Symmetric linear equalization circuit with increased gain

Abstract
Circuits providing low noise amplification with continuous time linear equalization are described. An exemplary circuit includes four amplification elements, such as MOS transistors. The amplification elements are arranged in differential pairs, and the differential pairs are cross-coupled with a frequency-dependent coupling, such as a capacitive coupling, to enhance high-frequency gain. The outputs of the amplification elements are combined to provide an output representing inverted and un-inverted sums of differences in the input signals.
Description
REFERENCES

The following references are herein incorporated by reference in their entirety for all purposes:


U.S. Patent Publication No. 2011/0268225 of U.S. patent application Ser. No. 12/784,414, filed May 20, 2010, naming Harm Cronie and Amin Shokrollahi, entitled “Orthogonal Differential Vector Signaling” (hereinafter “Cronie I”);


U.S. Patent Publication No. 2011/0302478 of U.S. patent application Ser. No. 12/982,777, filed Dec. 30, 2010, naming Harm Cronie and Amin Shokrollahi, entitled “Power and Pin Efficient Chip-to-Chip Communications with Common-Mode Resilience and SSO Resilience” (hereinafter “Cronie II”);


U.S. patent application Ser. No. 13/030,027, filed Feb. 17, 2011, naming Harm Cronie, Amin Shokrollahi and Armin Tajalli, entitled “Methods and Systems for Noise Resilient, Pin-Efficient and Low Power Communications with Sparse Signaling Codes” (hereinafter “Cronie III”);


U.S. Provisional Patent Application No. 61/753,870, filed Jan. 17, 2013, naming John Fox, Brian Holden, Peter Hunt, John D Keay, Amin Shokrollahi, Richard Simpson, Anant Singh, Andrew Kevin John Stewart, and Giuseppe Surace, entitled “Methods and Systems for Chip-to-chip Communication with Reduced Simultaneous Switching Noise” (hereinafter called “Fox I”);


U.S. Provisional Patent Application No. 61/763,403, filed Feb. 11, 2013, naming John Fox, Brian Holden, Ali Hormati, Peter Hunt, John D Keay, Amin Shokrollahi, Anant Singh, Andrew Kevin John Stewart, Giuseppe Surace, and Roger Ulrich, entitled “Methods and Systems for High Bandwidth Chip-to-Chip Communications Interface” (hereinafter called “Fox II”);


U.S. Provisional Patent Application No. 61/773,709, filed Mar. 6, 2013, naming John Fox, Brian Holden, Peter Hunt, John D Keay, Amin Shokrollahi, Andrew Kevin John Stewart, Giuseppe Surace, and Roger Ulrich, entitled “Methods and Systems for High Bandwidth Chip-to-Chip Communications Interface” (hereinafter called “Fox III”);


U.S. Provisional Patent Application No. 61/812,667, filed Apr. 16, 2013, naming John Fox, Brian Holden, Ali Hormati, Peter Hunt, John D Keay, Amin Shokrollahi, Anant Singh, Andrew Kevin John Stewart, and Giuseppe Surace, entitled “Methods and Systems for High Bandwidth Communications Interface” (hereinafter called “Fox IV”);


U.S. patent application Ser. No. 13/542,599, filed Jul. 5, 2012, naming Armin Tajalli, Harm Cronie, and Amin Shokrollahi entitled “Methods and Circuits for Efficient Processing and Detection of Balanced Codes” (hereafter called “Tajalli I”.)


U.S. patent application Ser. No. 13/842,740, filed Mar. 15, 2013, naming Brian Holden, Amin Shokrollahi, and Anant Singh, entitled “Methods and Systems for Skew Tolerance in and Advanced Detectors for Vector Signaling Codes for Chip-to-Chip Communication” (hereinafter called “Holden I”)


U.S. patent application Ser. No. 13/895,206, filed May 15, 2013, naming Roger Ulrich and Peter Hunt, entitled “Circuits for Efficient Detection of Vector Signaling Codes for Chip-to-Chip Communications using Sums of Differences” (hereinafter called “Ulrich I”).


FIELD OF THE INVENTION

The present invention relates to communications systems circuits generally, and more particularly to the amplification, equalization, and frequency compensation of signal receivers for high-speed multi-wire serial interfaces used for chip-to-chip communication.


BACKGROUND

In modern digital systems, digital information has to be processed in a reliable and efficient way. In this context, digital information is to be understood as information available in discrete, i.e., discontinuous values. Bits, collection of bits, but also numbers from a finite set can be used to represent digital information.


In most chip-to-chip, or device-to-device communication systems, communication takes place over a plurality of wires to increase the aggregate bandwidth. A single or pair of these wires may be referred to as a channel or link and multiple channels create a communication bus between the electronic components. At the physical circuitry level, in chip-to-chip communication systems, buses are typically made of electrical conductors in the package between chips and motherboards, on printed circuit boards (“PCBs”) boards or in cables and connectors between PCBs. In high frequency applications, microstrip or stripline PCB traces may be used.


Common methods for transmitting signals over bus wires include single-ended and differential signaling methods. In applications requiring high speed communications, those methods can be further optimized in terms of power consumption and pin-efficiency, especially in high-speed communications. More recently, vector signaling methods as described in Cronie I, Cronie II, and Cronie III have been proposed to further optimize the trade-offs between power consumption, pin efficiency and noise robustness of chip-to-chip communication systems. In those vector signaling systems, the digital information is transformed into a different representation space in the form of a vector codeword that is chosen in order to optimize the power consumption, pin-efficiency and speed trade-offs based on the transmission channel properties and communication system design constraints.


BRIEF DESCRIPTION

Communications signal receiver circuits providing amplification and frequency compensation are described, incorporating particular design features providing increased signal gain without increased noise, thus an increased signal-to-noise or SNR ratio. Certain embodiments also provide improved signal dynamic range and linearity. In some applications the potential gain increase may be traded off for extended bandwidth, support for support additional signal inputs, and/or lower power.





BRIEF DESCRIPTION OF FIGURES


FIGS. 1A-1C show three example prior art circuits illustrating the basic elements of single-ended signal amplification, differential signal amplification, and differential amplification with linear frequency-dependent equalization.



FIGS. 2A and 2B illustrate aspects of the invention, with FIG. 2A showing the basic elements of the design and FIG. 2B providing an embodiment of a differential amplifier with equalization.



FIGS. 3A and 3B show two embodiments using different approaches that extend the differential amplifier with equalization to support the four signals of an ENRZ vector signaling code receiver.



FIG. 4 illustrates a further embodiment extending the differential amplifier with equalization to support the four signals of an ENRZ vector signaling code receiver.



FIG. 5 shows an embodiment incorporating CMOS transistor pairs into the differential amplifier with equalization.



FIG. 6 illustrates an embodiment extending the amplifier with equalization incorporating CMOS transistor pairs to support the four signals of an ENRZ vector signaling code receiver.



FIG. 7 illustrates a second embodiment extending the amplifier with equalization incorporating CMOS transistor pairs to support the four signals of an ENRZ vector signaling code receiver.



FIG. 8 illustrates a further embodiment extending the amplifier with equalization incorporating CMOS transistor pairs to support the four signals of an ENRZ vector signaling code receiver.



