This invention relates to serial communications interfaces, and more particularly, to circuitry for synchronizing and deskewing multi-channel serial communications links between integrated circuits such as programmable logic devices.
Serial communications formats are often used in modern electronics systems. Serial communications can be faster than parallel communications, use fewer pins, and, particularly when differential signaling schemes are used, can have higher noise immunity.
It can be challenging to handle serial data streams at high data rates (e.g., at data rates above several Gbps). As a result, it is often advantageous to support high-speed serial data communications using multiple smaller serial data paths operating in parallel. For example, 10 Gbps Ethernet communications can be supported using four parallel 3.125 Gbps serial paths using a XAUI interface and an OC-192 SONET channel can be transmitted over four parallel OC-48 channels.
In a high-speed serial link composed of multiple lower-speed serial channels, each lower-speed channel is subject to a different environment due to variations in chip layouts, pin locations, signal paths, thermal conditions, etc. As a result of these different environments, signals travel over each of the lower-speed serial channels differently. At the receiving end of the link, the lower-speed parallel serial channels must be deskewed and synchronized.
Conventional arrangements for deskewing and synchronizing the lower-speed channels involve the use of two sets of first-in-first-out (FIFO) buffers. Data is first deskewed using deskewing FIFO and is then synchronized using synchronization FIFO.
A two-stage deskew-synchronization FIFO arrangement uses a fixed amount of FIFO resources for deskewing and for synchronization. The size of the deskew FIFO limits the amount by which the earliest-arriving channel can lead the latest-arriving channel. The size of the synchronization FIFO determines how much clock wander is permitted between the recovered clocks from each channel and the common clock used by the receiving circuit.
Both the deskew FIFO and the synchronization FIFO must have sufficient capacity to tolerate worst-case conditions. This tends to make the FIFOs large. Moreover, the sizes of conventional FIFOs are fixed, which can make conventional FIFO arrangements inflexible.
In accordance with the present invention, serial communications circuitry is provided for supporting multi-path serial communications links. The circuitry may be provided as part of a programmable logic device or other integrated circuit.
The serial communications circuitry may use a single set of FIFO buffers at the receiving end of a serial link to perform both synchronization and deskewing functions. This approach allows the amount of FIFO resources that are allocated to deskewing and synchronization functions to be dynamically partitioned. When synchronization functions require small amounts of FIFO, the FIFO space available for channel deskewing functions will be larger, so that larger amounts of channel skew can be tolerated. When synchronization functions require large amounts of FIFO, less FIFO may be allocated for deskewing and more FIFO may be allocated for synchronization. Because the FIFO may be partitioned dynamically, FIFO resources may be allocated in a way that is specifically tailored for a particular serial communications environment.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.
a is a diagram of a conventional FIFO synchronization buffer showing the initial locations of its write and read pointers.
b is a diagram of a conventional FIFO synchronization buffer showing the locations of its write and read pointers on the verge of an overflow condition during synchronization operations.
c is a diagram of a conventional FIFO synchronization buffer showing the locations of its write and read pointers just before an underflow condition during synchronization operations.
The present invention relates to serial communications circuitry and methods for using serial communications circuitry. In particular, the present invention relates to serial communications schemes in which a relatively higher-rate serial link is formed from multiple parallel relatively lower-rate serial links. For example, four serial links operating at about 3.125 Gbps may be used in parallel to support the functions of a 10 Gbps Gigabit Ethernet serial link. This is merely one illustrative configuration. The data streams from any number of lower-rate serial channels may be combined to form a higher-rate serial link. The present invention will sometimes be described in the context of a four-path arrangement. This is, however, merely illustrative.
Illustrative equipment 10 having two integrated circuits 12 that communicate over a serial communications path 14 is shown in
Serial link 14 is generally a high-speed link having a data rate of many Gbps. Link 14 is made up of a number of slower parallel serial links 16. Each link 16 may, for example, be a differential signal path having a pair of conductors that support communications at a serial data rate of a few Gbps. The use of multi-path serial links such as link 14 to support communications between chips in an electrical system helps to overcome some of the difficulties associated with handling single-link serial data streams at extremely high data rates (e.g., 10 Gbps), because the links 16 have lower data rates than would be required if all of their serial data were passed through a single pair of differential signal conductors.
