be provided for a power or data cable.




The various components of the sub or tool of the invention can optionally be provided in separate subs.




The sub or tool can therefore comprise a train of connected subs each having one or more wheels or rollers, batteries, motors, vibrators, sensors, knuckle or swivel joints.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS




Embodiments of the present invention will now be described by way of example and with reference to the accompanying drawings, in which:





FIG. 1

is side and sectional views through a first embodiment of a device;





FIG. 2

is a side view of a schematic arrangement of a second device;





FIG. 3

is an end view of a further embodiment within a pipe;





FIG. 4



a


is a plan view of the

FIG. 3

embodiment;





FIGS. 4



b


and


4




c


are sectional views of the

FIG. 3

embodiment;





FIGS. 5



a, b, c, d


and


e


are sectional and side views through a fourth embodiment;





FIGS. 6



a


and


b


show sectional and side views of a fifth embodiment; and





FIGS. 7



a


and


b


are further views of the fifth embodiment.











DETAILED DESCRIPTION OF THE INVENTION




Referring now to the drawings, a downhole sub


1


has a body


5


having suitable connections


6


at either end to be attached into a string of wireline tools for well intervention or MWD etc. The connections may be conventional box and pin, or others as required. A knuckle joint and/or swivel


7


is provided at one or both ends to facilitate travel of the sub


1


around corners and for orientation in a pipe.




The body


5


is made up of an exterior housing


10


with several compartments for respectively containing a battery


12


, motor


14


, vibrator


15


, and sensor


16


. The housing


10


can typically be formed of steel, and can incorporate a belly portion


10




b


formed of lead or a denser material than the steel housing which eccentrically weights the body


10


. This has the effect of asymmetrically weighting the sub so that the belly portion naturally assumes the lowest position under gravity in a deviated well-bore.




Instead of being formed from different materials so as to produce the asymmetrically weighted housing, the sub can simply be arranged to have more of its heavier components like the motor, battery etc on the belly side


10




b


so as to concentrate the weight on that side and therefore to induce the asymmetric weighting without requiring a multi-piece housing.




Optionally, subs at the top and/or bottom of the sub


1


incorporate swivels enabling the sub


1


to rotate axially relative to the rest of the toolstring. Alternatively, in small toolstrings, this rotation of the tool is unnecessary and the swivel subs can be omitted.




The belly


10




b


of the sub


1


has two pairs of rollers


20


at each end mounted on respective axles


21


passing through the body


10


of the sub


1


. The rollers


20


are contained within the body


10


of the sub


1


and protrude through slots


22


in the belly portion


10




b


of the housing


10


so as to engage the inner surface of the casing etc. The rollers


20


can be shaped so that their end-on profile matches, as closely as possible, the circular cross-sectional profile of the housing


10


, and the rollers


20


are positioned very near to the circumference of the body


10


at the mid-line of the belly portion


10




b


so that when the sub


1


is oriented by the belly portion


10




b


, the rollers


20


are brought into engagement with the inner surface of the casing etc and the contact between the rollers


20


and the casing is automatically maintained by the asymmetrically weighted housing of the belly portion


10




b.






The rollers


20


are typically carried on roller subs


10




r


forming part of the body


10


.




As the rollers


20


are always brought into contact with the inner surface of the well-bore casing in deviated wells, the sub


1


naturally runs along the lower surface of the deviated casing on the rollers


20


. This minimises resistance to travel of the sub


1


through the casing. As the rollers


20


only protrude very slightly through the slots


22


in the housing


10


, which extends flush against the sides of the protruding portions of the wheels, there are no flat areas of the sub


1


outer housing


10


where it may come to rest on the inner surface of the well-bore casing except for the area between the pairs of rollers


20


.




Since the asymmetrically weighted belly portion of the sub always orientates the sub


1


so that the rollers


20


engage the inner surface of the well-bore casing, this mitigates the possibility that the rollers


20


fail to engage the inner surface of the well-bore casing, e.g. by the sub


1


resting on a flat area out of contact with the rollers


20


.




In highly deviated wells (i.e. above 65° to 70°), an optional inclination sensor


16


activates the optional electric motor


14


to power either or both of the rollers


20


and an optional vibrator


15


connected in the toolstring. The electric motor


14


can optionally be battery powered from the onboard battery


12


, or can be powered from an electric line combined with or lowered alongside the wireline from surface. A hydraulic motor can replace the electric motor and can be supplied by fluid from a hydraulic line from surface.




