Field of the Invention
Embodiments of the present invention generally relate to apparatus and methods for facilitating the connection of tubulars of a drilling rig.
Description of the Related Art
In the construction and completion of oil or gas wells, a drilling rig is constructed on the earth's surface to facilitate the insertion and removal of tubular strings into a wellbore. The drilling rig includes a platform and power tools such as an elevator and a spider to engage, assemble, and lower the tubulars into the wellbore. The elevator is suspended above the platform by a draw works that can raise or lower the elevator in relation to the floor of the rig. The spider is mounted in the platform floor. The elevator and spider both have slips that are capable of engaging and releasing a tubular, and are designed to work in tandem. Generally, the spider holds a tubular or tubular string that extends into the wellbore from the platform. Traditionally, the elevator engages a new tubular and aligns it over the tubular string being held by the spider. A power tong and a spinner are then used to thread the upper and lower tubulars together. Once the tubulars are joined, the spider disengages the tubular string and the elevator lowers the tubular string through the spider until the elevator and spider are at a predetermined distance from each other. The spider then re-engages the tubular string and the elevator disengages the string and repeats the process. This sequence applies to assembling tubulars for the purpose of drilling a wellbore, running casing to line the wellbore, or running wellbore components into the well. The sequence can be reversed to disassemble the tubular string.
During the drilling of a wellbore, a drill string is made up and is then necessarily rotated in order to drill. Historically, a drilling platform includes a rotary table and a gear to turn the table. In operation, the drill string is lowered by an elevator into the rotary table and held in place by a spider. A Kelly is then threaded to the string and the rotary table is rotated, causing the Kelly and the drill string to rotate. After thirty feet or so of drilling, the Kelly and a section of the string are lifted out of the wellbore and additional drill string is added.
The process of drilling with a Kelly is expensive due to the amount of time required to remove the Kelly, add drill string, reengage the Kelly, and rotate the drill string. In order to address these problems, top drives were developed.
For example,
In
The above-described method of connecting tubulars is complicated and time-consuming, requiring the elevator 120 and gripping tool 301 to alternately grip and release the tubulars in a particular sequence. Thus, there is a need for an apparatus and method that simplifies the connection of tubulars.
Embodiments of the present invention generally relate to an elevator for use in positioning tubulars on a drilling rig. More specifically, embodiments of the elevator can grip and position a tubular above a tubular string in a wellbore, and a portion of the elevator can rotate with the tubular so that the elevator can continue to grip and support the tubular as the tubular is threaded onto the tubular string in the wellbore.
Embodiments of an elevator can include a housing that is configured to be coupled to (e.g., suspended from) bails of a drilling rig. The elevator can also include an inner body, a portion of which rotates about an axis relative to the housing. A plurality of slips can be arranged relative to the inner body. The slips rotate about the axis with the inner body and also move relative to the inner body along the axis between a first slip position and a second slip position. In the first slip position, the slips can grip a tubular. In the second position, the slips can release the tubular. The elevator can also include a coupling between the inner body and the housing that enables the inner body to move axially, rotationally, or both, relative to the outer body along the axis as a tubular gripped by the slips is threaded onto a tubular string.
Various embodiments of an elevator can include a housing that includes two ears configured to receive bails attached to the drilling rig. The housing can define a first circular aperture therethrough and the circular aperture can define an axis of rotation. The elevator can also include an outer body that defines a second circular aperture therethrough, wherein the second aperture is coaxial with the first aperture. The outer body can move along the axis of rotation relative to the housing. The elevator can also include an inner body that defines a third circular aperture therethrough, wherein the third circular aperture is coaxial with the first circular aperture and the second circular aperture. The inner body can also move along the axis with the outer body and rotate about the axis relative to the outer body. The elevator can also include a plurality of slips arranged within the third aperture, wherein the slips are configured to rotate about the axis with the inner body. The slips can also move from a first position within the third aperture to a second position along the axis to grip a tubular passing through the first, second and third circular apertures. Rotation of the inner body and plurality of slips about the axis of rotation can spin a gripped tubular into threading engagement with each tubular string to wellbore. As the tubular is spun into threading engagement with the tubular string, the outer body and inner body can move along the axis to compensate for motion of the tubular toward the tubular string.