FIG. 9 shows a complete embodiment of an ENRZ detector, incorporating three instances of a ENRZ vector signaling code receiver as shown in FIG. 3A, FIG. 3B, or FIG. 8.



FIG. 10 illustrates an alternate embodiment of the circuit of FIG. 3A.





DETAILED DESCRIPTION

A receiver for vector signaling encoded information accepts multiple wire inputs corresponding to the multiple components of a codeword. Commonly, different voltage, current, etc. levels are used for signaling and more than two levels might be used to represent each codeword element, such as a ternary signaling code wherein each wire signal has one of three values. Receivers may incorporate amplification, frequency-dependent amplification, signal conditioning, and filtering such as obtained with the continuous time linear equalization or “CTLE” filtering method. These functions may be embodied individually, or combined into multifunction circuits. As will be shown, such multifunction circuits may reduce power consumption, facilitate improved signal to noise ratio, increase circuit dynamic range, and/or enable higher speed signaling.


In accordance with at least one embodiment of the invention, circuits are described for the efficient equalization and pre-sample-processing of vector signal coded data transmitted over physical channels such that the signals are resilient to common mode noise, do not require a common reference at the transmission and reception points, and can produce a higher pin efficiency than conventional differential signaling with relatively low power dissipation for encoding and decoding.


In a practical embodiment, signals may undergo significant change in amplitude, waveform, and other characteristics between transmitter and receiver, due to the transmission characteristics of communications channel. Using one contemporary embodiment as an example, 400 mV amplitude signals at the transmitter may be attenuated by the channel to less than 20 mV at the receiver, with significantly greater attenuation at higher frequencies resulting in slow signal transitions and other distortions. At these low signal amplitudes, receiver noise becomes a significant issue, with the inherent noise level of the first amplifier stage often constraining the achievable signal-to-noise ratio of the overall system. Receiver dynamic range is also significant, as the same receiver design expected to operate with high attenuation signal paths may also be used with extremely short and thus low attenuation connections.


Basic MOS Amplifier Characteristics


The basic characteristics of MOS transistor amplifiers as illustrated in FIGS. 1A-1C are well known. FIG. 1A illustrates a model of the basic operation of a MOS transistor amplifier. Supplied with source current Id from a load impedance RL, a transistor with transconductance gm may achieve a small-signal gain of gm×RL, barring any secondary circuit effects. If the inherent noise of the transistor is nrms (in RMS voltage units,) the effective signal-to-noise ratio or SNR is thus gm×RL/nrms and the current consumption is Id.


In a differential configuration such as shown in FIG. 1B, the amplification is gm×RL×(Vg1−Vg2) and the noise is √{square root over (2)}×nrms, leading to a SNR of gm×RL/√{square root over (2)}×nrms with a current consumption of 2×Id.



FIG. 1C shows a known CTLE model of a differential amplifier circuit. Its noise characteristics and maximum achievable gain remain unchanged from the basic differential amplifier model of FIG. 1B, but the introduction of the parallel Rs and Cs combination between the transistor sources introduces a frequency-dependent gain characteristic, with gain at low frequencies considerably reduced compared to the gain at high frequencies, which approaches the maximum achievable gain value. Other examples of CTLE amplifier circuits may be found in Tajalli I.



FIG. 2A illustrates the behavior of a differential amplifier with CTLE behavior in accordance with at least one aspect of the invention. Input nodes Vg1 and Vg2 are coupled not only to the transistor gates, but also via capacitors Cs to the source of the opposing pair's transistor. Effectively, each transistor thus provides both common-source-mode amplification of its gate input signal, while simultaneously providing common-gate-mode amplification of the other input signal, resulting in a doubling of the effective gain. In this new configuration, the maximum achievable amplification is thus 2+gm×RL while the uncorrelated noise for the transistor pair is √{square root over (2)}×nrms, leading to a SNR of √{square root over (2)}×gm×RL/nrms with a current consumption of 2×Id.


Thus, the model of FIG. 2A has twice the gain and two times better SNR with the same current consumption, compared to the known art configuration of FIG. 1C.


A practical embodiment of FIG. 2A is shown in the schematic of FIG. 2B. Differential output signals Out1 and Out2 are developed across output resistors RL, with the current sinks at each transistor source setting operating current for the differential transistor pair.



FIG. 2B illustrates an exemplary circuit for CTLE of analog signals. As illustrated in FIG. 2B, the circuit includes a first amplification element M1 and a second amplification element M2. The first and second amplification elements are arranged in a differential configuration, such as a long-tailed pair, and they preferably have matched characteristics. The amplification elements each have an inverting input and a non-inverting input. In the example of FIG. 2B, the inverting input is the gate of each transistor, and the non-inverting input is the source of that transistor. A signal at the transistor gate is amplified in a common source configuration, and a signal at the transistor source is amplified in a common gate configuration.


A first signal input is provided at an input node Vg1 with a direct connection to the inverting input of the first amplification element M1, and a second signal input is provided at an input node Vg2 with a direct connection to the inverting input of the second amplification element M2. There is also a frequency-dependent connection from the first signal input Vg1 to the non-inverting input of the second amplification element M2. This frequency-dependent connection is made through a series capacitor with capacitance Cs. In addition, there is another frequency-dependent connection from the second signal input Vg2 to the non-inverting input of the first amplification element M1. This frequency-dependent connection is also made through a series capacitor with capacitance Cs. These frequency-dependent connections increase the gain of the differential amplification provided by the first and second amplification elements, particularly at high frequencies.


In an alternative embodiment (not illustrated), the roles of the inverting and non-inverting inputs of the amplification elements are reversed. In such an embodiment, the first signal input Vg1 is provided with a direct connection to the non-inverting input of the first amplification element M1, and a second signal input Vg2 is provided with a direct connection to the non-inverting input of the second amplification element M2. There is also a frequency-dependent connection from the first signal input Vgi to the inverting input of the second amplification element M2, and another frequency-dependent connection from the second signal input Vg2 to the inverting input of the first amplification element M1. Thus, the frequency-dependent connections utilize the opposite amplification element input from the direct connections, resulting in increased gain.


The frequency-dependent CTLE characteristics may be computed in a similar manner as with a conventional CTLE design. Generally, Cs in an embodiment such as shown in FIG. 2B will be approximately twice as large as Cs in a conventional embodiment such as that of FIG. 1C. The additional input capacitance of the transistor gate paralleled with Cs may be an issue in some applications, but is generally tractable for typical values of input impedance and CTLE pole-zero frequency. In one system design using the new embodiment, increased gains of 3-6 dB were seen over conventional designs depending on the characteristics of external circuitry. It will be apparent to one familiar with the art that, as with known equalization circuits, the frequency-determining Cs/Rs combination may be extended to networks of multiple pole-zero pairs, and that one or more of the frequency-determining elements may be represented by effective circuit impedance at a node, parasitic capacitance at a node, etc.


Extensions to Support ENRZ


Ensemble NRZ (also know as ENRZ or H4 code) is a proprietary vector signaling code providing significant benefits over conventional NRZ and differential pair operation. As described in [Fox IV], ENRZ encodes three bits of information over four wires, using all possible permutations of the signal vectors (+1, −⅓, −⅓, −⅓) and (−1, +⅓, +⅓, +⅓). Thus, ENRZ is a balanced quaternary code, although any single codeword uses only two of the four possible signal levels. The balanced codewords give ENRZ desirable pseudo-differential characteristics, including low SSO noise, induced noise immunity, and reference-less receiver operation.


