The subject matter disclosed herein relates to systems and methods for enabling rotate of an adapter of a downhole well tool to enable the downhole well tool to couple to a downhole well tool component both mechanically and electrically.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present techniques, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as an admission of any kind.
Certain downhole well tools often need to connect to other downhole well tool components. In such situations, adapters are often used to connect to the other downhole well tool components. Certain adapters and downhole well tool components to which they connect include mono conductor connections, which means that there is only a single radial alignment of the adapter with respect to the downhole well tool component that enables electrical and mechanical coupling of the adapter to the downhole well tool component. In such situations, a cable conveying the downhole well tool having the adapter may need to twist to enable the adapter to couple to the downhole well tool component. However, certain cables are not capable of twisting quite as much as others. For example, coupling of certain adapters to downhole well tool components may be relatively easily achieved when a wireline cable is used, but it may be relatively difficult to enable enough twisting when coiled tubing is used, due at least in part to the relatively high level of torsional stiffness of the coiled tubing.
A summary of certain embodiments disclosed herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that these aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth below.
In one embodiment, a downhole well tool adapter includes an electromechanical joint configured to connect to a downhole well tool component within a wellbore of an oil and gas well system. The electromechanical joint is configured to rotate to facilitate connection of the electromechanical joint to the downhole well tool component.
In another embodiment, an electromechanical joint includes a main body portion. The electromechanical joint also includes a rotating ring configured to rotate relative to the main body portion to facilitate connection of the electromechanical joint to a downhole well tool component within a wellbore of an oil and gas well system. The electromechanical joint further includes a sealed electrical connection configured to couple with a mating electrical connection of the downhole well tool component.
Various aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
As used herein, the terms “connect,” “connection,” “connected,” “in connection with,” and “connecting” are used to mean “in direct connection with” or “in connection with via one or more elements”; and the term “set” is used to mean “one element” or “more than one element.” Further, the terms “couple,” “coupling,” “coupled,” “coupled together,” and “coupled with” are used to mean “directly coupled together” or “coupled together via one or more elements.” As used herein, the terms “up” and “down,” “uphole” and “downhole”, “upper” and “lower,” “top” and “bottom,” and other like terms indicating relative positions to a given point or element are utilized to more clearly describe some elements. Commonly, these terms relate to a reference point as the surface from which drilling operations are initiated as being the top (e.g., uphole or upper) point and the total depth along the drilling axis being the lowest (e.g., downhole or lower) point, whether the well (e.g., wellbore, borehole) is vertical, horizontal or slanted relative to the surface.
In addition, as used herein, the terms “automatic” and “automated” are intended to describe operations that are caused to be performed, for example, by an automation control system (i.e., solely by the automation control system, without human intervention).
The embodiments described herein relate to a downhole well tool having an electromechanical joint configured to connect to a downhole well tool component within a wellbore of an oil and gas well system. The electromechanical joint is configured to rotate to facilitate connection of the electromechanical joint to the downhole well tool component. For example, the electromechanical joint includes a main body portion, a rotating ring configured to rotate relative to the main body portion to facilitate connection of the electromechanical joint to the downhole well tool component, and a sealed electrical connection configured to couple with a mating electrical connection of the downhole well tool component.
With the foregoing in mind,
In certain embodiments, a bottom hole assembly (“BHA”) 26 may be run inside the casing 18 by the coiled tubing 20. As illustrated, in certain embodiments, the BHA 26 may include a downhole motor 28 that operates to rotate a drill bit 30 (e.g., during drilling operations) or other downhole well tool. In certain embodiments, the downhole motor 28 may be driven by hydraulic forces carried in fluid supplied from the surface 24 of the oil and gas well system 10. In certain embodiments, the BHA 26 may be connected to the coiled tubing 20, which is used to run the BHA 26 to a desired location within the wellbore 14. It is also contemplated that, in certain embodiments, the rotary motion of the drill bit 30 may be driven by rotation of the coiled tubing 20 effectuated by a rotary table or other surface-located rotary actuator. In such embodiments, the downhole motor 28 may be omitted.