However, because each link 16 may be connected and routed differently through equipment 10, the data streams on links 16 tend to become skewed with respect to each other (i.e., the data bits in one stream will be received at a time that is shifted ahead or behind the data bits of another stream). Moreover, the different environments of each link 16 will typically cause the data streams on each link to fall out of synchronization with each other. The clock associated with each link 16 tends to be influenced by environmental factors during transmission. As a result, even if a common clock is used to transmit the signals over links 16, the clocks for links 16 will no longer be identical when they are received (i.e., the links 16 will no longer be synchronized).
In general, integrated circuits such as circuits 12 of
At the receiving end of link 14, input circuitry 22 is used to receive the transmitted data. The input circuitry 22 includes first-in-first-out (FIFO) buffer circuitry for deskewing and synchronizing the incoming data on the parallel links 16. The resulting data is provided to core circuitry 18 on integrated circuit B. Core circuitry 18 may be any type of circuitry, including programmable logic, microprocessor circuitry, digital signal processor circuitry, processing circuitry that is part of an application-specific integrated circuit, memory circuitry, etc.
The diagram of
An illustrative FIFO buffer or memory, sometimes simply referred to as a “FIFO,” is shown in
A conventional serial communications circuit 38 that uses two sets of FIFOs to deskew and synchronize parallel streams of incoming serial data is shown in
Because the lower-speed channel data streams must be combined to reconstruct a unitary high-speed channel, deskewing functions are performed after word alignment. Before passing through the deskewing FIFOs 40, the four data streams rdata0-rdata3 are each in their own recovered clock domains and one channel may be ahead of the others in time. The word-aligned data is written into deskew FIFO 40 in each recovered clock domain. (For example, rdata0 is written into deskew FIFO in clk0.) The read clock for each FIFO 40 must be a common clock so that the output of the deskew FIFOs 40 can be processed together. The read clock rate must generally be within a narrow speed variance from the write clock to allow the deskewing FIFO to work. If this condition is not satisfied, the deskewing FIFO 40 will experience either overflow or underflow most of the time, thereby preventing the deskewing functions from being properly executed. Because the recovered clocks are derived from each channel's data, which originated from one clock source in transmission, the read clock for deskew FIFO read operations is generally a local clock selected from one of the channel recovered clocks. Because there are four parallel serial channels, there are four deskew FIFOs.
Deskewing operations rely on the simultaneous aligned insertion of alignment characters in the four parallel outgoing data streams at the transmitter. These alignment characters are detected at the receiver and used to reconstruct an aligned data stream.
A deskewing FIFO state machine 52 is used to control the four parallel deskewing FIFOs 40. The deskewing FIFO state machine 52 monitors the data on paths 42. When an alignment character is detected in a given path, a corresponding alignment flag is taken high. For example, if an alignment character is detected in channel 2, the flag AL2 is taken high. The state machine 52 controls the write pointers for each FIFO 40, so that data is initially not written into the deskewing FIFOs 40 until alignment has been achieved across all channels. At this point an alignment flag ALIGN is set high and reading is commenced using a common read pointer.
The deskew FIFOs generate deskew overflow and underflow flags, to inform deskewing state machine 52 when each FIFO 40 is in danger of overflowing or underflowing.
The deskewing operation performed by the deskewing FIFO state machine and its four associated deskew FIFOs is illustrated in the example of
At clock cycle 0 (local clock CLK=0), an alignment character “A” has been received in channel 2. The state machine 52 therefore sets AL2=1 and wptr2=1, so that the alignment character is written into the first memory location in the deskew FIFO for channel 2, as shown in
At clock cycle 1, alignment characters are received in channels 0 and 3. The write pointers wptr0 and wptr3 are therefore set to 1 and wptr2 is set to 2. No alignment character has yet been received in channel 1, so the write pointer for channel 1 (wptr1) is not yet valid. Moreover, because the channels are not yet aligned, the read pointer is not yet allowed to increment (i.e., it is not valid).