The [Ulrich I] reference describes use of extended differential amplifier circuits to perform analog computations on vector signaling code signals as part of code detection. Analog computation circuits for decoding ENRZ vector codes perform calculations of the form shown in Equation 1 where J, K, L, M are variables representing the symbol values of the four input signals values.

R=(J+L)−(K+M)  (Eqn. 1)


It may be noted that applying three instances of Equation 1 with different permutations of receive signal input values to the four variables is sufficient to detect each code word of ENRZ. As one example and without limitation, the input permutations producing the three results R0, R1, R2 based on Equations 2, 3 and 4 are sufficient to unambiguously identify each code word of vector signaling code ENRZ as represented by receive signal input values A, B, C, D. As these equations describe linear combinations using only sums and differences, it will be apparent that other equivalent equations, as one example presenting a sum of two differences, may be produced using normal arithmetic factoring and grouping operations.

R0=(A+C)−(B+D)  (Eqn. 2)
R1=(C+D)−(A+B)  (Eqn. 3)
R2=(C+B)−(D+A)  (Eqn. 4)


Architecturally, it is convenient to perform such detection operations at or near the receiver input, and high speed capability requires an efficient, high performance embodiment. In accordance with at least one aspect of the invention, a two input differential input circuit such as shown in FIG. 2B may be extended to provide such analog computation capability suitable for ENRZ detection or detection of other vector signaling codes with similar characteristics.


The embodiment illustrated in FIG. 3A incorporates two distinct instances of the differential input stages of FIG. 2B, with paralleled input pairs M1/M2 and M3/M4 each accepting two inputs, Vg1/Vg2 and Vg3/Vg4 respectively, using the direct plus capacitive input method of the previous example on each of the four inputs. As each differential pair computes the analog difference of its inputs, and paralleling two such pairs with a common load results in an output representing the sum of the two differential pair signals, the resulting outputs Out1 and Out2 represent the uninverted and inverted results of the equation

(Vg1−Vg2)+(Vg3−Vg4)


In this first ENRZ configuration, the maximum amplification is 2×gm×RL and the noise is 2×nrms, leading to a SNR of gm×RL/nrms with a current consumption of 4×Id. Compared to well-known ENRZ CTLE circuits, the embodiment of FIG. 3A has twice the gain and √{square root over (2)} better SNR with the same current consumption.


Thus, in the example of FIG. 3A, a circuit includes a first amplification element (M1) and a second amplification element (M2) with matched characteristics in a differential configuration, and a third amplification element (M3) and a fourth amplification element with matched characteristics in a differential configuration. Each of these amplification elements has a first input (e.g., the gate) and a second input (e.g., the source). A first load impedance (e.g., a resistor with resistance RL) is shared by the first amplification element and third amplification element, and an output node Out1 is provided for obtaining a signal at the first load impedance. A second load impedance is shared by the second amplification element and fourth amplification element, and an output node Out2 is provided for obtaining a signal at the second load impedance. A first signal input Vg1, second signal input Vg2, third signal input Vg3, and fourth signal input Vg4, each directly connect to a first input of the corresponding first, second, third, and fourth amplification elements, respectively. There is also a frequency-dependent connection of the first, second, third, and fourth signal inputs to the second input of the second, first, fourth, and third amplification elements, respectively. Through these connections, the signal obtained at the first and second load impedances represents inverted and non-inverted sums of differences of the input signals.


An alternative embodiment providing equivalent ENRZ CTLE functionality is illustrated in FIG. 3B, where two inputs Vg1 and Vg2 are connected to the gates of transistors M1 and M2, while the second two inputs Vg3 and Vg4 are connected via input capacitors Cs to the sources of transistors M2 and M1. In this alternative ENRZ configuration, the maximum amplification is gm×RL and the noise is √{square root over (2)}×nrms, leading to a SNR of gm×RL/√{square root over (2)}×nrms with a current consumption of 2×Id.


Thus, the power consumption is half that of the embodiment of FIG. 3A. Compared to well-known ENRZ CTLE circuits, the embodiment of FIG. 3B has lower power consumption, reduced gain and noise, as well as a simpler circuit topology.


Another alternative embodiment providing equivalent ENRZ CLTE functionality is illustrated in FIG. 10, which has the same basic structure and performance characteristics as the circuit of FIG. 3A, but with the inputs via input capacitors Cs connecting to the same side of the other differential pair.


A system embodiment of an ENRZ detector using three instances of the circuit of FIG. 3A is illustrated in FIG. 9. Each of identical ENRZ CTLE elements 910, 920, and 930 are as described in FIG. 3A. Inputs A, B, C, D are received wire signals from four wires carrying ENRZ signals, and are connected to 910, 920, and 930 as described by Equations 2, 3, and 4. For purposes of clarity, the permuted input signals A, B, C, and D are redundantly labeled to the left of elements 920 and 930 in parenthesis. Three sets of differential outputs Mode1H/Mode1L, Mode2H/Mode2L, and Mode3H/Mode3L are produced and in a preferred embodiment will represent the three bits of data encoded in the ENRZ signals.


Equivalent embodiments may also be obtained by incorporating three identical instances of any of the circuits of FIG. 3B, FIG. 8 or FIG. 10 as elements 910, 920, and 930 of FIG. 9


The circuit of FIG. 3B includes a first amplification element (M1) and a second amplification element (M2) with matched characteristics in a differential configuration.


Each of these amplification elements has a first input and a second input, e.g. a gate and a source. A first load impedance, such as a resistor with resistance RL, is provided for the first amplification element, and a second load impedance for the second amplification element. A first signal input node Vg1 and a second signal input node Vg2, are each directly connected to a first input of the corresponding first and second amplification elements. A third signal input Vg3 is connected to the second input of the second amplification element, and a fourth signal input Vg4 is connected to the second input of the first amplification element. The signal obtained at the output nodes Out1 and Out2 at the first and second load impedances represents inverted and non-inverted sums of differences of the input signals. One familiar with the art may note that the gain from inputs Vg1 and Vg2 can potentially differ from that from inputs Vg3 and Vg4 as the former are direct inputs to transistor gate inputs of common source amplifiers, while the latter are capacitively coupled to the transistor sources of common gate amplifiers. In practical embodiments this issue is moot, as these imbalances are quite small for typical input frequency ranges and CTLE frequency/gain profiles. Also, multiple iterations of the sum of difference computation are typically performed, as one example with different orderings of input signals as described by Equations 2, 3, and 4, and subsequent interpretation of these multiple results tends to mitigate any potential imbalance.


A further embodiment as shown in FIG. 4 illustrates an alternate topology providing both direct gate input and capacitively coupled source connection of each input signal. However, where the circuit of FIG. 3A made the latter connection to the transistor on the opposite side of the same differential pair, the circuit of FIG. 4 connects to the transistor on the opposite side of the other differential pair. This functionally equivalent but topologically distinct embodiment provides additional symmetry, which may facilitate layout and/or reduce potential circuit imbalances.