The vibrator


15


comprises an eccentric rotor which is rotated by the motor


16


at a number of different frequencies which can be specified by an operator either from surface or by setting the required vibration frequency on the sub


1


before it is launched from surface. Vibration of the sub


1


helps to overcome frictional resistance to movement through casing, and can release the sub or string in which it is attached from snagging on upsets or casing joints etc on the inner surface of the well-bore casing.




The motor can alternatively, or additionally, drive the rollers


20


directly in a forward or reverse direction. A transmission system (not shown) of conventional design is typically provided for this purpose. With the wheels or rollers or other conveyors etc, the sub can penetrate well-bores deviated by up to around 75-80°. By also providing a motor and/or vibrator the sub can penetrate well-bores deviated up to around 87°.





FIG. 2

shows a modified embodiment in which the different components are provided in separate inter-connecting subs.





FIGS. 3 and 4

show end and side views of a further sub


100


that has no added ballast but is shaped ovally (see end view of

FIG. 3

) so that the sub


100


has a belly portion


100




b


and an opposing back portion


100




c


that are located on a wider radius of the sub


100


, and opposing side portions


100




s


that have a narrower radius. Wheels


120


are arranged in two sets of side-by-side pairs, with each pair mounted and optionally sealed via a wiper seal onto a common axle


121


that passes between the side portions


100




s


and is secured by a pin


121




p


so that the tips of the wheels


120




t


extend towards and through openings in the back and belly portions


100




b,c


. Extending the wheels through the walls of the sub


100


gives two landing zones on the circumference of the sub


100


where it is balanced and stable. The wheels


120


protrude only very slightly through the openings, and are profiled to follow the shape of the internal wall of the well-bore W as described above.




When the sub


100


is in the well-bore W the oval shape tends to unbalance the sub


100


if it is resting on its side portions


100




s


because these have a narrower radius and therefore a smaller surface area in contact with the well-bore W than the back


100




c


and belly


100




b


portions. Therefore, should the sub


100


come to rest on either side portion


100




s


, it will tend to tip over to balance on the tips


120




t


of the wheels


120


that extend through the belly and back portions


100




b,c


. In that configuration, the tips


120




t


of the wheels


120


contact the inner portion of the well-bore W, and the sub


100


balances itself in that orientation, so that the wheels can drive the sub, or merely rotate to reduce the friction retarding the passage of the sub through the well-bore.




Note that it is not necessary for the sub


100


to be oval shaped, and good results can be achieved with other shapes that are more balanced in one orientation than in another e.g. regular shapes that have protrusions at the sides or elsewhere to create areas of low surface area for contacting the well-bore.




Typically the conveyors are associated with the portion of the sub that contacts the well-bore in the balanced orientation, and which typically has a larger surface area or a number of protrusions (such as conveyors like wheels) that are spaced apart and between which the sub can balance more easily.




Note also that it is unnecessary for the sub to be powered at all, and providing one or more dumb subs with simple overbalancing and un-powered wheels in a tool string can ease the passage of the string through less deviated wells.





FIG. 5

shows a fourth embodiment of a sub


200


with a substantially rounded body


205


through which 8 wheels or rollers extend. The rollers 220-227 are each arranged on a single axle and extending through a side wall at a flattened area on the top or bottom of the sub to contact the well-bore at only one position. Each roller (e.g.


220


) has a pair of wheels and is typically (but not necessarily) arranged above or below another roller (e.g.


221


), so that groups of 2 rollers are provided at 4 positions shown in sections


1





1




2





2


,


3





3


and


4





4


in

FIGS. 5



a


,


5




b


,


5




d


and


5




e


respectively, along the axis of the sub


200


. Axially adjacent rollers are offset by 90° with respect to each other, so that the wheels at sections


1





1


and


3





3


are aligned with one another and extend respectively through the top and bottom faces of the sub


200


, and the wheels at sections


2





2


and


4





4


are similarly aligned with each other but are arranged at 900° to those at sections


1





1


and


3





3


to extend through the side faces of the sub


200


.




