Synchronization of multiple mmWave devices

Information

  • Patent Grant
  • 12153160
  • Patent Number
    12,153,160
  • Date Filed
    Thursday, October 5, 2023
    a year ago
  • Date Issued
    Tuesday, November 26, 2024
    26 days ago
Abstract
In an embodiment, a method includes: receiving a global trigger with a first millimeter-wave radar; receiving the global trigger with a second millimeter-wave radar; generating a first internal trigger of the first millimeter-wave radar after a first offset duration from the global trigger; generating a second internal trigger of the second millimeter-wave radar after a second offset duration from the global trigger; start transmitting first millimeter-wave radar signals with the first millimeter-wave radar based on the first internal trigger; and start transmitting second millimeter-wave radar signals with the second millimeter-wave radar based on the second internal trigger, where the second offset duration is different from the first offset duration, and where the first and second millimeter-wave radar signals are transmitted sequentially so as to exhibit no temporal overlap.
Description
TECHNICAL FIELD

The present disclosure relates generally to an electronic system and method, and, in particular embodiments, to synchronization of multiple millimeter-wave (mmWave) devices.


BACKGROUND

Applications in the millimeter-wave frequency regime have gained significant interest in the past few years due to the rapid advancement in low cost semiconductor technologies, such as silicon germanium (SiGe) and fine geometry complementary metal-oxide semiconductor (CMOS) processes. Availability of high-speed bipolar and metal-oxide semiconductor (MOS) transistors has led to a growing demand for integrated circuits for millimeter-wave applications at 24 GHz, 60 GHz, 77 GHz, and 80 GHz and also beyond 100 GHz. Such applications include, for example, automotive radar systems and multi-gigabit communication systems.


In some radar systems, the distance between the radar and a target is determined by transmitting a frequency modulated signal, receiving a reflection of the frequency modulated signal (also referred to as the echo), and determining a distance based on a time delay, phase, and/or frequency difference between the transmission and reception of the frequency modulated signal. Accordingly, some radar systems include a transmit antenna to transmit the radio-frequency (RF) signal, a receive antenna to receive the RF, as well as the associated RF circuits used to generate the transmitted signal and to receive the RF signal. In some cases, multiple antennas may be used to implement directional beams using phased array techniques. A multiple-input and multiple-output (MIMO) configuration with multiple chipsets can be used to perform coherent and non-coherent signal processing as well.


SUMMARY

In accordance with an embodiment, a method includes: receiving a global trigger with a first millimeter-wave radar; receiving the global trigger with a second millimeter-wave radar; generating a first internal trigger of the first millimeter-wave radar after a first offset duration from the global trigger; generating a second internal trigger of the second millimeter-wave radar after a second offset duration from the global trigger; start transmitting first millimeter-wave radar signals with the first millimeter-wave radar based on the first internal trigger; and start transmitting second millimeter-wave radar signals with the second millimeter-wave radar based on the second internal trigger, where the second offset duration is different from the first offset duration, and where the first and second millimeter-wave radar signals are transmitted sequentially so as to exhibit no temporal overlap.


In accordance with an embodiment, a system includes an application processor, and first and second millimeter-wave radars. The application processor is configured to generate a global trigger. The first millimeter-wave radar includes: a first timer configured to generate a first internal trigger after a first offset duration from the global trigger, a first millimeter-wave radar sensor circuit, and a first controller configured to generate first millimeter-wave radar signals based on the first internal trigger using the first millimeter-wave radar sensor circuit. The second millimeter-wave radar includes: a second timer configured to generate a second internal trigger after a second offset duration from the global trigger, a second millimeter-wave radar sensor circuit, and a second controller configured to generate second millimeter-wave radar signals based on the second internal trigger using the second millimeter-wave radar sensor circuit, where the second offset duration is different from the first offset duration so that the first and second millimeter-wave radar signals are transmitted sequential and without temporal overlap.


In accordance with an embodiment, a system includes an application processor, and first and second millimeter-wave radars. The application processor is configured to generate a global trigger. The first millimeter-wave radar includes: a first trigger terminal configured to receive the global trigger, a first timer configured to generate a first internal trigger after a first offset duration from the global trigger, a first millimeter-wave radar sensor circuit, and a first controller configured to generate first millimeter-wave radar signals based on the first internal trigger using the first millimeter-wave radar sensor circuit. The second millimeter-wave radar includes: a second trigger terminal configured to receive the global trigger, a second timer configured to generate a second internal trigger after a second offset duration from the global trigger, a second millimeter-wave radar sensor circuit, and a second controller configured to generate second millimeter-wave radar signals based on the second internal trigger using the second millimeter-wave radar sensor circuit, where the second offset duration is different from the first offset duration so that the first and second millimeter-wave radar signals are transmitted sequentially and without temporal overlap.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 shows a flow chart of an embodiment method for synchronizing multiple millimeter-wave radars, according to an embodiment of the present invention;



FIG. 2 shows waveforms of signals of a millimeter-wave radar system, according to an embodiment of the present invention;



FIG. 3 illustrates chirp transmissions and power amplifier states of the millimeter-wave radars of FIG. 2, according to an embodiment of the present invention;



FIG. 4 shows a flow chart of an embodiment method for programming and synchronizing multiple millimeter-wave radars, according to an embodiment of the present invention; and



FIGS. 5 and 6 show schematic diagrams of millimeter-wave systems, according to embodiments of the present invention.