Complementary Gain Stages



FIG. 5 shows another embodiment of a differential amplifier with equalization, where each of the amplification elements is a set of complimentary MOS (CMOS) transistors. In accordance with the earlier examples, each input connects not only to the differential transistor gates, but also via capacitors Cs to the opposing differential transistor's source or drain in a fully symmetric manner. Because of the complementary nature of the P- and N-channel transistors in each set, they both provide common source amplification of their gate input signals, with their output currents effectively in parallel. Thus, differential outputs Out1 and Out2 are developed across load resistor Rd. In typical designs, the value of Rd will be approximately twice the value of RL in the previous examples to obtain comparable gain. As with the previous designs, the combinations of Cs and Rs set the pole and zero frequencies of the CTLE function.


Although transistors may have poorer high-frequency characteristics than their equivalent NMOS transistors in some integrated circuit processes, this constraint does not provide an absolute limit on overall circuit performance. Overall frequency response of this circuit in a practical embodiment is approximately an interpolation between the native frequency characteristics of its component P- and N-MOS transistors, and those frequency characteristics are also much closer to parity in current integrated circuit processes.


This circuit has also been extensively analyzed for linearity issues, and has been found to be somewhat better than known art designs, where cutoff of one of the single input transistors introduces clipping.


Further Extensions


One familiar with the art will recognize that the same approaches previously shown in FIGS. 3A and 3B to extend the basic designs of FIGS. 2A and 2B to support ENRZ code may also be applied to the design of FIG. 5. One such embodiment is illustrated in FIG. 6, which applies the approach described in FIG. 3A to the circuit of FIG. 5 to support the four inputs of an ENRZ receiver. A second such embodiment is illustrated in FIG. 7, which applies the approach described in FIG. 3B to the circuit of FIG. 5 to support the four inputs of an ENRZ receiver.


A further embodiment shown in FIG. 8 combines the complementary transistor differential amplifiers of FIG. 5, the ENRZ detecting sum-of-differences computation of FIG. 3A, and the symmetrical cross-coupling of FIG. 4. In FIG. 8, a first amplification element is made up of a set M1/M2 of complementary MOS transistors, and a second amplification element is made up of a set M3/M4 of complementary MOS transistors.


The first and second amplification elements have matched characteristics and are arranged in a differential configuration. A third amplification element is made up of a set M7/M8 of complementary MOS transistors, and a fourth amplification element is made up of a set M5/M6 of complementary MOS transistors. The third and fourth amplification elements have matched characteristics and are arranged in a differential configuration. Each of the first, second, third, and fourth amplification elements has a first input and a second input. For example, the first input of an amplification element may include one or more gates in a complementary MOS transistor pair, while the second input of an amplification pair may include one or more sources of the complementary MOS transistor pair. It should be noted that the terms “first input” and “second input” are mere labels of convenience, so the “first input” can be a transistor source, while the “second input” can be a transistor gate.


A first load impedance is shared by the first amplification element and third amplification element, and a second load impedance is shared by the second amplification element and fourth amplification element. First, second, third, and fourth signal input nodes (Vg1, Vg2, Vg3, Vg4, respectively) each are directly connected to a first input of the corresponding first, second, third, and fourth amplification elements, respectively. There is also a frequency-dependent connection of the first, second, third, and fourth signal inputs to the second input of the fourth, third, second, and first amplification elements, respectively. The signals obtained by the first output node Out1 at the first load impedance and by the second output node Out2 at the second load impedance represent inverted and non-inverted sums of differences of the input signals. Other known techniques for introducing frequency-dependent gain into an amplifier circuit are also directly applicable to the described embodiments. As one example, the load resistance described herein may optionally be comprised of a combination of resistance and inductance, or inductance alone, to provide additional high-frequency gain peaking or bandwidth extension.


The principles described herein may be extended to circuits employing various numbers of differential pairs and employing different topologies of frequency-dependent couplings. In some embodiments, an analog computation circuit includes at least two differential pairs of amplification elements. The amplification elements may include, for example, individual MOS transistors or CMOS amplifier pairs. Each of the amplification elements has an inverting input and a non-inverting input. In some embodiments, the inverting input is an input at a gate of an NMOS transistor, while the non-inverting input is an input at the source of the NMOS transistor.


Each of the differential pairs of amplification elements includes a first amplification element and a second amplification element. The first amplification elements have outputs connected to a first differential summing output node, and the second amplification elements have outputs connected to a second differential summing output node. In some embodiments, the differential summing output nodes are connected to respective load impedance. In such embodiments, the voltage across the load resistor has a value that reflects of a sum of outputs of the connected amplification elements. In other embodiments, the differential summing output nodes could be connected to a current mirror or other circuitry adapted to provide an output that reflects a sum of the outputs of the connected amplification elements.


The analog computation circuit is further provided with a plurality of gain-enhancing couplings, such as capacitive couplings. These capacitive couplings fall under two groups: a first plurality and second plurality of gain-enhancing capacitive couplings. Each of the first plurality of gain-enhancing capacitive couplings connects the inverting input of one of the first amplification elements with the non-inverting input of one of the second amplification elements. Each of the second plurality of gain-enhancing capacitive couplings connects the inverting input of one of the second amplification elements with the non-inverting input of one of the first amplification elements. These couplings operate to enhance the gain of the analog computation circuit because each input is represented twice in the output of the analog computation circuit: first as an inverting input that reduces the output at one of the output nodes, and second (through the coupling) as a non-inverting input that increases the output at the opposite output node.


The gain-enhancing capacitive couplings can be connected in various arrangements. In some embodiments, each of first and second plurality of capacitive couplings is connected between amplification elements in the same differential pair, as illustrated in FIG. 3A and FIG. 6. In other embodiments, each of the first and second plurality of capacitive couplings is connected between amplification elements in different differential pairs. As illustrated in FIG. 4 and FIG. 8. In other embodiments, some of the capacitive couplings are connected within a differential pair and other capacitive couplings are connected across different differential pairs. In one such embodiment, the couplings are connected in a cyclic coupling configuration, as illustrated in FIG. 10.


Preferably, each of the inverting inputs is coupled with a unique non-inverting input. That is, each of the inverting inputs of the first amplification elements is connected through one of the first plurality of capacitive couplings with the non-inverting input of a respective second amplification element, and conversely, each of the inverting inputs of the second amplification elements is connected through one of the second plurality of capacitive couplings with the non-inverting input of a respective first amplification element.


The analog computation circuit further includes a plurality of signal input nodes. In some embodiments, each of the signal input nodes has a direct connection to the inverting input of a respective one of the amplification elements. In other embodiments, each of the signal input nodes has a direct connection to the non-inverting input of a respective one of the amplification elements.


In some embodiments, the analog computation circuits described herein are employed in a vector signal decoder. As described above, the ENRZ vector code encodes three bits of information over four wires, using all possible permutations of the signal vectors (+1, −⅓, −⅓, −⅓) and (−1, +⅓, +⅓, +⅓). Where the voltages on the four wires are represented as (A, B, C, D), each of the analog computation circuits can decode one bit of the three-bit code by performing one of the operations described in Equations 2-4, above. Three such circuits operate in parallel on different permutations of the input voltages to return the values of R0, R1, and R2. An exemplary vector signal decoder is illustrated in FIG. 9.