At clock cycle 2, an alignment character is received in channel 1. The value of wptr1 is therefore set to 1 and the alignment character is written into the first memory location in the deskew FIFO for channel 1, as shown in
Now that alignment characters have been received in all channels, deskewed data can be read out of the four FIFOs in parallel. This is accomplished by allowing the read pointer rdptr to increment from 1 to 2, (and subsequently to 3, etc.), as shown in the rows of
After being deskewed, the deskew FIFO outputs have been word aligned and channel aligned. The deskewed data is still clocked using a local clock that has been selected from one of the recovered clocks. Many applications require transferring this data rate to a system clock rate, which is used for further processing. For example, if this data is being sent into the core logic of a programmable logic device, the modules in the programmable logic device may have their own clocks. In this situation, the local clock domain needs to be changed to a system clock domain using synchronization FIFO 48.
Because there are four parallel serial channels, there are four synchronization FIFOs 48 in circuitry 38. These FIFOs operate in parallel. Data is generally written into each synchronization FIFO 48 according to the local FIFO read clock (e.g., recovered clk 0 from channel 0). Data is generally read from the FIFOs 48 using a system clock (i.e., a user-desired clock derived from the downstream processing modules in the programmable logic device).
A synchronization FIFO state machine 46 controls the operation of each of the synchronization FIFOs 48 by controlling the write pointers and read pointers in each channel. The FIFOs 48 generate overflow and underflow flags that inform the synchronization FIFO state machine 46 when the FIFO 48 is in danger of experiencing an overflow or underflow condition.
A typical FIFO 48 may have 128 storage locations (memory slots), each of which can store a respective piece of data (i.e., a “word” or “byte” of data). Using a conventional partitioning arrangement, half of the synchronization FIFO space is allocated to handling underflow (i.e., it is allocated to underflow space) and half of the synchronization FIFO space is allocated to handling overflow (i.e., it is allocated to overflow space). This type of arrangement is shown in
If the local clock is faster than the system clock (even if just for a limited time), the rate at which data is being written into FIFO 48 can exceed the rate at which data is being read from FIFO 48. As a result, the write pointer will start to overtake the read pointer, as shown in
Similarly, if the rate at which data is being written into FIFO 48 is slower than the rate at which data is being read from FIFO 48, the write pointer will tend to fall behind the read pointer, until the read pointer has almost overtaken the write pointer, as shown in
Because data would be lost in the event of buffer overflow or underflow, the overflow and underflow flags are set high whenever the read and write buffers approach each other. If, for example, the write pointer has come within eight memory locations of catching up to the read pointer, as shown in
When synchronization FIFO state machine 46 (
When synchronization FIFO state machine 46 detects that the underflow flag has gone high, the synchronization FIFO state machine can either reset the FIFO (as shown in
After passing through the four parallel synchronization FIFOs, the data in each channel has been converted to a common clock domain (i.e., the user-desired system clock). Once the data from each of the channels is operating on the same clock domain, it is said to be synchronized and rate matched. The four sets of synchronized data sdata0-sdata3 are then provided to downstream circuits for additional processing such as 8B10B decoding, MAC processing, etc.
With the conventional approach of
The sizes of conventional synchronization FIFOs 48 and deskewing FIFOs 40 are selected to accommodate expected worse-case amounts of clock wander and channel misalignment. The sizes of the FIFOs 40 and 48 are fixed, so if a given link has worse-than-expected clock wander, data will be lost, even if the deskew FIFOs 40 are being underutilized due to smaller-than-expected amounts of channel misalignment. Similarly, even if the clocks for each channel are close to each other, so that most of the synchronization space in FIFOs 48 is unused, it will not be possible to deskew the data properly if the misalignment between channels is more than can be handled by the fixed deskewing space of FIFOs 40.