In certain embodiments, the coiled tubing 20 may also be used to deliver fluid 32 to the drill bit 30 through an interior of the coiled tubing 20 to aid in the drilling process and carry cuttings and possibly other fluid and solid components in return fluid 34 that flows up the annulus between the coiled tubing 20 and the casing 18 (or via a return flow path provided by the coiled tubing 20, in certain embodiments) for return to the surface facility 22. It is also contemplated that the return fluid 34 may include remnant proppant (e.g., sand) or possibly rock fragments that result from a hydraulic fracturing application, and flow within the oil and gas well system 10. Under certain conditions, fracturing fluid and possibly hydrocarbons (oil and/or gas), proppants and possibly rock fragments may flow from the fractured formation 16 through perforations in a newly opened interval and back to the surface 24 of the oil and gas well system 10 as part of the return fluid 34. In certain embodiments, the BHA 26 may be supplemented behind the rotary drill by an isolation device such as, for example, an inflatable packer that may be activated to isolate the zone below or above it, and enable local pressure tests.
As such, in certain embodiments, the oil and gas well system 10 may include a downhole well tool 36 that is moved along the wellbore 14 via the coiled tubing 20. In the illustrated embodiment, the downhole well tool 36 includes a drill bit 30, which may be powered by a motor 28 (e.g., a positive displacement motor (PDM), or other hydraulic motor) of a BHA 26. In certain embodiments, the wellbore 14 may be an open wellbore or a cased wellbore defined by a casing 18. In addition, in certain embodiments, the wellbore 14 may be vertical or horizontal or inclined. It should be noted the downhole well tool 36 may be part of various types of BHAs 26 coupled to the coiled tubing 20. For example, as described in greater detail herein, the BHA 26 may be configured to couple to other types of downhole well tools including, but not limited to, downhole plugs such as electrically expandable plugs.
As also illustrated in
As illustrated, in certain embodiments, the coiled tubing 20 may deployed by a coiled tubing unit 52 and delivered downhole via an injector head 54. In certain embodiments, the injector head 54 may be controlled to slack off or pick up on the coiled tubing 20 so as to control the tubing string weight and, thus, the weight on bit (WOB) acting on the downhole well tool 36. In certain embodiments, the downhole well tool 36 may be moved along the wellbore 14 via the coiled tubing 20 under control of the injector head 54 so as to apply a desired tubing weight.
In certain embodiments, fluid 32 may be delivered downhole under pressure from a pump unit 56. In certain embodiments, the fluid 32 may be delivered by the pump unit 56 through the downhole hydraulic motor 28 to power the downhole hydraulic motor 28, for example. In certain embodiments, the return fluid 34 is returned uphole, and this flow back of return fluid 34 is controlled by suitable flow back equipment 58. In certain embodiments, the flow back equipment 58 may include chokes and other components/equipment used to control flow back of the return fluid 34 in a variety of applications, including well treatment applications.
In certain embodiments, the one or more processors 64 may include a microprocessor, a microcontroller, a processor module or subsystem, a programmable integrated circuit, a programmable gate array, a digital signal processor (DSP), or another control or computing device. In certain embodiments, the one or more storage media 66 may be implemented as one or more non-transitory computer-readable or machine-readable storage media. In certain embodiments, the one or more storage media 66 may include one or more different forms of memory including semiconductor memory devices such as dynamic or static random access memories (DRAMs or SRAMs), erasable and programmable read-only memories (EPROMs), electrically erasable and programmable read-only memories (EEPROMs) and flash memories; magnetic disks such as fixed, floppy and removable disks; other magnetic media including tape; optical media such as compact disks (CDs) or digital video disks (DVDs); or other types of storage devices. Note that the computer-executable instructions and associated data of the analysis module(s) 62 may be provided on one computer-readable or machine-readable storage medium of the storage media 66, or alternatively, may be provided on multiple computer-readable or machine-readable storage media distributed in a large system having possibly plural nodes. Such computer-readable or machine-readable storage medium or media are considered to be part of an article (or article of manufacture), which may refer to any manufactured single component or multiple components. In certain embodiments, the one or more storage media 66 may be located either in the machine running the machine-readable instructions, or may be located at a remote site from which machine-readable instructions may be downloaded over a network for execution.
In certain embodiments, the processor(s) 64 may be connected to a network interface 68 of the surface processing system 42 to allow the surface processing system 42 to communicate with the various downhole sensors 40 and surface sensors 46 described herein, as well as communicate with the actuators 70 and/or PLCs 72 of the surface equipment 74 (e.g., the coiled tubing unit 52, the pump unit 56, the flowback equipment 58, and so forth) and of the downhole equipment 76 (e.g., the BHA 26, the downhole well tool 36, and so forth) for the purpose of controlling operation of the oil and gas well system 10, as described in greater detail herein. In certain embodiments, the network interface 68 may also facilitate the surface processing system 42 to communicate data to cloud storage 50 (or other wired and/or wireless communication network) to, for example, archive the data or to enable external computing systems 78 to access the data and/or to remotely interact with the surface processing system 42.
