The present invention relates to an agricultural baler and, more specifically, to a square agricultural baler, which is provided for gathering crop material, forming slices of crop material from the gathered crop material, and pressing square bales from the slices.
Agricultural balers typically comprise two main parts used in the formation of the bales: a pre-compression chamber and a baling chamber. Crop material is gathered and pushed into the pre-compression chamber, where a slice of crop material is formed. The pre-compression chamber is linked to the baling chamber in such a manner that the slice of crop material can periodically be transferred into the baling chamber. In the baling chamber, a plunger reciprocally moves, thereby pressing a square bale from subsequently fed slices.
The plunger movement is powered via a main shaft driven by a motor. The motor can be a part of the baler, or can be a part of the puller (tractor) connected to the baler via a power take-off (PTO). In practice, this reciprocal movement of the plunger is often considered the most dominant movement in the baler, dominant meaning that other movements are made relative to this movement of the plunger. The reason is that the plunger movement requires the highest force (highest relative to other forces needed for operating the baler). Of all movements in the baler, the movement of the plunger shows the highest inertia.
The pre-compression chamber is adapted for receiving gathered crop material. To this end, the pre-compression chamber shows an inlet. The pre-compression chamber furthermore shows an outlet towards the baling chamber. Between the inlet and the outlet, a channel is defined in which crop material can gather into a slice of crop material. The pre-compression chamber comprises a slice pushing mechanism provided for pushing a slice of crop material formed in the pre-compression chamber through the outlet of the pre-compression chamber into the baling chamber. The sliced crop material is typically pushed in a first segment of the baling chamber. The first segment is typically located directly behind the plunger (the plunger being in the withdrawn position). Thereby the slice of crop material is pushed in the baling chamber, after which the plunger can propel the crop material into the baling chamber, thereby pushing the most recently entered slice into the baling chamber, making it a part of the square bale.
The pre-compression chamber comprises, for the purpose of pushing the slice into the baling chamber, a slice pushing mechanism. Different types of slice pushing mechanisms are known, among which fingers grasping behind the slice and pushing the slice through the outlet, or a set of conveyer belts in between which the slice is formed, and which conveyer belts are driven to push the slice through the outlet.
The slice pushing mechanism is driven via a driving mechanism that is operationally linked to the plunger driving mechanism. A synchronized movement between slice pushing mechanism and the plunger is needed to ensure a proper operation of the baler. Namely, only when the plunger is withdrawn, a slice can be pushed in the baling chamber. In practice, different synchronization types are possible among which a one/one synchronization, meaning that every withdrawal of the plunger a new slice is entered into the baling chamber, or a one/two synchronization, meaning that every other withdrawal of the plunger a new slice is entered, thus the plunger moves forth and back two times for each slice. Other synchronization timings such as one/three, one/four, etc. are also possible.
Synchronization is in practice realized by mechanically linking the plunger driving mechanism and the slice pushing driving mechanism. Such mechanical link ensures proper synchronization, as the slice pushing mechanism is mechanically driven by the plunger movement, it cannot move out of synchronization.
A drawback relates to so-called top fill. Top fill is a measure for the uniformity of the slice after it has entered the first segment of the baling chamber. It will be recognized that a non-uniform fill, for example where the lower part of the first segment is more dense than an upper part, results in an inferior bale. Such top fill has an effect that a bale is highly dense at the lower end, and not dense at the top, resulting in an unstable bale that is likely to show a substantial deviation from the ideal square form. Such bale will bend like a banana resulting in a weirdly shaped bale. A negative top fill also results in a substantial wear of the plunger and baling chamber, as forces are not equally transmitted. The plunger will feel a substantially high resistance at the lower part of the plunger compared to the upper part resistance of the plunger. This will create a torque force exerted to the plunger which has to be borne by the plunger driving mechanism. When the ideal top fill can be obtained, a bale can be formed with nearly ideal outer dimensions and shape, and excessive wear on the baler mechanism can be avoided. In prior art balers, the ideal top fill is obtained by controlling the slice forming process in the pre-compression chamber. By obtaining a slice in which the crop material is evenly spread over the slice, after which the slice is pushed into the baling chamber, an acceptable top fill can be obtained.