In accordance with the present invention, serial communications circuitry is provided in which a single set of FIFOs is used for both synchronization and deskewing operations. The amount of FIFO space that is used for synchronization functions and the amount of FIFO space used for deskewing functions can be tailored to a particular application.
Illustrative circuitry that may be used by integrated circuits 12 when communicating using multiple parallel serial paths in accordance with the present invention is shown in
As shown in
Integrated circuits 12 may be used in any suitable electronics equipment and may be used, for example, on circuit boards connected by conductors in a backplane bus and/or conductors in circuit board buses, etc.
If circuits 12 are on circuit boards connected by a backplane, the circuit boards may be mounted in a system rack or installed in another suitable housing. Such circuit boards may be line cards in a telecommunications system, may be circuit boards in a computer, or, may be any other module or submodule in a larger system. If desired, the equipment 10 in which circuits 12 are used need not have a backplane 12, but rather may use a single board or other mount for system components.
Each circuit board or other mounting structure to which circuits such as integrated circuit 12 are mounted typically has a number of integrated circuits and other devices (e.g., switches, discrete components, connectors, etc.). These boards may be made by different vendors and may have different electrical and physical properties. Integrated circuits are typically provided in packages such as dual-inline packages or other suitable packages. Conductive traces (e.g., copper lines on a typical copper circuit board) may be used to electrically interconnect the components mounted on each board.
An integrated circuit such as integrated circuit 12 of
Another class of programmable logic device uses random-access-memory (RAM) cells to hold configuration data. The RAM cells may be loaded with configuration data that is provided from an external memory device. For example, when the system is powered-up or at another appropriate time, configuration data from the external memory device may be transferred from the external memory device into the programmable logic device to configure the RAM cells in the programmable logic device. Each of the RAM cells may control a transistor or other element on the programmable logic device, so by configuring the RAM cells, one can selectively turn on and off portions of the circuitry in the programmable logic device and thereby customize its functions as needed.
With one suitable configuration, a programmable logic device containing circuitry 18 and output circuitry 20 of the type shown in
Moreover, the circuitry 18 and the output circuitry 20 of
Integrated circuit 12 of
In the example of
Circuitry 18 may provide digital data for high-speed serial link 14 over any suitable number of data paths. As an example, circuitry 18 may provide data on a 32-bit wide bus 54. The bus 54 may be divided into four parallel 8-bit wide paths 56, each of which feeds a respective encoder 58 coupled to a respective serializer 60. The serializers 60 may take parallel data on inputs 62 and provide corresponding serial data on outputs 64. The outputs 64 may be received by differential output buffers 66. Buffers 66 may drive the serial data for each link over a pair of associated differential signal conductors in each link 16.
In one suitable arrangement for output circuitry 20, a clock signal is embedded into each serial data stream. The embedded clock for each link 16 may then be recovered at the receiver using clock-and-data recovery circuitry.
Encoders 58 may be, for example, 8B/10B encoders that help to generate a sufficient number of data bit signal transitions in the outgoing serial data stream for each link 16 to ensure proper clock recovery at the receiver. The use of encoders such as encoders 58 is merely illustrative. Any suitable outgoing signal processing may be performed on the data streams in each serial channel using circuitry 20 and circuitry 18. For example, error correction circuitry may be used to provide increased noise immunity.
Typically, idle packets (characters) are periodically inserted into the data streams on links 16. The idle packets do not contain critical data, so they can be dropped from the data streams at the receiver when needed to properly reconstruct the serial data for path 14. Alignment characters are also periodically inserted into each stream 16, so that even though these streams are divided as the single bus 54 fans out into the four parallel buses 56, the data from each stream 16 can be properly reconstructed at the receiver. To help ensure clock synchronization and data alignment, the output circuitry 20 may be driven by a common clock signal.