Mention of particular vector signaling codes such as ENRZ in the examples herein are made for purposes of explanation, and are not limiting. Circuits and circuit design elements described herein may be utilized to amplify, equalize, and/or detect signals representing other codes. One familiar with the art will recognize that circuits and circuit design elements described herein may be readily combined with known art to produce further embodiments of the invention.

Claims
  • 1. An apparatus comprising: a first amplification element comprising a first pair of complimentary MOS transistors, each of the first pair of complimentary MOS transistors having corresponding gate inputs and source inputs, the MOS transistors configured to receive a first signal representing a first symbol of a codeword at the corresponding gate inputs;a second amplification element comprising a second pair of complimentary MOS transistors having corresponding gate inputs and source inputs, each of the second pair of complimentary MOS transistors configured to receive a second signal representing a second symbol of the codeword at the corresponding gate inputs;a first frequency-dependent circuit configured to cross-couple the first input signal to the corresponding source inputs of the second pair of complimentary MOS transistors;a second frequency-dependent circuit configured to cross-couple the second input signal to the corresponding source inputs of the first pair of complimentary MOS transistors; and,an impedance element connected to the first and second pairs of complimentary MOS transistors, the impedance element configured to generate an amplified codeword identification signal, the first and second amplification elements configured to provide a gain corresponding to a combination of common-source gain and common-gate gain, the common-source gain applied to the corresponding gate inputs of the first and second amplification elements and the common-gate gain applied to the frequency-dependent source inputs of the first and second amplification elements, the amplified codeword identification signal used at least in part to determine a set of output bits represented by the symbols of the codeword.
  • 2. The apparatus of claim 1, wherein the symbols of the codeword have values selected from a set of at least three values.
  • 3. The apparatus of claim 2, wherein the symbols of the codeword have values selected from the set {±1, ±⅓}.
  • 4. The apparatus of claim 3, wherein the codeword is a permutation of (+1, −⅓, −⅓, −⅓) and (−1+⅓, +⅓, +⅓).
  • 5. The apparatus of claim 1, wherein the complimentary MOS transistors comprise serially-connected NMOS and PMOS transistors.
  • 6. The apparatus of claim 1, wherein each pair of complementary MOS transistors comprises matched transistors.
  • 7. The apparatus of claim 1, wherein the amplified codeword signal is a difference signal added to a second amplified codeword signal to form a sum-of-differences signal used in part in determining the set of output bits represented by the symbols of the codeword.
  • 8. The apparatus of claim 7, wherein three sum-of-differences signals are used to determine the set of output bits.
  • 9. The apparatus of claim 1, wherein the first and second frequency-dependent circuits are resistor-capacitor circuits.
  • 10. The apparatus of claim 1, wherein the first and second frequency-dependent circuits are high-pass filters configured to inject high-frequency content of the first and second input signals into the source inputs of the second and first pairs of complementary MOS transistors, respectively.
  • 11. A method comprising: receiving a first signal representing a first symbol of a codeword at corresponding gate inputs of a first amplification element comprising a first pair of complimentary MOS transistors;receiving a second signal representing a second symbol of the codeword at corresponding gate inputs of a second amplification element comprising a second pair of complimentary MOS transistors;cross-coupling the first input signal using a first frequency-dependent circuit to corresponding source inputs of the second pair of complimentary MOS transistors;cross-coupling the second input signal using a second frequency-dependent circuit to corresponding source inputs of the first pair of complimentary MOS transistors; and,generating an amplified codeword identification signal across an impedance element connected to the first and second pairs of complimentary MOS transistors, the first and second amplification elements providing a gain corresponding to a combination of common-source gain and common-gate gain, the common-source gain applied to the corresponding gate inputs of the first and second amplification elements and the common-gate gain applied to the frequency-dependent source inputs of the first and second amplification elements, the amplified codeword identification signal used at least in part to determine a set of output bits represented by the symbols of the codeword.
  • 12. The method of claim 11, wherein the symbols of the codeword have values selected from a set of at least three values.
  • 13. The method of claim 12, wherein the symbols of the codeword have values selected from the set {±1, ±⅓}.
  • 14. The method of claim 13, wherein the codeword is a permutation of (+1, −⅓, −⅓, −⅓) and (−1+⅓, +⅓, +⅓).
  • 15. The method of claim 11, wherein the complimentary MOS transistors comprise serially-connected NMOS and PMOS transistors.
  • 16. The method of claim 11, wherein each pair of complementary MOS transistors comprises matched transistors.
  • 17. The method of claim 11, wherein the amplified codeword signal is a difference signal, and wherein the method further comprises adding the amplified codeword signal to a second amplified codeword signal to form a sum-of-differences signal used in part in determining the set of output bits represented by the symbols of the codeword.
  • 18. The method of claim 17, wherein three sum-of-differences signals are used to determine the set of output bits.
  • 19. The method of claim 11, wherein the first and second frequency-dependent circuits are resistor-capacitor circuits.
  • 20. The method of claim 11, wherein cross-coupling the first and second input signals injects high-frequency content of the first and second input signals into the source inputs of the second and first pairs of complementary MOS transistors, respectively.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 14/869,346, filed Sep. 29, 2015, entitled “SYMMETRIC LINEAR EQUALIZATION CIRCUIT WITH INCREASED GAIN”, which is a continuation of U.S. application Ser. No. 14/280,305, filed May 16, 2014, now U.S. Pat. No. 9,148,087 issued Sep. 29, 2015, entitled “Symmetric Linear Equalization Circuit with Increased Gain,” all of which are hereby incorporated by reference in their entirety for all purposes.

