Reels are commonly used to wind fluid delivery lines, such as hoses, that are used in a number of operations that involve fluid handling. Examples of the type of fluids that may need to be handled include water, lubricants, solvents, coolants, and various gases. The reels used in such operations typically employ the use of a swivel for connecting a fluid supply line to the fluid service line, which is wound around the reel. The swivel allows for the winding and unwinding of the service line, not only for ease in using and storing the service line, but also to prevent damage to the same.
Reels are typically supported on axles that further serve as a means to allow the rotation of the reel by the user. While the reel is rotating, the axle is kept in a stationary position. Similarly, the fluid source line, which extends from a fluid source such as a water faucet, must be kept in a stationary position to prevent the twisting or damaging of the line. The swivel allows the connection between the stationary fluid source line and the rotating fluid service line. However, current swivel connectors are either a complex assembly of intricate parts, which increase associated costs and maintenance issues, or made from inferior designs that are limited in use and require frequent repair. Leaking swivels has become a common problem in the hose and reel industry; ranking among the top complaints by users of inferior designs.
In many prior art swivel designs, the rotor and housing rotate with respect to one another in a less than accurate fashion. Frequently, there is a fair amount of concentric play between the rotor and the housing, which is a significant contributor to leaks. In an attempt to provide a swivel that does not leak, various prior art designs increase the pressure on the O-ring seals within the swivel assembly. One problem with this design approach, however, is that the increased pressure on the O-rings also increases the torque required to rotate the swivel. This oftentimes causes premature wear on the O-rings, which can shorten the life of the swivel and cause premature leaking; the very condition the design sought to avoid. Moreover, such increased torque in prior designs can cause the user's hose to kink.
Prior swivel designs are also difficult to repair when the O-rings fail. Conventional designs are meant to be replaced when the O-ring seals fail. This may happen routinely, increasing the operational costs to the user. If prior swivel designs are able to receive replacement O-ring seals, their design limitations require the disruption of the bearing raceway as the housing of the swivel is removed to gain access to the damaged O-ring. This is a fairly complicated repair in the field and may cause more problems than it resolves.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary, and the foregoing Background, is not intended to identify key aspects or essential aspects of the claimed subject matter. Moreover, this Summary is not intended for use as an aid in determining the scope of the claimed subject matter.
A swivel connector of the present technology is provided for use within a wide array of fluid handling systems that may incorporate the use of a reel, axle, fluid source line, and fluid delivery line. Generally, the swivel connector will include an elongated rotor, having open end portions and an open fluid pathway extending therebetween. A housing, having open end portions and an open fluid pathway extending between the end portions. The housing is placed in open fluid communication with one end portion of the rotor, such that the housing may freely rotate with respect to the rotor on a common axis.
In various embodiments, a rotary union bushing is provided, having an open end portions. The rotary union bushing is shaped to be coaxially, rotatably coupled with an exterior surface of the rotor. In some embodiments, a rotor cap is associated with the swivel connector and shaped to have open end portions and an open interior portion extending therebetween. The rotor cap is coaxially, rotatably coupled around a length of the rotor. One end portion of the rotor cap may be coupled with an end portion of the housing. In this manner, the rotary union bushing, the rotor cap, and the housing are selectively rotatable about a common axis with respect to the rotor. To facilitate the rotation of the housing, with respect to the rotor, a plurality of bearings are disposed within a raceway that is at least partially defined by a recess formed in the exterior surface of the rotor. The remainder of the raceway may be defined by portions of either or both of the rotary union bushing or the rotor cap.
In various embodiments, an O-ring seal is positioned between the housing and the exterior surface of the rotor, such that the passage of fluid from the fluid pathway of the rotor to the interior portion of the rotor cap is substantially prevented. In some embodiments, a locking O-ring is positioned between the housing and the rotor cap, whereby relative movement between the housing and the rotor cap is substantially prevented.