Various embodiments include a method for adding a tubular to a tubular string. The method includes positioning a drill rig elevator over a top end of the tubular and then moving slips disposed in the elevator to grip the top end of the tubular. After the top end of the tubular is gripped the elevator can be raised to raise the tubular over a drill rig spider, wherein the drill rig spider holds a top end portion of a tubular string in a wellbore. While the slips disposed in the elevator gripped the tubular, the tubular can be rotated to threadingly attach a bottom end of the tubular with a top end of the tubular string, and simultaneously move a portion of the elevator gripping tubular downward toward the spider. After the tubular is attached to the tubular string, the spider can release the tubular string such that the tubular and the attached tubular string are suspended from the elevator. The elevator can then be lowered to lower the tubular string in tubular into the wellbore. After the elevator has been lowered, the spider can re-grip the tubular string near the top end of the tubular that was just attached. The slips in the elevator can then be released to release the tubular string in tubular.
In one embodiment, a drilling rig elevator for handling a tubular includes a housing having a first aperture therethrough for accommodating the tubular; an outer body having a second aperture therethrough and at least partially disposed in the housing; an inner body having a third aperture therethrough and at least partially disposed in the outer body, wherein the third aperture is coaxial with the first aperture and the second aperture; and a plurality of slips arranged within the third aperture and configured to grip the tubular passing through the first, second, and third apertures.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the present invention include an elevator that includes gripping elements that can rotate with a gripped tubular that is being spun by a top drive. Furthermore, embodiments of the present invention can include a compensation system that axially moves a portion of the elevator that includes the gripping elements downward toward the wellbore with the tubular as the tubular is threaded onto a tubular string in the wellbore.
Referring to
In various embodiments, the housing 502 can be suspended on a drilling rig by bales (e.g., bales 124 shown in
Referring primarily to
In various embodiments, the inner body 508 can support gripping elements (e.g., slips 518) adapted to grip a casing or tubular inserted through the apertures 536 and 537. In one example, each slip 518 can include a pad 524 that can slide along a sloped inner wall 526 of the inner body 508. The sloped inner wall 526 defines a larger diameter at a top end and a smaller diameter at a bottom end. As the pads 524 slide along the sloped inner wall 526 from the top end to the bottom end, the pads 524 move radially inward and can clamp onto a casing or tubular inserted through the apertures 536 and 537. In one example, the pads 524 may include teeth for gripping the tubular. The slips 518 can be connected to and moved by an optional leveling ring 512, which is axially movable along the axis of rotation 538. The leveling ring 512 may be used to move the slips 518 simultaneously.
The leveling ring 512 can include an outer portion 514 and an inner portion 516. The outer portion 514 of the leveling ring 512 can be coupled to the outer body 506 by actuators 540 (e.g., hydraulic or pneumatic pistons). When the actuators 540 are in their retracted positions (shown in
As described above, the slips 518 can be connected to the leveling ring 512 such that the pads 524 of the slips 518 can be moved along the sloped inner wall 526 of the inner body 508. The inner portion 516 of the leveling ring 512 can include a plurality of flanges 520 that can extend radially inward. For each slip 518, a bar linkage 522 can be connected at a first end to the pad 524 and at a second end to one of the flanges 520. In various embodiments, the bar linkage 522 can be connected to the flanges 520 and the pads 524 with bearings, bushings, pins, or the like, to enable each bar linkage 522 to pivot relative to its respective flange 520 and pad 524 as the pads 524 move along the sloped inner wall 526 of the inner body 508.
In certain embodiments, a cap 510 can be arranged on top of and connected to the inner body 508 such that the cap 510 rotates with the inner body 508. The cap 510 can include windows 509 through which the radially-inward extending flanges 520 can pass. The cap 510 can alternatively be closed and include a mounting surface. Referring to
In certain other embodiments, the cap 510 can be omitted (or a top portion 513 of the cap 510 can define an aperture 513). In such embodiments, an internal gripping tool (e.g., gripping tool 301 shown in
Referring now to
After the tubular 130′ is clamped by the slips 518, the elevator can be moved to position the tubular 130′ over a tubular string (e.g., tubular string 210 shown in
After the tubular 130′ is positioned over the tubular string 130, the top drive rotates the tubular 130′ to threadedly connect the tubular 130′ onto the tubular string 130 by the driveshaft connecting the top drive and the elevator. Alternatively, a tong arranged proximate to the rig floor can grip and rotate the bottom of the tubular 130′. As another alternative, an additional motor drive (e.g., such as the motor drive 968 shown in
As described above, as the tubular 130′ is spun and threaded on the tubular string 130, the tubular 130′ will move downwardly toward the tubular string 130. To compensate for the downward movement of the tubular 130 as it is spun and threaded on to the tubular string 130, actuators 534 are actuated from their extended position to their retracted position (block 710). As a result, the outer body 506, inner body 508, and slips 518 move downwardly with the tubular 130′ to keep the force on the threaded joint from building. Control of the actuators 534 is explained in greater detail below.