The data from the output circuitry 20 in the integrated circuit 12 of
The portion of the illustrative input circuitry 22 that is shown in
Clock and data recovery circuits 70 contain phase-lock-loop circuitry for recovering the embedded clock signal and data from each incoming data stream. Each clock and data recovery circuit 70 processes the incoming data from a respective one of the serial data paths 16 and generates a corresponding recovered data signal (e.g., indata0 for channel 0, indata1 for channel 1, etc.). The recovered data is word aligned using word alignment circuits 73 to produce corresponding recovered and word-aligned data streams (e.g., rdata0 for channel 0, rdata1 for channel 1, etc.) on a recovered and word-aligned data line 76.
Each clock and data recovery circuit 70 provides the clock that has been recovered from the incoming data stream on a corresponding recovered clock line 74. The recovered and word-aligned data signals on lines 76 and the recovered clocks on lines 74 are provided to a set of four first-in-first-out (FIFO) buffers 78 (also sometimes referred to as “FIFO”). FIFO 78 performs both clock synchronization and deskewing operations on the four data streams 16 and provides corresponding synchronized and deskewed (aligned) data at four corresponding outputs 80 (labeled data0, data1, data2, and data3 in
The data on lines 80 may be provided to decoders such as 8B/10B decoders 82, as shown in
As shown in
The control circuitry 88 also monitors the states of overflow and underflow flags generated by FIFO 78. These flags are monitored by control circuitry 88 using lines 96. Control circuitry 88 controls the operation of FIFO 78 by generating read pointers rptr0-rptr3 and write pointers wptr0-wptr3. The values of the read and write pointers that are generated by the control circuitry 88 are provided at read and write pointer outputs 98 and are received by the FIFO buffers 78 via corresponding read and write pointer inputs 100. Because the synchronization and deskewing operations of input circuit 22 are performed using a single set of FIFO (i.e., one FIFO buffer 78 for each serial channel 16), only a single set of read and write pointers need to be generated by control circuitry 88.
During writing operations, each FIFO 78 is clocked using a corresponding one of the recovered clocks. For example, during writing operations, the FIFO 78 for channel 0 may be clocked using the recovered clock signal CLK0. The FIFO 78 for channel 1 may be written to using CLK1, etc.
A single common clock is used to extract data from all FIFOs 78. This clock, which is applied to FIFOs 78 via terminals 102 may be, for example, a local clock that is selected from one of the recovered clocks (e.g., recovered clock CLK2 may be used as the local clock). Regardless of the source used for the clock, the clock is preferably used for all circuitry downstream of the clock and data recovery circuits 70 and FIFOs 78.
The memory resources of FIFOs 78 are used for both synchronization functions and deskew functions. The portion of the FIFOs 78 that is used for synchronization functions is referred to as “synchronization space.” The synchronization space can be divided into two parts—one for handling potential underflow situations (the “underflow space”) and another for handling potential overflow situations (the “overflow space”). The portion of FIFOs 78 that is used for deskewing functions is referred to as the “deskew space.”
The FIFOs 78 may be partitioned dynamically. If paths 16 are subject to large amounts of clock wander, more FIFO resources can be allocated to synchronization functions (i.e., the synchronization space may be made larger). If the paths 16 produce large channel misalignments, more FIFO resources can be allocated to deskewing functions (i.e., the deskewing space may be made larger).
Because the total number of memory slots in the FIFO is fixed (for a given design), the sizes of the synchronization space and deskewing space must be balanced against each other. Accordingly, the size of FIFO 78 is preferably selected so that it can handle the worst-case scenario where maximum synchronization and maximum deskewing functions are needed simultaneously.
Generally, worst-case synchronization and worst-case deskewing scenarios do not arise simultaneously. An advantage of using a single set of FIFOs to handle both synchronization and deskewing functions in these circumstances is that the FIFO can be partitioned to optimize the balance of synchronization and deskewing capabilities for input circuitry 22 depending on the situation. If only a few memory slots are needed in FIFO 78 to support deskewing operations because there is relatively little channel misalignment between paths 16, more memory slots will be available to handle synchronization operations. If the clocks on the various channels are close to each other (i.e., if there is a small amount of clock wander among channels 16), more FIFO memory slots can be used for channel deskewing.