In various embodiments, the swivel connector is used with reel assemblies of various designs. In many such embodiments, however, the reel assemblies will be configured to support one or more lengths of generally flexible fluid delivery lines. It is contemplated that the reel assemblies will include a line support section or hub that extends between opposite ends of the reel assembly. Some reel assemblies may include a pair of opposing flanges and that project outwardly from the opposing ends of the reel assembly, to form an annular channel for receiving a length of the fluid delivery line. The reel assembly will commonly include an axle that is provided to extend coaxially with the hub and be operatively coupled with the hub such that selective rotation of the hub about the axle is allowed. In some embodiments, the swivel connector may include an axle cap having an open end portions and an open interior extending therebetween. The axle cap may be positioned around the exterior surface of the rotor and secured with an end portion of the axle to secure the swivel connector in a static position with respect to the axel. One end portion of a fluid delivery line is coupled with the terminal end of the housing and the remainder of the fluid delivery line is coiled about the hub. In some embodiments, the fluid delivery line may be anchored to the hub using a hose clamp.
These and other aspects of the present system and method will be apparent after consideration of the Detailed Description and Figures herein.
Non-limiting and non-exhaustive embodiments of the present invention, including the preferred embodiment, are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Embodiments are described more fully below with reference to the accompanying figures, which form a part hereof and show, by way of illustration, specific exemplary embodiments. These embodiments are disclosed in sufficient detail to enable those skilled in the art to practice the invention. However, embodiments may be implemented in many different forms and should not be construed as being limited to the embodiments set forth herein. The following detailed description is, therefore, not to be taken in a limiting sense.
With reference to
With reference to
In various embodiments, the swivel connector 10 will include a rotary union bushing 28, having an open first end portion 30 and an open second end portion 32. The rotary union bushing 28 is shaped to be coaxially, rotatably coupled with an exterior surface of the rotor 12 between the first end portion 14 and the second end portion 16. While it is contemplated that the rotary union bushing 28 may be formed from a wide array of materials, that include various polymers and metals, some embodiments of the present technology form the rotary union bushing 28 from polytetrafluoroethylene (PTFE) or similar materials that may be desirable for their ability to rotatably seal against opposing surfaces, such as the exterior surface of the rotor 12, without undue wear or degradation over a significant lifetime of use. In various embodiments, a rotor cap 34 is associated with the swivel connector 10. The rotor cap 34 will be shaped to have an open first end portion 36 and an open second end portion 38, with an open interior portion 40 extending therebetween. The rotor cap 34 is coaxially, rotatably coupled around a length of the rotor 12. In some embodiments, at least a portion of the rotary union bushing 28 is disposed within the interior portion 40 of the rotor cap 34. With reference to
While it is contemplated that the bearings 46 could be made from several different materials, such as hardened or stainless steel, some embodiments of the present technology form the bearings 46 from a plastic, such as Acetyl. The use of Acetyl bearings allows for a higher rate of rotation between the rotor 12 and the opposing structures, such as the rotary union bushing 28 and the rotor cap 34. The Acetyl bearings also tend to wear longer than their steel counterparts. The low coefficient of friction associated with materials such as Acetyl are lower than steel bearings. Accordingly, the Acetyl bearings may rub against one another with a lower instance of disintegration, unlike steel balls. The design of the previously described raceway 48 and bearings 46 need only to provide for axial load and not radial load. Prior swivel connector designs used the bearings within the assembly for both axial and radial loads. The high precision machining required for such an arrangement is obviated by the present design. The rotary union bushing 28 supplies the radial load so that the bearings 46 can fit more loosely within the raceway 48 and not effect the sealing nature of any O-rings disposed within the swivel connector 10.