A drawback of the existing top fill controlling mechanisms is that a deviation of the top fill can still occur depending on the baling speed and the type of crop material (hay, straw, silage, etc.).
It is an object of embodiments of the present invention to provide a baler where top fill is controllable in a more accurate manner.
In accordance with an exemplary aspect of the present invention, there is provided an agricultural baler. The agricultural baler comprises a baling chamber and a pre-compression chamber, wherein the pre-compression chamber is adapted to gather crop material and to periodically form a slice of said crop material and push the slice towards the baling chamber into a first segment of the baling chamber, the baling chamber comprising a plunger provided for reciprocally moving in the baling chamber thereby compressing slices of crop material into a bale, wherein a slice-presence-detecting sensor is provided in an upper region of said first segment, an output of such sensor being operationally connected to controller which is adapted to adjust a synchronization between the periodically forming and pushing and the reciprocal movement.
Via a slice-presence-detecting sensor, the presence of the slice in the upper region of the baling chamber can be detected. Whereas conventionally the moment of pushing the slice by the pre-compression chamber determines the synchronization, now the effective moment of arrival of the slice can be used for synchronization. Practical tests have shown that the relationship between the moment of pushing of the slice and the effective moment of arrival of the slice in the first segment of the baling chamber can deviate. Some crop material move faster through the output of the pre-compression chamber at a certain slice pushing mechanism speed, than other crop material. As a result, the faster crop material arrives sooner at the upper region of the first segment of the baling chamber. A controller is provided which is adapted to adjust the synchronization between the reciprocal movement of the plunger and the forming and pushing of the slice in the pre-compression chamber, based upon a measurement of the sensor. Thereby, the slice presence detecting sensor connected to the controller, adapted to adjust the synchronization, provides in a mechanism to optimize top fill in the baling chamber by adjusting arrival timing of the slice in the baling chamber with respect to the plunger movement.
Desirably, the controller is adapted to adjust the synchronization timing of the periodically forming and pushing of the pre-compressing chamber with respect to the reciprocal movement of the plunger. Since the reciprocal movement of the plunger is typically considered the dominant movement in the baler, adjustments are desirably made to the pre-compression chamber operation. By adjusting the timing of synchronization, synchronization is fine-tuned depending on the measurement of the sensor.
Desirably, the slice-presence-detecting sensor is mounted at the top surface of the first segment of the baling chamber to detect the arrival of the slice at said top surface. Mounting the sensor at a top surface is both technically simple and proves to be the optimal measurement location.
Desirably, multiple slice-presence-detecting sensors are mounted at different heights in the first segment of the baling chamber. Such sensors can be mounted for example at a side wall of the first segment of the baling chamber. Measuring the presence of the slice at different heights enables to obtain speed information, and, when three or more sensors are used, acceleration information of the slice in the first segment. This speed and/or acceleration information can be further used to determine the top fill, and to steer the controller to obtain a preferred top fill.
Desirably, the slice-presence-detecting sensor is formed as a force sensor so that, in addition to the presence, also the force of contact between the slice and the first segment is measurable. The force of arrival of a slice is an indication of a deformation of the slice in the first segment of the baler. A slice that is pushed through the output of the pre-compression chamber with a high force so that it arrives at the upper region with a high impact, has as a result that the package will be more compressed at the upper region of the baling chamber than at the lower region, due to the impact. This information can further be used to adjust the synchronization between the pre-compression chamber pushing and the plunger movement in order to obtain a predetermined (desired) top fill.
Desirably, the pre-compression chamber comprises an inlet and an outlet, the baler comprising a feeder for feeding crop material in to said inlet, wherein said outlet opens towards said first segment, said pre-compression chamber comprising a pushing mechanism for pushing said slice through said outlet into said baling chamber, whereby said controller is provided for controlling the timing of said pushing mechanism.
Desirably, the pre-compression chamber comprises two conveyors defining a channel between the inlet and the outlet, the two conveyors being provided to form said slice and to act as said pushing mechanism. Typically the two conveyors are driven by hydraulic or electric motors. The latter can be steered by the controller to adjust timing, particularly of the pushing action of the conveyors. In this manner, the timing of arrival of the slice in the baling chamber can be influenced by adjusting the conveyor timing.