The flexibility provided by the ability to partition FIFO 78 to create a desired amount of synchronization space and a desired amount of deskewing space may allow the size of FIFO 78 to be smaller than the combined sizes of conventional FIFOs such as deskewing FIFOs 40 and synchronization FIFOs 48 of
The synchronization and deskewing operations of the circuitry of
The table of
As shown just above the first column of the table in
As shown just above the second column of the table of
In the illustrative situation of
As shown in the first row of the table, the FIFOs for both channels are initially empty. The size of the illustrative FIFOs in the example of
However, because FIFOs 78 can be partitioned dynamically, the unused deskewing capabilities of the 144-slot FIFOs 78 can be dynamically reallocated to handling synchronization functions. In the example of
In the initial state of the first row of the table of
As shown in the second row of the table, at CLK=1, the alignment character A has been received in ch0 and has been written into the FIFO 78 for ch0. Accordingly wptr0=1. Data has not yet been received in ch1, so ch1 remains idle and wptr1 remains undefined. The FIFO 78 for ch1 is empty. Because the channels ch0 and ch1 are not yet aligned, no reading from the FIFO 78 for either ch0 or ch1 has taken place and the value of both of the read pointers is still undefined.
During cycles such as the cycle of CLK=1, the control circuitry 88 (
When CLK=2, the alignment character A for ch1 is received and is stored in the FIFO 78 for ch1 (i.e., wptr1=1). At the same time that the alignment character A is being written into the FIFO for ch1, data D1 is written into the FIFO for ch0 (i.e., wptr0=2). Because there is a skew of one clock cycle between ch0 and ch1 in this example, the write pointer for ch0 is always one cycle ahead of the write pointer for ch1. The read pointers for both FIFOs 78 remain undefined at CLK=2.
From CLK=2 to CLK=72 (in this example), the control circuit is filling the underflow space in FIFOs 78. In this example, the amount of space available for synchronization (143) is equal to the total FIFO size of 144 minus the amount of FIFO space used for deskewing (which is 1). As described in connection with
Dividing the synchronization space into two equal (or nearly equal) parts is merely one illustrative way in which to allocate the synchronization space in FIFOs 78. Any suitable FIFO allocation scheme may be used if desired. Moreover, the way in which the synchronization space is allocated (e.g., the amount of synchronization space allocated to underflow relative to overflow, the amount of synchronization space that is allocated in FIFO relative to the size of deskewing space, etc.) may be selected by a user (e.g., a system designer). As an example, the user may instruct control circuitry 88 that deskewing space or synchronization space must always include a minimum number of memory slots, the user may instruct control circuitry that the synchronization space must be divided (as near as possible) into equal overflow and underflow spaces, the user may instruct the control circuitry that the underflow space must exceed a certain minimum threshold size, etc.
During underflow (and overflow) space allocation (CLK=2 to 72), the ch0 data values D1 to D71 are written into the FIFO 78 for ch0. Ch1 is one cycle behind ch0, so the ch1 data values of D1 to D70 are written into the FIFO 78 for ch1. During writing, wptr0=2 to 72 and wptr1=1 to 71. The synchronization space has not yet been fully partitioned during this time, so the value of the read pointers remains undefined.
At clock cycle CLK=73, partitioning is complete. Accordingly the read pointers rdptr0 and rdptr 1 may be set to 1 and reading may be initiated. At clock cycle CLK=74, the read pointers are incremented (i.e., rdptr0=2 and rdptr1=2). This process continues during subsequent clock cycles. Data is written into FIFOs 78 by incrementing the write pointers appropriately. Data is read from the FIFOs 78 by incrementing the read pointers according to the local clock CLK. During reading operations, the data stream read from the FIFO associated with ch0 produces the synchronized and deskewed data stream data0 (
Channel skew may vary with time. For example, channels ch0 to ch3 may initially be misaligned by 5 clock cycles. Later, the misalignment may drop to 2 clock cycles. Control circuitry 88 can vary the partitioning of FIFOs 78 dynamically to accommodate such changes in channel skew. If the skew drops from 5 to 3 clock cycles, for example, the control circuitry 88 can use the process of
If necessary, the control circuitry 88 can reset the FIFOs or use idle characters to adjust the spacing between the read pointers and write pointers in the FIFOs 78. This prevents potential overflow or underflow conditions from arising.