After the tubular 130′ has been threaded onto the tubular string 130, in block 712, the elevator 500 can lift the tubular string 130 to enable the spider to release the tubular string 130. Thereafter, the tubular string 130 (including the newly added tubular 130′) is suspended in the wellbore using the elevator 500. Specifically, the tubular string 130 and newly-added tubular 130′ are suspended by the slips 518 in the elevator 500. Then, in block 714, the elevator 500 can lower the tubular string 130 into the well bore. Optionally, during the descent, the top drive 200 may rotate the tubular string 130 to spin a drill head at the bottom of the tubular string 130. The drill head can drill at the bottom of the wellbore to increase the depth of the wellbore. As described above, in certain embodiments, the top drive 200 can inject drilling mud or other drilling fluids into the top of tubular held by the elevator 500 to facilitate drilling via a fill up tool. The elevator 500 can continue to lower the tubular string 130 until only a top portion of the newly-added tubular 130′ protrudes above the spider. After the tubular string 130 is lowered, in block 716, the spider 400 can re-grip the tubular string 130 such that the tubular string 130 is suspended in the wellbore by the spider 400.
After the spider 400 has re-gripped the tubular string 130, the slips 518 in the elevator can release the tubular string 130 (block 718). In this embodiment, actuators 540 can be actuated from their retracted position (shown in
Referring now to
The second port 549 of the cylinder 543 can be connected to a return line 610 that passes through a pressure control valve 602 and, optionally, a check valve 604. As explained in more detail below, in various embodiments, the pressure control valve 602 can be set to open (releasing fluid or gas from the volume 545 of the actuator 534) when the fluid or gas pressure in the volume 545 exceeds a threshold pressure corresponding to slightly more than a weight of the suspended portions of the elevator 500 and tubulars 130′ suspended from the elevator 500. In various other embodiments, the pressure control valve 602 can be set to open when the fluid or gas pressure in the volume 545 exceeds a threshold pressure corresponding to slightly less than the weight of the suspended portions of the elevator 500 and the tubulars 130′. When the fluid or gas pressure in the volume 545 exceeds the threshold pressure, the pressure control valve 602 opens to allow the fluid or gas to recirculate to the reservoir 606.
Still referring to
In various embodiments, the pressure at which the pressure relief valve 602 opens can be set to a pressure slightly less than needed to counter the weight of the gripped tubular (e.g., tubular 130′). In such embodiments, the check valve 604 can be controllably actuated to allow or prohibit flow of hydraulic fluid to the reservoir 606. When a tubular is gripped by the elevator 500 and lifted, the check valve 604 can be actuated to a closed position such that hydraulic fluid cannot escape the cylinder volume 545 and the piston 541 cannot move downwardly. After the tubular is aligned with the tubular string (e.g., tubular string 130) for threading engagement, the check valve 604 can be opened. The pressure relief valve 602, set for a pressure that does not fully support the weight of the tubular, can then allow some hydraulic fluid to flow from the volume 545 to the reservoir 606. Consequently, the piston 541 and portions of the elevator 500 supported by the piston (e.g., outer body 506) can move downwardly until the threads of the tubular are resting on the mating threads of the tubular string. At this point, the threads of the tubular string are supporting the portion of the weight of the tubular that is not supported by the pistons 534. As the tubular is threaded into engagement with the tubular string, the pistons 541 can continue to move downwardly. This process can continue until the tubular is fully threaded onto the tubular string. Under this method, the top drive (or other mechanism rotating the tubular) is applying less torque than would be needed to overcome friction between the mating threads if the full weight of the tubular were resting on the tubular string.