It should be appreciated that the well control system 60 illustrated in
As described in greater detail herein, the BHA 26 illustrated in
In such conventional BHAs 26, the adapter 90 may include a mono conductor connection 92 at a downhole axial end of the adapter 90, which means that there is only a single radial alignment of the adapter 90 with respect to the downhole well tool component 80 that enables electrical and mechanical coupling of the adapter 90 to the downhole well tool component 80. In particular, in such embodiments, the coiled tubing 20 must twist to enable the adapter 90 to couple to the downhole well tool component 80. In certain situations, the amount of twist/rotation that the adapter 90 must undergo to engage the downhole well tool component 80 may be between 0° and about 70°. If other types of cables (e.g., wireline cables) that do not resist rotation (or barely resist rotation) were used to convey (or otherwise couple to) the downhole well tool 36, the cable may be relatively free to twist as far as it needs to in order to latch into and engage the downhole well tool component 80. As such, coupling of the adapter 90 to the downhole well tool component 80 may be relatively easily achieved when a wireline cable is used, but it may be relatively difficult to enable enough twisting when coiled tubing 20 is used, as illustrated in
In particular, one of the problems with the adapter 90 described with respect to
The electromechanical joint 96 described herein enables not only mechanical connection of the adapter 94 to a downhole well tool component 80, but also includes an electrical conductor that passes through the electromechanical joint 96 to enable the adapter 94 to couple both mechanically and electrically to the downhole well tool component 80. In addition, the electromechanical joint 96 described herein facilitates a connection between the adapter 94 and a downhole well tool component 80 that has only one electrical contact and one mechanical/hydraulic contact, which is relatively simple in design. As such, the embodiments described herein provide a mono conductor electromechanical swivel that is specifically designed to swivel to facilitate coupling of the adapter 94 to a downhole well tool component 80, as described in greater detail herein. Therefore, the embodiments described herein provide both mechanical and electrical integrity of a mono conductor.
In addition, in certain embodiments, the electromechanical joint 96 may include a main body portion 106 that includes an upper body portion 106A, a middle body portion 106B around which the bearing system 104, the rotating ring 100, and the split ring 102 may be radially disposed, and a lower body portion 106C. An exterior surface 108A of the upper body portion 106A of the electromechanical joint 96 will not contact the downhole well tool component 80 when the electromechanical joint 96 connects to the downhole well tool component 80. However, the rotating ring 100 and a split ring 102 of the electromechanical joint 96 will directly contact a first interior surface 110 of a main body portion 112 of the downhole well tool component 80 when the electromechanical joint 96 connects to the downhole well tool component 80. Similarly, an exterior surface 108C of the lower body portion 106C of the electromechanical joint 96 will at least partially directly contact a second interior surface 114 of the main body portion 112 of the downhole well tool component 80 when the electromechanical joint 96 connects to the downhole well tool component 80.
As such, the embodiments described herein include an electromechanical joint 96 that has both a mechanical connection for tension and compression (i.e., the rotating ring 100 and the split ring 102, as well as the bearing system 104), and a sealed electrical connection 124) that is free to rotate despite being surrounded by relatively high pressure fluid in a wellbore 14. In addition, the electromechanical joint 96 is not only free to rotate despite being surrounded by relatively high pressure fluid in the wellbore 14, but also has a frictional reduction system (e.g., the bearing system 104) built into it so that it can rotate freely despite the presence of relatively high friction. For example, in certain embodiments, the electromechanical joint 96 may include a bearing system 104 in the joint load pathway when the electromechanical joint 96 is operating in compression but not in tension. In addition, in certain embodiments, the electromechanical joint 96 reduces the frictional load on the shoulders of the electromechanical joint 96 by including a roller bearing 140 in the electromechanical joint 96.
In addition, the electromechanical joint 96 requires no rotation of either the upper portion of the electromechanical joint 96 (e.g., the upper body portion 106A) nor the lower portion of the electromechanical joint 96 (e.g., the lower body portion 106A) because only the solid, one-piece rotating ring 100 (and portions of the bearing system 104) are configured to rotate. In addition, the electromechanical joint 96 transfers axial tension encountered into the split ring 102, which is loaded in shear. In addition, the electromechanical joint 96 can withstand the contact force from hydrostatic pressure acting on a sealed electrical chamber 146 of the electromechanical joint 96 by ensuring that force is transferred into a low friction bearing system 104.