US Referenced Citations (334)
Number Name Date Kind
668687 Mayer Feb 1901 A
780883 Hinchman Jan 1905 A
3196351 Slepian Jul 1965 A
3636463 Ongkiehong Jan 1972 A
3939468 Mastin Feb 1976 A
4163258 Ebihara Jul 1979 A
4181967 Nash Jan 1980 A
4206316 Burnsweig Jun 1980 A
4276543 Miller Jun 1981 A
4486739 Franaszek Dec 1984 A
4499550 Ray, III Feb 1985 A
4722084 Morton Jan 1988 A
4772845 Scott Sep 1988 A
4774498 Traa Sep 1988 A
4864303 Ofek Sep 1989 A
4897657 Brubaker Jan 1990 A
4974211 Corl Nov 1990 A
5053974 Penz Oct 1991 A
5166956 Baltus Nov 1992 A
5168509 Nakamura Dec 1992 A
5283761 Gillingham Feb 1994 A
5287305 Yoshida Feb 1994 A
5311516 Kuznicki May 1994 A
5331320 Cideciyan Jul 1994 A
5412689 Chan May 1995 A
5449895 Hecht Sep 1995 A
5459465 Kagey Oct 1995 A
5461379 Weinman Oct 1995 A
5511119 Lechleider Apr 1996 A
5553097 Dagher Sep 1996 A
5566193 Cloonan Oct 1996 A
5599550 Kohlruss Feb 1997 A
5659353 Kostreski Aug 1997 A
5727006 Dreyer Mar 1998 A
5802356 Gaskins Sep 1998 A
5825808 Hershey Oct 1998 A
5856935 Moy Jan 1999 A
5875202 Venters Feb 1999 A
5945935 Kusumoto Aug 1999 A
5949060 Schattschneider Sep 1999 A
5982954 Delen Nov 1999 A
5995016 Perino Nov 1999 A
5999016 McClintock Dec 1999 A
6005895 Perino Dec 1999 A
6084883 Norrell Jul 2000 A
6119263 Mowbray Sep 2000 A
6172634 Leonowich Jan 2001 B1
6175230 Hamblin Jan 2001 B1
6232908 Nakaigawa May 2001 B1
6278740 Nordyke Aug 2001 B1
6346907 Dacy Feb 2002 B1
6359931 Perino Mar 2002 B1
6378073 Davis Apr 2002 B1
6398359 Silverbrook Jun 2002 B1
6404820 Postol Jun 2002 B1
6417737 Moloudi Jul 2002 B1
6433800 Holtz Aug 2002 B1
6452420 Wong Sep 2002 B1
6473877 Sharma Oct 2002 B1
6483828 Balachandran Nov 2002 B1
6504875 Perino Jan 2003 B2
6509773 Buchwald Jan 2003 B2
6556628 Poulton Apr 2003 B1
6563382 Yang May 2003 B1
6621427 Greenstreet Sep 2003 B2
6624699 Yin Sep 2003 B2
6650638 Walker Nov 2003 B1
6661355 Cornelius Dec 2003 B2
6664355 Kim Dec 2003 B2
6686879 Shattil Feb 2004 B2
6766342 Kechriotis Jul 2004 B2
6839429 Gaikwad Jan 2005 B1
6839587 Yonce Jan 2005 B2
6854030 Perino Feb 2005 B2
6865234 Agazzi Mar 2005 B1
6865236 Terry Mar 2005 B1
6898724 Chang May 2005 B2
6927709 Kiehl Aug 2005 B2
6954492 Williams Oct 2005 B1
6963622 Eroz Nov 2005 B2
6972701 Jansson Dec 2005 B2
6973613 Cypher Dec 2005 B2
6976194 Cypher Dec 2005 B2
6982954 Dhong Jan 2006 B2
6990138 Bejjani Jan 2006 B2
6999516 Rajan Feb 2006 B1
7023817 Kuffner Apr 2006 B2
7039136 Olson May 2006 B2
7053802 Cornelius May 2006 B2
7075996 Simon Jul 2006 B2
7085153 Ferrant Aug 2006 B2
7085336 Lee Aug 2006 B2
7127003 Rajan Oct 2006 B2
7130944 Perino Oct 2006 B2
7142612 Horowitz Nov 2006 B2
7142865 Tsai Nov 2006 B2
7164631 Tateishi Jan 2007 B2
7167019 Broyde Jan 2007 B2
7180949 Kleveland Feb 2007 B2
7184483 Rajan Feb 2007 B2
7269212 Chau Sep 2007 B1
7335976 Chen Feb 2008 B2
7339990 Hidaka Mar 2008 B2
7348989 Stevens Mar 2008 B2
7349484 Stojanovic Mar 2008 B2
7356213 Cunningham Apr 2008 B1
7358869 Chiarulli Apr 2008 B1
7362130 Broyde Apr 2008 B2
7370264 Worley May 2008 B2
7372390 Yamada May 2008 B2
7389333 Moore Jun 2008 B2
7400276 Sotiriadis Jul 2008 B1
7428273 Foster Sep 2008 B2
7456778 Werner Nov 2008 B2
7462956 Lan Dec 2008 B2
7496162 Srebranig Feb 2009 B2
7535957 Ozawa May 2009 B2
7570704 Nagarajan Aug 2009 B2
7599390 Pamarti Oct 2009 B2
7616075 Kushiyama Nov 2009 B2
7620116 Bessios Nov 2009 B2
7633850 Ahn Dec 2009 B2
7639596 Cioffi Dec 2009 B2
7643588 Visalli Jan 2010 B2
7656321 Wang Feb 2010 B2
7694204 Schmidt Apr 2010 B2
7697915 Behzad Apr 2010 B2
7706456 Laroia Apr 2010 B2
7706524 Zerbe Apr 2010 B2
7746764 Rawlins Jun 2010 B2
7787572 Scharf Aug 2010 B2
7804361 Lim Sep 2010 B2
7808456 Chen Oct 2010 B2
7808883 Green Oct 2010 B2
7841909 Murray Nov 2010 B2
7869497 Benvenuto Jan 2011 B2
7869546 Tsai Jan 2011 B2
7882413 Chen Feb 2011 B2
7899653 Hollis Mar 2011 B2
7907676 Stojanovic Mar 2011 B2
7933770 Kruger Apr 2011 B2
8030999 Chatterjee Oct 2011 B2
8036300 Evans Oct 2011 B2
8050332 Chung Nov 2011 B2
8055095 Palotai Nov 2011 B2
8064535 Wiley Nov 2011 B2
8085172 Li Dec 2011 B2
8091006 Prasad Jan 2012 B2
8106806 Toyomura Jan 2012 B2
8149906 Saito Apr 2012 B2
8159375 Abbasfar Apr 2012 B2
8159376 Abbasfar Apr 2012 B2
8180931 Lee May 2012 B2
8185807 Oh May 2012 B2
8199849 Oh Jun 2012 B2
8199863 Chen Jun 2012 B2
8218670 AbouRjeily Jul 2012 B2
8245094 Jiang Aug 2012 B2
8253454 Lin Aug 2012 B2
8279094 Abbasfar Oct 2012 B2
8289914 Li Oct 2012 B2
8295250 Gorokhov Oct 2012 B2
8310389 Chui Nov 2012 B1
8365035 Hara Jan 2013 B2
8406315 Tsai Mar 2013 B2
8406316 Sugita Mar 2013 B2
8429495 Przybylski Apr 2013 B2
8437440 Zhang May 2013 B1
8442099 Sederat May 2013 B1
8442210 Zerbe May 2013 B2
8443223 Abbasfar May 2013 B2
8451913 Oh May 2013 B2
8462891 Kizer Jun 2013 B2
8472513 Malipatil Jun 2013 B2
8498344 Wilson Jul 2013 B2
8498368 Husted Jul 2013 B1
8520348 Dong Aug 2013 B2
8520493 Goulahsen Aug 2013 B2
8539318 Cronie Sep 2013 B2
8547272 Nestler Oct 2013 B2
8577284 Seo Nov 2013 B2
8578246 Mittelholzer Nov 2013 B2
8588254 Diab Nov 2013 B2
8588280 Oh Nov 2013 B2
8593305 Tajalli Nov 2013 B1
8604879 Mourant Dec 2013 B2
8620166 Guha Dec 2013 B2
8638241 Sudhakaran Jan 2014 B2
8649445 Cronie Feb 2014 B2
8649460 Ware Feb 2014 B2
8649556 Wedge Feb 2014 B2
8649840 Sheppard, Jr. Feb 2014 B2
8687968 Nosaka Apr 2014 B2
8711919 Kumar Apr 2014 B2
8718184 Cronie May 2014 B1
8755426 Cronie Jun 2014 B1
8773964 Hsueh Jul 2014 B2
8780687 Clausen Jul 2014 B2
8782578 Tell Jul 2014 B2
8831440 Yu Sep 2014 B2
8879660 Peng Nov 2014 B1
8897134 Kern Nov 2014 B2
8949693 Ordentlich Feb 2015 B2
8951072 Hashim Feb 2015 B2