Desirably, as an alternative to the conveyor embodiment described above, the pushing mechanism is formed as a set of fingers provided for grasping behind the slice of crop material at the inlet of the pre-compression chamber and for pushing the slice through the outlet by moving the fingers towards the outlet. Such pushing mechanism proved to be an efficient and well controllable mechanism for transferring a slice of crop material formed in a pre-compression chamber into the baling chamber.
Desirably, the plunger driving mechanism is mechanically connected to a slice pushing driving mechanism to synchronize the latter, the mechanical connection comprising an intermediary element steerable via said controller. In conventional balers, a mechanical connection is often provided between the plunger driving mechanism and the slice pushing driving mechanism. This mechanical connection ensures a correct synchronized movement between the plunger and the crop pushing mechanism. This prevents the crop pushing mechanism from pushing a slice of crop material into the baling chamber if the baling chamber is not ready to receive the slice crop material (for example when the plunger is in its extended position thereby closing off the first segment of the baling chamber).
By providing a coupling element in the mechanical connection, the synchronization timing can be adjusted in the agricultural baler of the exemplary embodiments of the invention described herein. Thereby, the synchronization can be fine-tuned meaning that the moment of arrival of the slice of crop material into the first segment of the baling chamber can be somewhat shifted. The mechanical connection is maintained ensuring a correct synchronization (in the broad sense of synchronization) while enabling the controller to adjust the synchronization (thereby obtaining a fine-tuned synchronization).
Desirably, the intermediary element is formed as a planetary gearbox. A planetary gearbox is known for linking three rotational movements (respectively via the center gear, the planet gears and the ring gear). Therefore, the planetary gearbox can be used in the present case to link the plunger driving mechanism, the slice pushing driving mechanism, and the controller. When the controller stands still, there is a constant predictable link between rotational speed of the plunger driving mechanism and the slice pushing driving mechanism, meaning that the relative movement of one with respect to the other is fixed. Because of the fixed relative movement, the synchronization timing is also fixed. By operating the controller, connected to the planetary gearbox, the relative position of the plunger driving mechanism and the slice pushing driving mechanism changes. Thereby, synchronization optimization is made possible. A skilled person can, based on the principles explained in this disclosure, test and/or determine several planetary gearbox constructions, and can test and/or determine the influence of the controller to the synchronization timing.
Desirably, the intermediary coupling element is formed as a two part gearbox, the first part connecting one end via straight gear coupling, the second part connecting the other end via a helical gear coupling. Such two-part gearbox amends the relative position of two shafts while connecting the shafts in a rotational movement. When the two-part gearbox is in a fixed position, the two shafts are directly connected to one another. Rotational movement and forces can be transmitted from one shaft to another. By displacing the gearbox along its longitudinal axis, the relative position of the two shafts is amended. This is because the one end (via the straight gear coupling) remains its axial position with respect to the shaft connected to that one end, while the axial position of the second part (connected via the helical gear coupling) is changed with respect to the second shaft connected to that other end. Thereby, synchronization can be adjusted and amended synchronization timing can be obtained via such two part gearbox.
Desirably, the intermediary coupling element is adapted to adjust the relative position of the plunger driving mechanism and the slice pushing driving mechanism. By adjusting the relative position of the plunger driving mechanism and the slice pushing driving mechanism, the timing is adjusted. Desirably, an actuator is connected to the intermediary coupling element to control the latter.
For the purpose of illustration, there are shown in the drawings certain embodiments of the present invention. In the drawings, like numerals indicate like elements throughout. It should be understood, however, that the invention is not limited to the precise arrangements, dimensions, and instruments shown. In the drawings:
The baling chamber comprises a plunger 5 which is provided for reciprocally moving in the baling chamber 1. The reciprocal movement is indicated by arrow 6. To this end, the plunger 5 is driven by a plunger driving mechanism 13. The connection between the plunger driving mechanism 13 and the plunger 5 is schematically represented by a pair of arms, although other driving mechanisms can be used as well for driving the plunger 5 in the reciprocal movement 6.