Corresponding numerals and symbols in different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the preferred embodiments and are not necessarily drawn to scale.


DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The making and using of the embodiments disclosed are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.


The description below illustrates the various specific details to provide an in-depth understanding of several example embodiments according to the description. The embodiments may be obtained without one or more of the specific details, or with other methods, components, materials and the like. In other cases, known structures, materials or operations are not shown or described in detail so as not to obscure the different aspects of the embodiments. References to “an embodiment” in this description indicate that a particular configuration, structure or feature described in relation to the embodiment is included in at least one embodiment. Consequently, phrases such as “in one embodiment” that may appear at different points of the present description do not necessarily refer exactly to the same embodiment. Furthermore, specific formations, structures or features may be combined in any appropriate manner in one or more embodiments.


Embodiments of the present invention will be described in a specific context, a circuit and method for synchronization of multiple millimeter-wave devices, such as millimeter-wave radars. Embodiments of the present invention may be used to synchronize other types of millimeter-wave devices, such as 5G communication devices, e.g., operating in multiple-input multiple-output (MIMO) configuration. Some embodiments may be used to synchronize other types of devices that do not operate in the millimeter-wave frequency regime.


In an embodiment of the present invention, multiple devices are synchronized by using a local synchronization circuit implemented in each of the multiple devices. A global trigger is sent to each of the multiple devices instead of using dedicated triggers for each device. Timing in each device is based on the local synchronization circuit and the global trigger.


In many applications, multiple devices rely on a synchronization mechanism during normal operation. For example, in some applications, multiple millimeter-wave radars that are located in different portions of a printed circuit board (PCB) rely on a synchronization mechanism, e.g., to avoid radio-frequency (RF) interference of transmitted chirps and/or to perform functions such as beamforming. Conventionally, an application processor synchronizes the millimeter-wave radars by sending dedicated trigger signals, at appropriate times, to each of the millimeter-wave radars using dedicated lines electrically connected to each of the millimeter-wave radars. In other words, the burden is placed on the application processor to ensure correct timing.


In an embodiment of the present invention, a local synchronization circuit implemented in each millimeter-wave radar is used to control the timing of chirps based on a common global trigger. Each local synchronization circuit has a unique time offset that delays the start of the first chirp by a unique offset duration. In some embodiments, an identical finite state machine (FSM) is used in each radar to control the timing between chirps, the duration of each chirp, and the start of the first chirp, where the delay applied by each finite state machine is, e.g., programmed to be unique to each millimeter-wave radar.



FIG. 1 shows a flow chart of embodiment method 100 for synchronizing multiple millimeter-wave radars, according to an embodiment of the present invention.


During step 102, a global trigger is sent, e.g., by an application processor, to a set of millimeter-wave radars. In some embodiments, the global trigger is sent using a trigger line, e.g., a PCB trace, connected to a general purpose I/O (GPIO) terminal of the application processor, where the trigger line is connected to a trigger terminal of each of the millimeter-wave radars. In some embodiments, the global trigger is sent using a communication interface, such as inter-integrated circuit (I2C) or serial peripheral interphase (SPI). For example, in some embodiments, the global trigger may be sent using SPI Broadcast Mode, such as described in co-pending U.S. patent application Ser. No. 16/779,126, filed on the same day as this application, entitled “SPI Broadcast Mode,” which application is hereby incorporated herein by reference.


During step 104, each of the millimeter-wave radars receive the global trigger and starts a respective local timer based on the global trigger. In some embodiments, the local timer is implemented with a digital counter. For example, in some embodiments each local counter counts up to a predetermined count, where the predetermined count is different for each of the millimeter-wave radars of the set. In some embodiments, each predetermined count may be programmed, e.g., using SPI, e.g., by the application processor.


During step 106, when the respective local timer expires (e.g., when the digital counter reaches the predetermined count), the respective millimeter-wave radar begins transmitting radar signals, such as chirps, e.g., sequentially, e.g., in accordance with a respective finite state machine of each millimeter-wave radar. In some embodiments, since each local timer is configured to expire at a different time, the (e.g., sequentially) transmitted chirps from each of the millimeter-wave radars occur at different times, thereby advantageously allowing for avoiding RF interference as well as for allowing for time-division multiplexing (TDM) of chirps from each millimeter-wave radar and for allowing operations such as beamforming, while using a single global trigger.