8975948 GonzalezDiaz Mar 2015 B2
8989317 Holden Mar 2015 B1
9015566 Cronie Apr 2015 B2
9020049 Schwager Apr 2015 B2
9036764 Hossain May 2015 B1
9069995 Cronie Jun 2015 B1
9077386 Holden Jul 2015 B1
9093791 Liang Jul 2015 B2
9100232 Hormati Aug 2015 B1
9106465 Walter Aug 2015 B2
9124557 Fox Sep 2015 B2
9148087 Tajalli Sep 2015 B1
9165615 Amirkhany Oct 2015 B2
9172412 Kim Oct 2015 B2
9197470 Okunev Nov 2015 B2
9281785 Sjoland Mar 2016 B2
9288082 Ulrich Mar 2016 B1
9288089 Cronie Mar 2016 B2
9292716 Winoto Mar 2016 B2
9306621 Zhang Apr 2016 B2
9331962 Lida May 2016 B2
9362974 Fox Jun 2016 B2
9374250 Musah Jun 2016 B1
20010006538 Simon Jul 2001 A1
20010055344 Lee Dec 2001 A1
20020034191 Shattil Mar 2002 A1
20020044316 Myers Apr 2002 A1
20020057292 Holtz May 2002 A1
20020057592 Robb May 2002 A1
20020154633 Shin Oct 2002 A1
20020163881 Dhong Nov 2002 A1
20020174373 Chang Nov 2002 A1
20030048210 Kiehl Mar 2003 A1
20030071745 Greenstreet Apr 2003 A1
20030086366 Branlund May 2003 A1
20030105908 Perino Jun 2003 A1
20030146783 Bandy Aug 2003 A1
20030227841 Tateishi Dec 2003 A1
20040003336 Cypher Jan 2004 A1
20040003337 Cypher Jan 2004 A1
20040057525 Rajan Mar 2004 A1
20040086059 Eroz May 2004 A1
20040156432 Hidaka Aug 2004 A1
20040174373 Stevens Sep 2004 A1
20050135182 Perino Jun 2005 A1
20050152385 Cioffi Jul 2005 A1
20050174841 Ho Aug 2005 A1
20050213686 Love Sep 2005 A1
20050286643 Ozawa Dec 2005 A1
20060018344 Pamarti Jan 2006 A1
20060067413 Tsai Mar 2006 A1
20060115027 Srebranig Jun 2006 A1
20060133538 Stojanovic Jun 2006 A1
20060159005 Rawlins Jul 2006 A1
20060269005 Laroia Nov 2006 A1
20070030796 Green Feb 2007 A1
20070194848 Bardsley Aug 2007 A1
20070260965 Schmidt Nov 2007 A1
20070263711 Kramer Nov 2007 A1
20070265533 Tran Nov 2007 A1
20070283210 Prasad Dec 2007 A1
20080013622 Bao Jan 2008 A1
20080104374 Mohamed May 2008 A1
20080159448 Anim-Appiah Jul 2008 A1
20080169846 Lan Jul 2008 A1
20080273623 Chung Nov 2008 A1
20080284524 Kushiyama Nov 2008 A1
20090059782 Cole Mar 2009 A1
20090092196 Okunev Apr 2009 A1
20090132758 Jiang May 2009 A1
20090154500 Diab Jun 2009 A1
20090185636 Palotai Jul 2009 A1
20090193159 Li Jul 2009 A1
20090212861 Lim Aug 2009 A1
20090228767 Oh Sep 2009 A1
20090251222 Khorram Oct 2009 A1
20090257542 Evans Oct 2009 A1
20090323864 Tired Dec 2009 A1
20100020898 Stojanovic Jan 2010 A1
20100023838 Shen Jan 2010 A1
20100046644 Mazet Feb 2010 A1
20100104047 Chen Apr 2010 A1
20100122021 Lee May 2010 A1
20100177816 Malipatil Jul 2010 A1
20100180143 Ware Jul 2010 A1
20100205506 Hara Aug 2010 A1
20100296550 Rjeily Nov 2010 A1
20100296556 Rave Nov 2010 A1
20100309964 Oh Dec 2010 A1
20110014865 Seo Jan 2011 A1
20110051854 Kizer Mar 2011 A1
20110072330 Kolze Mar 2011 A1
20110084737 Oh Apr 2011 A1
20110127990 Wilson Jun 2011 A1
20110150495 Nosaka Jun 2011 A1
20110235501 Goulahsen Sep 2011 A1
20110268225 Cronie Nov 2011 A1
20110291758 Hsieh Dec 2011 A1
20110299555 Cronie Dec 2011 A1
20110302478 Cronie Dec 2011 A1
20110317559 Kern Dec 2011 A1
20110317587 Lida Dec 2011 A1
20120008662 Gardiner Jan 2012 A1
20120063291 Hsueh Mar 2012 A1
20120152901 Nagorny Jun 2012 A1
20120161945 Single Jun 2012 A1
20120213299 Cronie Aug 2012 A1
20120257683 Schwager Oct 2012 A1
20130010892 Cronie Jan 2013 A1
20130049863 Chiu Feb 2013 A1
20130051162 Amirkhany Feb 2013 A1
20130163126 Dong Jun 2013 A1
20130229294 Matsuno Sep 2013 A1
20130259113 Kumar Oct 2013 A1
20140016724 Cronie Jan 2014 A1
20140132331 GonzalezDiaz May 2014 A1
20140198837 Fox Jul 2014 A1
20140198841 George Jul 2014 A1
20140226455 Schumacher Aug 2014 A1
20140254730 Kim Sep 2014 A1
20150010044 Zhang Jan 2015 A1
20150078479 Whitby-Strevens Mar 2015 A1
20150146771 Walter May 2015 A1
20150199543 Winoto Jul 2015 A1
20150333940 Shokrollahi Nov 2015 A1
20150381232 Ulrich Dec 2015 A1
20160020796 Hormati Jan 2016 A1
20160020824 Ulrich Jan 2016 A1
20160036616 Holden Feb 2016 A1
20160182259 Musah Jun 2016 A1
Foreign Referenced Citations (6)
Number Date Country
101478286 Jul 2009 CN
2039221 Feb 2013 EP
2003163612 Jun 2003 JP
2009084121 Jul 2009 WO
2010031824 Mar 2010 WO
2011119359 Sep 2011 WO
Non-Patent Literature Citations (47)
Entry
Abbasfar, A., “Generalized Differential Vector Signaling”, IEEE International Conference on Communications, ICC 09, (Jun. 14, 2009), pp. 1-5.
Brown, L., et al., “V.92: The Last Dial-Up Modem?”, IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ., USA, vol. 52, No. 1, Jan. 1, 2004, pp. 54-61. XP011106836, ISSN: 0090-6779, DOI: 10.1109/tcomm.2003.822168, pp. 55-59.
Burr, “Spherical Codes for M-ARY Code Shift Keying”, University of York, Apr. 2, 1989, pp. 67-72, United Kingdom.
Cheng, W., “Memory Bus Encoding for Low Power: A Tutorial”, Quality Electronic Design, IEEE, International Symposium on Mar. 26-28, 2001, pp. 199-204, Piscataway, NJ.
Clayton, P., “Introduction to Electromagnetic Compatibility”, Wiley-Interscience, 2006.
Dasilva et al., “Multicarrier Orthogonal CDMA Signals for Quasi-Synchronous Communication Systems”, IEEE Journal on Selected Areas in Communications, vol. 12, No. 5 (Jun. 1, 1994), pp. 842-852.
Ericson, T., et al., “Spherical Codes Generated by Binary Partitions of Symmetric Pointsets”, IEEE Transactions on Information Theory, vol. 41, No. 1, Jan. 1995, pp. 107-129.
Poulton, et al., “Multiwire Differential Signaling”, UNC-CH Department of Computer Science Version 1.1, Aug. 6, 2003.
She et al., “A Framework of Cross-Layer Superposition Coded Multicast for Robust IPTV Services over WiMAX,” IEEE Communications Society subject matter experts for publication in the WCNC 2008 proceedings, Mar. 31, 2008-Apr. 3, 2008, pp. 3139-3144.