The provision of smaller wheels extending only through one face of the sub


200


allows an axial passage through the centre of the sub for a power or data cable


230


.




The offset wheels increase the likelihood of some of the wheels engaging the well-bore and make it less crucial to have an orientation means in this embodiment of the invention. Therefore, embodiments such as this one can have rounded sub bodies so that they can fit better into smaller bore tubulars. However, orientation means can optionally be provided with this embodiment, for example in the form of eccentric weights or shapes in or on the sub body.




Swivels


250


can be provided to allow the sub to rotate on its axis relative to the rest of the string S and the swivel inner body, and the swivels


250


can optionally have a hollow bore to allow passage of the cable


230


. Bearings, seals and grease ports etc can optionally be provided. An anti-torque tube


260


connects to the swivel inner body to remain static while the sub body


200


swivels around it in order to keep the cable


230


from twisting.





FIGS. 6 and 7

show a further embodiment of a sub


300


with an eccentric-shaped body


305


having 4 rollers


320


-


323


each mounted on a separate axle


320




a


-


323




a


and each having 2 wheels extending through the flattened areas of the top and bottom walls of the sub


300


. Rollers


320


and


321


are mounted in a pair respectively at the top and bottom of the sub, as are rollers


322


and


323


, but the latter are axially spaced from rollers


320


and


321


along the sub body. This arrangement allows the passage of an anti-torque tube or mandrel


360


and cable


330


for data and/or power as described for the

FIG. 5

embodiment. The sub


300


optionally also has swivels


350


, seals and bearings as described for the

FIG. 5

embodiment.




In common with some other embodiments described, the wheels on the rollers


320


-


323


are shaped to follow closely the contour of the outer surface of the sub body


305


and the inner surface of the well-bore, and thereby assist in the orientation of the sub


300


onto the wheels at the top or bottom of the sub


300


. This also makes the sub more stable while resting on the wheels and less likely to tip over so that the wheels disengage from the inner surface of the tubing and frictional resistance to onward movement increases.




The axial passage can accommodate any kind of elongate member such as power or data cables, or coiled tubing, or simply control wires for tools further down the string.




Modifications and improvements can be incorporated without departing from the scope of the invention. For example, the vibrator or oscillator is typically a motor which rotates eccentric weights. The eccentric weight can be adjusted to account for different overall tool string weights either by using a different mass of eccentric weight, or by adjusting its position. The motor can be electrically or hydraulically powered. The vibrator or oscillator can alternatively be a hammer-type device providing an impact type of oscillation, and can similarly be electrically or hydraulically powered. The oscillations delivered to the tool can thus be axial, transverse or radial, and can be adjusted to be of a desired frequency and/or amplitude, which can optionally be altered during operation of the sub or tool. This causes static friction to reduce to dynamic friction and induces downward movement of the sub in the well-bore.