Illustrative steps involved in using combined synchronization/deskewing FIFO arrangement of the present invention to synchronize and deskew data from multiple parallel serial channels 16 that make up a serial link 14 are shown in
At step 104, settings may be initialized. For example, user-defined or default settings for the minimum allowed distances between read pointers and write pointers, user-defined or default settings for permitted sizes (e.g., minimum threshold sizes) for the deskewing space, synchronization space, underflow space, or overflow space, or user-defined or default settings for other synchronization and deskew functions may be provided. Users may provide settings and other information to control circuitry 88 using any suitable technique. For example, settings may be provided to memory 92 (e.g., one or more registers or other memory on a circuit 12).
At step 106, the read pointers and write pointers may be reset by control circuit 88. For example, the read and write pointers may initially be set to an “undefined” state, as described in connection with clock cycle CLK=0 in
At step 108, the control circuit 88 may monitor the recovered data rdata0, rdata1, rdata2, and rdata3 from clock and data recovery circuits 70 using lines 94. When an alignment character A is detected in a particular channel, the control circuitry 88 may set the alignment flag for that channel to 1 (as an example). The control circuitry 88 may also fill the deskewing space of FIFOs 78 as described in connection with
At steps 112 and 114, the control circuit 88 can partition the synchronization space between underflow space and overflow space, as described in connection with
After the underflow buffer has been constructed at step 114, the control circuitry 88 can increment the read pointers, as described in connection with rows 4 and 5 of the table of
Differences between the recovered clocks and the local clock may cause the FIFOs to be at risk of overflowing or underflowing. If the read pointers and write pointers become too close to each other, FIFOs 78 may set underflow flags or overflow flags accordingly. The control circuitry 88 monitors the underflow and overflow flags for each FIFO 78 via one of paths 96.
If a potential underflow or overflow condition arises (i.e., if an underflow or overflow flag is set high), the control circuitry can correct the situation at step 118. For example, the control circuitry 88 may reset the read and write pointers. If the write pointer is in danger of overflowing the read pointer, the control circuitry 88 may hold back the write pointer with respect to the read pointer (e.g., by discarding idle characters from the appropriate incoming data stream). If the read pointer is in danger of overtaking the write pointer (i.e., an underflow condition), the read pointer can be slowed with respect to the write pointer by inserting idle characters into the outgoing data stream without incrementing the read pointer.
After the potential overflow or underflow condition has been corrected at step 118, the overflow and underflow flags are all reset and normal operation continues at step 116.
If a misalignment is detected during normal operation, operations can return to step 106, as shown by line 120. Control circuitry 88 can detect misalignment (skew) between channels by monitoring the status of the “AL” flags. When the channels are all properly aligned, alignment characters are received at the same time (i.e., AL0=AL1=AL2=AL3=1 all at the same time). If, however, the channels are misaligned, at least one of the alignment characters A will be received in advance of or behind the other alignment characters. Control circuitry 88 can therefore conclude that there is channel misalignment whenever one or more the AL flags are high at the same time that one or more of the AL flags are low. If this condition is detected, the pointers may be reset at step 106 and the deskewing process described in connection with step 108 and row 2 of the table of
As described in connection with step 104, a user of an integrated circuit containing control circuitry such as control circuitry 88 of
The foregoing is merely illustrative of the principles of this invention and various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5917482 | Putnam | Jun 1999 | A |
6134155 | Wen | Oct 2000 | A |
6512804 | Johnson et al. | Jan 2003 | B1 |
6578092 | Lau et al. | Jun 2003 | B1 |
6678813 | Le | Jan 2004 | B1 |
6782461 | Lam | Aug 2004 | B2 |
7093061 | Teo | Aug 2006 | B2 |
7191162 | Gibbs et al. | Mar 2007 | B2 |