The present disclosure relates to swivel joints used to connect pipes in the oil and gas industry, and the like. Specifically, the present disclosure relates to a swivel joint employing roller bearings.
Piping often requires that the lengths of piping (may also be referred to as conduits) be connected to each other. This sometimes involves connecting long lengths of pipe with free ends that are fixed relative to each other both rotationally and longitudinally. A swivel joint may be provided with components capable of connecting to the free ends of the pipe since the components of the swivel joint are free to rotate relative to each other, allowing the components to be threaded onto at least one free end of the pipe.
Also, the lengths of pipe may vibrate. Providing a swivel joint may help to dampen the vibrations and help to maintain the integrity of the joint by helping the joint stay sound structurally and while also limiting the risk of leaks.
Some swivel joints use various types of bearings to allow the components of the swivel joint to rotate relative to each other. Over time, the bearings may become worn or may “washout”. “Washout” is a phenomenon that occurs when oil, gas, or other fluid being conveyed through the pipes and the swivel joint infiltrates the bearings and removes any lubricant, decreasing the effective life of the bearings.
U.S. Pat. Application Publication No. 2006/0131873A1 to Klingbail et al. discloses a high-pressure swivel joint which can be used to connect two conduits rotatably. The swivel joint includes an inner conduit and outer conduit, which are secured together by means of linear roller bearings. Elastomeric packing is provided to prevent fluid from entering the bearings. This swivel joint is described as allowing high velocity fluid transfers and also for sour gas services at high pressures (see the Abstract of Klingbail et al.).
However, continuous improvement of swivel joints is warranted to maximize the robustness and the longevity of the swivel joint.
A swivel joint assembly according to an embodiment of the present disclosure may comprise a first coupling member including a first end and a second end, and a second coupling member including a third end and a fourth end. The third end of the second coupling member may include a sleeve portion, and the second end of the first coupling member may include an insertion portion. The insertion portion may define a radial direction, a longitudinal axis, and a circumferential direction. The insertion portion may further define a first bearing receiving slot further defining a first radial depth and a first longitudinal width. A ratio of the first radial depth to the first longitudinal width may range from 0.35 to 0.7.
A coupling member according to an embodiment of the present disclosure may comprise an annular body defining a circumferential direction, a radial direction and a longitudinal axis. The annular body may include a proximate end and a distal end. The proximate end may define a bearing receiving slot defining a radial slot dimension and an axial slot width. A ratio of the radial slot dimension to the axial slot width may range from 0.3 to 0.8
A linear roller bearing according to an embodiment of the present disclosure may comprise a cylindrical body defining a cylindrical axis and a diameter. The cylindrical body may define a cylindrical body axial length, and a ratio of the diameter to the cylindrical body axial length may range from 0.75 to 1.1.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the disclosure and together with the description, serve to explain the principles of the disclosure. In the drawings:
Reference will now be made in detail to embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. In some cases, a reference number will be indicated in this specification and the drawings will show the reference number followed by a letter for example, 100a, 100b or by a prime for example, 100′, 100″ etc. It is to be understood that the use of letters or primes immediately after a reference number indicates that these features are similarly shaped and have similar function as is often the case when geometry is mirrored about a plane of symmetry. For ease of explanation in this specification, letters and primes will often not be included herein but may be shown in the drawings to indicate duplications of features, having similar or identical function or geometry, discussed within this written specification.
Various embodiments of a swivel joint assembly, a coupling member with a roller bearing receiving slot, and a linear roller bearing according to the present disclosure will now be described. In some embodiments, the material used to construct the coupling member and/or the linear roller bearing may be selected to help improve the durability or longevity of the swivel joint assembly.
Looking at
As best seen in
Furthermore, the insertion portion 116, 116′ may define an outer circumferential surface 120, 120′, and an inner radial bearing support surface 122, 122′. The first radial depth D118, D118′ may be measured along the radial direction R116, R116′ from outer circumferential surface 120, 120′ to the inner radial bearing support surface 122, 122′.