Claims
  • 1. A roller sub for incorporation into a downhole string and movement in a well-bore, the sub comprising at least one swivel device, an orientation device to rotationally orient the sub in a well-bore, and at least one conveyor selected from the group consisting of wheels and rollers arranged on the sub to engage the inner surface of the well-bore.
  • 2. A roller sub as claimed in claim 1, wherein the orientation device comprises an eccentric weight.
  • 3. A roller sub as claimed in claim 1, wherein the orientation device comprises an eccentric shape of a portion of the sub.
  • 4. A roller sub as claimed in claim 1, wherein the orientation device comprises a ballast mechanism eccentrically positioned in the sub to favour adoption by the sub of at least one orientation rather than others.
  • 5. A roller sub as claimed in claim 1, wherein the orientation device is adapted to orient the sub such that the at least one conveyor is in contact with the inner surface of the well-bore.
  • 6. A roller sub as claimed in claim 1, wherein the orientation device comprises a portion of the sub having a variable radius that favours orientation of the sub on a portion of the sub having a relatively larger radius.
  • 7. A roller sub as claimed in claim 6, wherein the at least one conveyor is associated with the portion of the sub having a relatively larger radius so that it is brought into contact with the well-bore surface when the sub orientates itself on the portion.
  • 8. A roller sub as claimed in claim 1, wherein at least one conveyor is provided on opposing sides of the sub.
  • 9. A roller sub as claimed in claim 1, wherein the at least one conveyors is provided in at least one pair of wheels or rollers, each wheel or roller in the pair being laterally spaced from the another in a side-by-side arrangement.
  • 10. A roller sub as claimed in claim 1, wherein the conveyor is provided on the lower surface of the sub.
  • 11. A roller sub as claimed in claim 1, wherein the conveyor is arranged to contact the well-bore inner surface substantially at the outer circumference of the sub.
  • 12. A roller sub as claimed in claim 1, wherein the sub is provided with apertures from which the conveyor protrudes to engage the inner surface of the well-bore.
  • 13. A roller sub as claimed in claim 12, wherein the protruding portions of conveyor are shaped to match the outer surface of the sub adjacent to the apertures.
  • 14. A roller sub as claimed in claim 12, wherein the protruding portions of the conveyor are shaped to match the inner surface of the well-bore through which the sub will be moving.
  • 15. A roller sub as claimed in claim 1, wherein the conveyor includes wheels of large diameter arranged to extend through the body at opposite sides of the sub.
  • 16. A roller sub as claimed in claim 1, wherein the conveyor includes wheels positioned in pairs side-by-side, with each pair on the same axis through the sub.
  • 17. A roller sub as claimed in claim 1, wherein two or more conveyors are provided, and at least some of the conveyors are axially, circumferentially or laterally offset with respect to one another.
  • 18. A roller sub as claimed in claim 1, incorporating a vibrator.
  • 19. A roller sub as claimed in claim 18, wherein the vibrator comprises an eccentric motor.
  • 20. A roller sub as claimed in claim 18, incorporating a motor to drive at least one of the group consisting of the conveyor and the vibrator.
  • 21. A roller sub as claimed in claim 18, wherein the frequency of vibrations induced by the vibrator can be varied.
  • 22. A roller sub as claimed in claim 1, having a sensor coupled to a switch for controlling the movement of the sub in the well-bore.
  • 23. A roller sub as claimed in claim 22, wherein the sensor is adapted to sense the attitude of the sub.
  • 24. A roller sub as claimed in claim 22, wherein the sensor detects the vertical attitude of the sub and sends a signal to the switch controlling the conveyor, triggering the conveyor to initiate movement of the sub if the sub deviates more than a fixed amount beyond the vertical.
  • 25. A roller sub as claimed in claim 24, wherein the conveyor is triggered to initiate movement of the sub if the deviation of the sub from the vertical exceeds a value above 50°.
  • 26. A roller sub as claimed in claim 1, having a power source.
  • 27. A roller sub as claimed in claim 1, having an axial passage for at least one of the group consisting of power cables, data cables, control wires, coiled tubing and other elongate members.
  • 28. A roller sub as claimed in claim 27, wherein the axial passage is held stationary with respect to the downhole string.
  • 29. A downhole tool comprising a roller sub as claimed in claim 1.
  • 30. A downhole string comprising a roller sub as claimed in claim 1.
Priority Claims (3)
Number Date Country Kind
9928488 Dec 1999 GB
0012134 May 2000 GB
0021328 Aug 2000 GB
Parent Case Info

This Application is the U.S. National Phase Application of PCT International Application No PCT/GB00/04622 filed Dec. 4, 2000. This invention relates to a downhole device, and particularly one that is adapted for use in wireline or slickline applications.

PCT Information
Filing Document Filing Date Country Kind
PCT/GB00/04622 WO 00
Publishing Document Publishing Date Country Kind
WO01/40615 6/7/2001 WO A
US Referenced Citations (11)
Number Name Date Kind
4058163 Yandell Nov 1977 A
4089371 Decuir, Sr. May 1978 A
4410051 Daniel et al. Oct 1983 A
4415030 Walkow et al. Nov 1983 A
4676310 Scherbatskoy et al. Jun 1987 A
5040619 Jordan et al. Aug 1991 A
5211714 Jordan et al. May 1993 A
5960895 Chevallier et al. Oct 1999 A
6273189 Gissler et al. Aug 2001 B1
6405798 Barrett et al. Jun 2002 B1
6561280 Baugh et al. May 2003 B1
Foreign Referenced Citations (3)
Number Date Country
0964131 Dec 1999 EP
894117 Apr 1962 GB
WO 9812418 Mar 1998 WO