In various embodiments, the pressure control valve 602 can be adjustable to account for different types of tubulars and casings that may weigh different amounts. In various other embodiments, the actuators 534 can be electrically actuated and computer controlled. For example, the actuators 534 can include electric-motor-driven jack screws that raise and lower the outer body 506, inner body 508, cap 510, and leveling ring 512.
Referring now to
In one embodiment, a drilling rig elevator for handling a tubular includes a housing having a first aperture therethrough for accommodating the tubular; an outer body having a second aperture therethrough and at least partially disposed in the housing; an inner body having a third aperture therethrough and at least partially disposed in the outer body, wherein the third aperture is coaxial with the first aperture and the second aperture; and a plurality of slips arranged within the third aperture and configured to grip the tubular passing through the first, second, and third apertures.
In one or more of the embodiments described herein, the inner body is configured to axially move with the outer body and to rotate relative to the outer body.
In one or more of the embodiments described herein, the outer body is configured to axially move relative to the housing.
In one or more of the embodiments described herein, the elevator optionally includes a bracket coupled to the housing and configured for attachment to a rail of the drilling rig, wherein the bracket is configured to resist rotation of the housing.
In one or more of the embodiments described herein, the elevator optionally includes at least two bearings arranged between the outer body and the inner body, wherein the at least two bearings enable the inner body to rotate about the axis relative to the outer body.
In one or more of the embodiments described herein, the third aperture defines a sloped inner wall, wherein the plurality of slips are movable along the sloped inner wall between a tubular gripping position and a tubular releasing position.
In one or more of the embodiments described herein, rotation of the inner body and plurality of slips about the axis can spin the tubular into threading engagement with a tubular string, and wherein as the tubular is spun into threading engagement with the tubular string the outer body and inner body move along the axis to compensate for motion of the tubular toward the tubular string.
In one or more of the embodiments described herein, the leveling ring optionally includes an inner portion that rotates about the axis with the inner body and the slips and an outer portion; wherein the elevator further comprises a second plurality of actuators connecting the outer portion of the leveling ring to the outer body, wherein the second plurality of actuators are actuatable between a retracted position and an extended position, wherein moving the actuators from the extended position to the retracted position moves the slips from the first slip position to the second slip position.
In one or more of the embodiments described herein, the elevator optionally includes a bearing arranged between the inner portion and outer portion of the leveling ring, wherein the bearing enables the inner portion to rotate about the axis relative to the outer portion.
In one or more of the embodiments described herein, the elevator optionally includes a first plurality of actuators connecting the housing to the outer body and configured to move the outer body relative to the housing.
In one or more of the embodiments described herein, the elevator optionally includes a cap coupled to the inner body, wherein the cap is configured to be coupled to a top drive of the drill rig, and wherein rotation of the top drive causes the cap, inner body, and slips to rotate and thereby rotate a tubular gripped by the slips.
In one or more of the embodiments described herein, the elevator optionally includes a motor attached to the outer body, wherein the outer body is configured to drive the inner body to rotate about the axis.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
3434696 | Brackin | Mar 1969 | A |
3722603 | Brown | Mar 1973 | A |
3760469 | Brown | Sep 1973 | A |
3915244 | Brown | Oct 1975 | A |
5349894 | Greer | Sep 1994 | A |
6994176 | Shahin | Feb 2006 | B2 |
7191840 | Pietras et al. | Mar 2007 | B2 |
7281587 | Haugen | Oct 2007 | B2 |
7793719 | Snider et al. | Sep 2010 | B2 |
8325610 | Fischer | Dec 2012 | B2 |
20040016575 | Shahin | Jan 2004 | A1 |
20050000691 | Giroux | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
1726774 | Nov 2006 | EP |
0052297 | Sep 2000 | WO |
2012040469 | Mar 2012 | WO |
Entry |
---|
EPO Extended European Search Report dated Sep. 10, 2015, for European Patent Application No. 15160208.3. |
Australian Patent Examination Report dated Nov. 18, 2015, for Australian Application No. 2015201488. |
Canadian Office Action dated Jan. 29, 2016, for Canadian Patent Application No. 2,885,335. |
EPO Examination Report dated Jan. 3, 2017, for EPO Patent Application No. 15160208.3. |
Canadian Office Action dated Jan. 18, 2017, for Canadian Patent Application No. 2,885,335. |
Number | Date | Country | |
---|---|---|---|
20150275592 A1 | Oct 2015 | US |