The pre-compression chamber 2 comprises a slice pushing mechanism 12. The slice pushing mechanism 12 is driven by a slice pushing driving mechanism 14. Desirably, the slice pushing driving mechanism 14 is mechanically connected to the plunger driving mechanism 13. Such mechanical connection ensures a synchronized movement between the plunger 5 and the slice pushing mechanism 12.
It will be clear that synchronization between the slice pushing mechanism 12 of the pre-compression chamber 2, and the reciprocal movement 6 of the plunger 5 is important for a correct operation of the baler 100. In the reciprocal movement of the plunger 5, the plunger 5 moves over at least a part of the first segment 4 of the baling chamber 1. Therefore, for being able to push a slice of crop material 3 into the baling chamber 1, the plunger 5 is desirably somewhere in a withdrawn position in the reciprocal movement 6. Otherwise, the first segment 4 is not open for receiving a slice of crop material 3.
The pre-compression chamber 2 desirably comprises an inlet 10 and an outlet 11. The outlet 11 opens toward the first segment 4 of the baling chamber 1, so that a slice of crop material 3 formed in the pre-compression chamber 2 can be pushed through the outlet 11 into the baling chamber 1. The inlet 10 of the pre-compression chamber 2 is desirably connected to crop gathering means (not shown) provided for gathering crop material and pushing the gathered crop material into the pre-compression chamber 2 via the inlet 10.
The mechanical connection between the plunger driving mechanism 13 and the slice pushing driving mechanism 14 is schematically represented by the elements 15, 16 and 17 in
An important aspect in the formation of a nice square bale via the agricultural baler 100, is the top fill.
The slice presence detecting sensor 7 is operationally coupled 8 to a controller 9. The controller 9 is adapted to adjust synchronization between the reciprocal plunger movement 6 and the slice pushing movement 12A of the pre-compression chamber 2. In the example of
Alternatively to the gearbox 17 as shown in
By adjusting synchronization between the reciprocal plunger movement 6 and the slice pushing movement 12A of the slice pushing mechanism 12, the timing of insertion of a slice 3 with respect to the plunger movement 6 can be adjusted and thereby optimized. Also the speed of pushing the slice into the first segment 4 of the baling chamber 1 can be adjusted and optimized.
Desirably, the gearbox 17 comprises an actuator that is steerable via the controller 9. The controller 9 is operationally connected to the slice presence detecting sensor 7. The actuator is desirably coupled to the gearbox 17 in such a manner that the relative position of the plunger shaft 15 with respect to the slice pushing mechanism shaft 16 is adjustable. In the example of the gearbox 17 of
The controller comprises an electrical circuit or an electronic circuit or a programmable electronic circuit or a combination of the above, so that the connector can control the actuator based on the input of the slice presence detecting sensor 7. The controller can comprise an open control loop, or a closed control loop, or a control loop comprising feed forward control commands, or a combination of the above.
It will be clear that different combination can be made of baler elements which examples are given in the present description. Also alternative gearboxes could be developed, beside the gearboxes described above which allow to adjust synchronization. Therefore, it is emphasized that the examples described and the figures shown in support of the description are not intended to limit the invention. The scope of the invention shall be solely defined in claims.
In the above description, different embodiments have been described that allow to adjust the timing of arrival of a slice in the first segment 4 of the baling chamber. By adjusting the timing, referring back to
In the present description, crop gathering means or crop gathering mechanism or feeder for feeding crop material refer to the same or at least similar part of the baler.
These and other advantages of the present invention will be apparent to those skilled in the art from the foregoing specification. Accordingly, it is to be recognized by those skilled in the art that changes or modifications may be made to the above-described embodiments without departing from the broad inventive concepts of the invention. It is to be understood that this invention is not limited to the particular embodiments described herein, but is intended to include all changes and modifications that are within the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2015/5233 | Apr 2015 | BE | national |
This application is a continuation of U.S. patent application Ser. No. 15/093,280, filed Apr. 7, 2016, which claims priority to Belgium Application No. 2015/5233, filed Apr. 10, 2015, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15093280 | Apr 2016 | US |
Child | 16915120 | US |