In various embodiments, an O-ring seal 52 is positioned between the housing 20 and the exterior surface of the rotor 12, whereby the passage of fluid from the fluid pathway 18 of the rotor 12 to the interior portion 40 of the rotor cap 34 is substantially prevented. In some embodiments, the O-ring seal 52 is positioned within an annular channel 52 defined by a portion of each'of the rotary union bushing 28, the housing 20, and the exterior surface of the rotor 12. In at least one embodiment, the annular channel is formed primarily within an interior circumference of the first end portion 22 of the housing 20. The exterior surface of the rotor 12 and the first end portion 30 of the rotary union bushing 28 providing bearing and containment walls, accordingly.
In certain embodiments, a locking O-ring 54 is positioned between the housing 20 and the rotor cap 34, whereby relative movement between the housing 20 and the rotor cap 34 is substantially prevented. In at least one embodiment, the locking O-ring 54 is positioned within a space defined by a portion of each of the rotary union bushing 28, the housing 20, and the rotor cap 34.
With reference to
It is contemplated that the swivel connector 10 may be used with reel assemblies of a nearly endless number of different designs. Commonly, however, a reel assembly 58 used with the swivel connectors 10 disclosed herein will be configured to support one or more lengths of generally flexible fluid delivery lines 60. Some examples of such fluid delivery lines 60 include hoses designed for the delivery of various gases, such as compressed air and liquids, such as water and other chemical compositions. Accordingly, irrespective of the specific design of the reel assembly 58, it is contemplated that the reel assembly 58 will include a line support section or hub 62 that extends between opposite end portions 64 and 44 of the reel assembly 58. The hub 62 may be shaped as a drum with a partially open or continuous exterior surface 68, which is adapted for supporting a length of the hose 60. Some reel assemblies may include a pair of opposing flanges 70 and 72 that project outwardly from the opposing end portions 64 and 66 of the reel assembly 58, to form an annular channel for receiving a length of the fluid delivery line 60. The reel assembly 58 will commonly include an axle 74, having a first end portion 76 and a second end portion 78, that is provided to extend coaxially with the hub 62 and be operatively coupled with the hub 62 in a manner that permits selective rotation of the hub 62 about the axle 74. Components of applicant's reel assembly, described in U.S. Pat. No. 7,389,790, issued on Jun. 24, 2008, and other currently pending U.S. patent applications, may provide an exemplary embodiment of a reel assembly 58 that may be used with the swivel connector 10 of the present technology.
In some embodiments, the swivel connector 10 may be provided with an axle cap 80 having an open first end portion 82, an open second end portion 84, and an open interior portion 86 extending therebetween. The axle cap 80 may be positioned around the exterior surface of the rotor 12 and secured with the second end portion 78 of the axle 74. In this regard, mating threads or other mechanical fastener features may be associated with the interior portion 86 of the axle cap 80 and the second end portion 78 of the axle 74. In some embodiments, an axle cap flange 88 is formed to extend radially outwardly from the exterior surface of the rotor 12, between its first end portion 14 and second end portion 16. With reference to
With reference to
Although the system and methods of employing the same have been described in language that is specific to certain structures, materials, and methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific structures, materials, and/or steps described. Rather, the specific aspects and steps are described as forms of implementing the claimed invention. Since many embodiments of the invention can be practiced without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended. Unless otherwise indicated, all numbers or expressions, such as those expressing dimensions, physical characteristics, etc. used in the specification (other than the claims) are understood as modified in all instances by the term “approximately.” At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the claims, each numerical parameter recited in the specification or claims which is modified by the term “approximately” should at least be construed in light of the number of recited significant digits and by applying ordinary rounding techniques. Moreover, all ranges disclosed herein are to be understood to encompass and provide support for claims that recite any and all subranges or any and all individual values subsumed therein. For example, a stated range of 1 to 10 should be considered to include and provide support for claims that recite any and all subranges or individual values that are between and/or inclusive of the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less (e.g., 5.5 to 10, 2.34 to 3.56, and so forth) or any values from 1 to 10 (e.g., 3, 5.8, 9.9994, and so forth).
Number | Date | Country | |
---|---|---|---|
61373445 | Aug 2010 | US |