In particular, as described in greater detail herein, the embodiments described herein include an adapter 94 of a downhole well tool 36 that includes an electromechanical joint 96 configured to connect to a downhole well tool component 80 within a wellbore 14 of an oil and gas well system 10, wherein the electromechanical joint 96 is configured to rotate to facilitate connection of the electromechanical joint 96 to the downhole well tool component 80. In certain embodiments, the electromechanical joint 96 includes a rotating ring 100 configured to experience axial tension forces and axial compression forces acting on the electromechanical joint 96, and a sealed electrical connection 124 configured to couple with a mating electrical connection 128 of the downhole well tool component 80. In certain embodiments, the electromechanical joint 96 is configured to transfer the axial tension forces into a split ring 102 of the electromechanical joint 96, which is loaded in shear. In addition, in certain embodiments, the rotating ring 100 includes exterior threading 116 configured to engage mating interior threading 118 of the downhole well tool component 80. In addition, in certain embodiments, the rotating ring 100 is a solid, one-piece threaded ring.
In addition, in certain embodiments, the electromechanical joint 96 includes a frictional reduction system configured to reduce friction between the rotating ring 100 and a main body portion 106 of the electromechanical joint 96. In certain embodiments, the frictional reduction system includes a bearing system 104 disposed axially between the rotating ring 100 and the main body portion 106 of the electromechanical joint 96. In addition, in certain embodiments, the bearing system 104 includes a roller bearing 140 configured to reduce a frictional load on shoulders of the electromechanical joint 96. In addition, in certain embodiments, the rotating ring 100 and a portion of the bearing system 104 (e.g., rollers of the roller bearing 140) are the only components of the electromechanical joint 96 configured to rotate (e.g., relative to the main body portion 106 of the electromechanical joint 96). In addition, in certain embodiments, the electromechanical joint 96 includes a plurality of sealing elements 120, 132 configured to protect a sealed electrical chamber 146 of the electromechanical joint 96 from hydrostatic pressure external to the electromechanical joint 96.
The techniques presented and claimed herein are referenced and applied to material objects and concrete examples of a practical nature that demonstrably improve the present technical field and, as such, are not abstract, intangible or purely theoretical. Further, if any claims appended to the end of this specification contain one or more elements designated as “means for [perform]ing [a function] . . . ” or “step for [perform]ing [a function] . . . ”, it is intended that such elements are to be interpreted under 35 U.S.C. § 112(f). However, for any claims containing elements designated in any other manner, it is intended that such elements are not to be interpreted under 35 U.S.C. § 112(f).
Number | Name | Date | Kind |
---|---|---|---|
3136367 | Wright | Jun 1964 | A |
4100976 | Stone | Jul 1978 | A |
4278942 | Bonnet | Jul 1981 | A |
5468153 | Brown et al. | Nov 1995 | A |
5823257 | Peyton | Oct 1998 | A |
6032958 | Fowler | Mar 2000 | A |
6241032 | Falgout, Sr. | Jun 2001 | B1 |
6244345 | Helms | Jun 2001 | B1 |
6899174 | Maxwell | May 2005 | B2 |
7178611 | Zupanick | Feb 2007 | B2 |
10036228 | Coronado | Jul 2018 | B2 |
10844668 | Gonzalez | Nov 2020 | B2 |
20030075321 | Hall | Apr 2003 | A1 |
20130008669 | Deere | Jan 2013 | A1 |
20150308249 | Delchambre | Oct 2015 | A1 |
20160201401 | Craik | Jul 2016 | A1 |
20180175545 | Engel et al. | Jun 2018 | A1 |
20190085644 | Ames | Mar 2019 | A1 |
20210013687 | Lau et al. | Jan 2021 | A1 |
Entry |
---|
McMaster-Carr, Zinc-Plated Steel Hose Fitting for Hydraulic Fluid, Straight Adapter, 1/2 NPSM Female x 1/2 NPTF Male, retreived from https://www.mcmaster.com/5340K48/, 2021, 2 pages. |
McMaster-Carr, Pipe Unions, retrieved from https://www.mcmaster.com/pipe-unions/type˜rotating-joint/, 2022, 2 pages. |
International Search Report and Written Opinion issued in International Patent application PCT/US2023/020777 dated Aug. 25, 2023, 9 pages. |