Skliar et al., A Method for the Analysis of Signals: the Square-Wave Method, Mar. 2008, Revista de Matematica: Teoria y Aplicationes, pp. 109-129.
Slepian, D., “Premutation Modulation”, IEEE, vol. 52, No. 3, Mar. 1965, pp. 228-236.
Stan, M., et al., “Bus-Invert Coding for Low-Power I/O, IEEE Transactions on Very Large Scale Integration (VLSI) Systems”, vol. 3, No. 1, Mar. 1995, pp. 49-58.
Tallini, L., et al., “Transmission Time Analysis for the Parallel Asynchronous Communication Scheme”, IEEE Transactions on Computers, vol. 52, No. 5, May 2003, pp. 558-571.
Wang et al., “Applying CDMA Technique to Network-on-Chip”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, No. 10 (Oct. 1, 2007), pp. 1091-1100.
“Introduction to: Analog Computers and the DSPACE System,” Course Material ECE 5230 Spring 2008, Utah State University, www.coursehero.com, 12 pages.
Counts, L., et al., “One-Chip Slide Rule Works with Logs, Antilogs for Real-Time Processing,” Analog Devices Computational Products 6, Reprinted from Electronic Design, May 2, 1985, 7 pages.
Design Brief 208 Using the Anadigm Multiplier CAM, Copyright 2002 Anadigm, 6 pages.
Grahame, J., “Vintage Analog Computer Kits,” posted on Aug. 25, 2006 in Classic Computing, 2 pages, http.//www.retrothing.com/2006/08/classic—analog—.html.
Farzan, K, et al., “Coding Schemes for Chip-to-Chip Interconnect Applications”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, No. 4, Apr. 2006, pp. 393-406.
Healey A. et al., “A Comparison of 25 Gbps NRZ & PAM-4 Modulation used in Legacy & Premium Backplane Channels”, DesignCon 2012, 16 pages.
International Search Report and Written Opinion for PCT/EP2011/059279 mailed Sep. 22, 2011.
International Search Report and Written Opinion for PCT/EP2011/074219 mailed Jul. 4, 2012.
International Search Report and Written Opinion for PCT/EP2012/052767 mailed May 11, 2012.
International Search Report and Written Opinion for PCT/US14/052986 mailed Nov. 24, 2014.
International Search Report and Written Opinion from PCT/US2014/034220 mailed Aug. 21, 2014.
International Search Report and Written Opinion of the International Searching Authority, mailed Jul. 14, 2011 in International Patent Application S.N. PCT/EP2011/002170, 10 pages.
International Search Report and Written Opinion of the International Searching Authority, mailed Nov. 5, 2012, in International Patent Application S.N. PCT/EP2012/052767, 7 pages.
International Search Report for PCT/US2014/053563, dated Nov. 11, 2014, 2 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/EP2013/002681, dated Feb. 25, 2014, 15 pages.
Jiang, A., et al., “Rank Modulation for Flash Memories”, IEEE Transactions of Information Theory, Jun. 2006, vol. 55, No. 6, pp. 2659-2673.
Loh, M., et al., “A 3x9 Gb/s Shared, All-Digital CDR for High-Speed, High-Density I/O”, Matthew Loh, IEEE Journal of Solid-State Circuits, Vo. 47, No. 3, Mar. 2012.
Notification of Transmittal of International Search Report and the Written Opinion of the International Searching Authority, for PCT/US2015/018363, mailed Jun. 18, 2015, 13 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Mar. 3, 2015, for PCT/US2014/066893, 9 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2014/015840, dated May 20, 2014. 11 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2014/043965, dated Oct. 22, 2014, 10 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/037466, dated Nov. 19, 2015.
Oh, et al., Pseudo-Differential Vector Signaling for Noise Reduction in Single-Ended Signaling, DesignCon 2009.
Schneider, J., et al., “ELEC301 Project: Building an Analog Computer,” Dec. 19, 1999, 8 pages, http://www.clear.rice.edu/elec301/Projects99/anlgcomp/.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/043463, dated Oct. 16, 2015, 8 pages.
Tierney, J., et al., “A digital frequency synthesizer,” Audio and Electroacoustics, IEEE Transactions, Mar. 1971, pp. 48-57, vol. 19, Issue 1, 1 page Abstract from http://ieeexplore.
Zouhair Ben-Neticha et al, “The streTched-Golay and other codes for high-SNR finite-delay quantization of the Gaussian source at 1/2 Bit per sample”, IEEE Transactions on Communications, vol. 38, No. 12 Dec. 1, 1990, pp. 2089-2093, XP000203339, ISSN: 0090-6678, DOI: 10.1109/26.64647.
Zouhair Ben-Neticha et al, “The streTched-Golay and other codes for high-SNR fnite-delay quantization of the Gaussian source at 1/2 Bit per sample”, IEEE Transactions on Communications, vol. 38, No. 12 Dec. 1, 1990, pp. 2089-2093, XP000203339, ISSN: 0090-6678, DOI: 10.1109/26.64647.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/041161, dated Oct. 7, 2015, 8 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/039952, dated Sep. 23, 2015, 8 pages.
Holden, B., “An exploration of the technical feasibility of the major technology options for 400GE backplanes”, IEEE 802.3 400GE Study Group, Jul. 16, 2013, 18 pages, http://ieee802.org/3/400GSG/public/13—07/holden—400—01—0713.pdf.
Holden, B., “Using Ensemble NRZ Coding for 400GE Electrical Interfaces”, IEEE 802.3 400GE Study Group, May 17, 2013, 24 pages, http://www.ieee802.org/3/400GSG/public/13—05/holden—400—01—0513—pdf.
Hlolden, B., “Simulation results for NRZ, ENRZ & PAM-4 on 16-wire full-sized 400GE backplanes”, IEEE 802.3 400GE Study Group, Sep. 2, 2013, 19 pages, www.ieee802.0rg/3/400GSG/publiv/13—09/holden—400—01—0913.pdf.
Related Publications (1)
Number Date Country
20170040965 A1 Feb 2017 US
Continuations (2)
Number Date Country
Parent 14869346 Sep 2015 US
Child 15237171 US
Parent 14280305 May 2014 US
Child 14869346 US