Likewise, the insertion portion 116, 116′ may define a first side bearing support surface 124, 124′ and a second side bearing support surface 126, 126′. The first longitudinal width W118, W118′ may be measured along the longitudinal axis L116, L116′ from the first side bearing support surface 124, 124′ to the second side bearing support surface 126, 126′.
The first side bearing support surface 124, 124′ may form a first theoretical sharp corner 128, 128′ with the inner radial bearing support surface 122, 122′. The insertion portion 116, 116′ may also define a first relief cutout 130 extending radially below the first theoretical sharp corner 128, 128′ a first radial distance D130, D130′. The first relief cutout 130, 130′ may avoid corner interference with a bearing 300 placed in the first bearing receiving slot 118, 118′ and may allow lubricant to be distributed within the first bearing receiving slot 118, 118′.
As best seen in
Looking at
The first relief cutout 130 and the second relief cutout 140 may be identically configured, but this may not be the case in other embodiments. When identically configured, the first radial distance D130 matches the second radial distance D140. Both the first radial distance D130 and the second radial distance D140 may range from 0.005 of an inch to 0.100 of an inch, Also, the first relief cutout 130 and the second relief cutout 140 may also define the same longitudinal cutout dimension 150, which may range from 0.03 of an inch to 0.15 of an inch. Any of these dimensions and ratios discussed herein may be varied as needed or desired in other embodiments.
Focusing on
With continued reference to
As shown in
With continued reference to
For the embodiments shown in
For example, the coupling member 200′ may have a proximate end 204′ that includes a sleeve portion 114 defining an internal circumferential surface 220 and an external circumferential surface 222. The sleeve portion 114 further defining a channel 224 extending from the internal circumferential surface 220 to the external circumferential surface 222. This channel 224 may allow fluid to escape if the end seal 228 leaks, alerting the user that maintenance is warranted. The internal circumferential surface 220 may define a seal receiving groove 226 that is disposed axially between the channel 224 and the bearing receiving slot 208′. A ring seal 230 such as an O-ring or may be placed in the this seal receiving groove 226 to help prevent fluid from infiltrating the bearings should the end seal 228 leak, helping to prevent “wash out”. The distal end 206′ may include a flange 232.
The coupling member 200, 200′ may be fabricated from any suitable material and may be coated to prolong its useful life. In particular, the annular body 202, 202′ may be made from steel, iron, specific example, etc. and the internal surfaces may be coated with tungsten carbide, etc.
A linear roller bearing 300 may be provided as best seen in
It is to be understood that the size of any bearing and any associated bearing slot configured to receive that bearing may be sized so that a slight clearance is provided between the bearing and the slot so that the bearings can rotate therein freely and the swivel joint can also rotate freely.
Any of the configurations, materials, material properties, coatings, ratios and dimensions mentioned herein may be altered in various embodiments of the present disclosure to have different values or characteristics than what has been specifically mentioned herein or shown in the drawings.
In practice, a swivel joint assembly, a coupling, and/or a linear roller bearing according to any embodiment described herein may be sold, bought, manufactured or otherwise obtained in an OEM (original equipment manufacturer) or after-market context.
The various dimensions, ratios, materials, material properties, and/or coatings may help to increase the useful life of the swivel joint in various applications under various operation conditions. Suitable applications includes those conveying any type of fluid through conduits and the swivel joint as well as an type of lubricant being used with the linear roller bearings.
It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments of the apparatus and methods of assembly as discussed herein without departing from the scope or spirit of the invention(s). Other embodiments of this disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the various embodiments disclosed herein. For example, some of the equipment may be constructed and function differently than what has been described herein and certain steps of any method may be omitted, performed in an order that is different than what has been specifically mentioned or in some cases performed simultaneously or in sub-steps. Furthermore, variations or modifications to certain aspects or features of various embodiments may be made to create further embodiments and features and aspects of various embodiments may be added to or substituted for other features or aspects of other embodiments in order to provide still further embodiments.
Accordingly, it is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention(s) being indicated by the following claims and their equivalents.