FIG. 2 shows waveforms 200 of signals of a millimeter-wave radar system, according to an embodiment of the present invention. The waveforms 200 of FIG. 2 correspond to an implementation of method 100 in accordance with an embodiment that uses an SPI Broadcast Mode, and that includes an application processor and first and second millimeter-wave radars.


Waveforms 200 illustrate an SPI clock signal SCLK, an SPI master out slave in (MOSI) signal MOSI, and SPI chip select (CS) signals CS1 and CS2 (corresponding to the first and second millimeter-wave radars).


As shown in FIG. 2, a global trigger is sent (step 102) to both the first and second millimeter-wave radars simultaneously using an SPI write command. The global trigger is received by both the first and second millimeter-wave radars simultaneously at time t1.


Upon receipt of the global trigger, an internal frame start signal is asserted (transitioned to an active state, in this case to a logic 1) to signal the beginning of the transmission process. As shown, each internal frame start signal FRAME_START1 and FRAME_START2 are asserted at the same time upon receipt of the global trigger. In some embodiments, there may be a delay between reception of the global trigger and when the internal frame start signals are asserted.


Each internal frame start signal (FRAME_START1 and FRAME_START2) starts a respective local counter (step 104) that counts until a predetermined count. Each respective count is unique so that each millimeter-wave radar exhibits a respective offset duration (toffset1 and toffset2) from reception of the global trigger (from t1) that is unique.


Upon elapsing of the respective offset duration (toffset1 and toffset2), each millimeter-wave radar begins transmitting (step 106) a sequence of chirps (CHIRPS1 and CHIRPS2). As shown in FIG. 2, the transmission of the first (CHIRPS1) and second (CHIRPS2) sequence of chirps (illustrated by assertion of signals CHIRPS1 and CHIRPS2, respectively) do not overlap.



FIG. 3 illustrates chirp transmissions and power amplifier states of the millimeter-wave radars of FIG. 2, according to an embodiment of the present invention. The waveforms 300 of FIG. 3 correspond to an implementation of method 100, such as shown in FIG. 2.


As shown in FIG. 3, the sequence of chirps from the first and second millimeter-wave radars (CHIRPS1 and CHIRPS2, respective) do not overlap. As also shown in FIG. 3, the active times of the respective power amplifies of the first and second millimeter-wave radars (PowerAmp1 and PowerAmp2) also do not overlap.


By avoiding overlap of chirps and active times of power amplifiers, some embodiments advantageously avoid RF interference between transmitted radar signals of the millimeter-wave radars. Some embodiments advantageously avoid RF interference without burdening the application processor to ensure correct timing.


Additional advantages of some embodiments include lower risk that the correct timing is not ensure due to, e.g., unexpected interrupts, that may consume processing resources, e.g., of the application processor.



FIGS. 2 and 3 illustrate an embodiment that includes two millimeter-wave radars and an application processor. It is understood that more than two millimeter-wave radars may be used such as n, where n is a positive integer greater than 2, such as 4, 5, 10, 16, 32, or more, and where the respective offset duration (toffset1, toffset2, . . . , toffsetn) may be adjusted so that the there is no overlap between each respective sequence of chirps (CHIRPS1, CHIRPS2, . . . , CHIRPSn).



FIG. 4 shows a flow chart of embodiment method 400 for programming and synchronizing multiple millimeter-wave radars, according to an embodiment of the present invention.


During step 402, the first millimeter-wave radar is programmed with a first time offset threshold, e.g., via a digital communication bus, such as via SPI. During step 404, the second millimeter-wave radar is programmed with a second time offset threshold, e.g., via a digital communication bus, such as via SPI.


In some embodiments, the programming of the first time offset threshold is performed, e.g., by the application processor via, e.g., SPI. In some embodiments, the programming of the first time offset threshold is performed, e.g., by an automated test equipment (ATE) during production testing of the millimeter-wave radars. Other implementations are also possible.


Steps 102, 104, and 106 may be performed, e.g., as described with respect to FIG. 1.



FIG. 5 shows a schematic diagram of millimeter-wave system 500, according to an embodiment of the present invention. Millimeter-wave system 500 includes application processor 512, and millimeter-wave radars 514 and 518. Some embodiments may include more than two millimeter-wave radars, such as 3, 10, 64, or more.


During normal operation, application processor 512 configures the first and second time offset thresholds (steps 402 and 404) in respective registers 506 of millimeter-wave radars 514 and 518, where the first time offset threshold is different from the second time offset threshold. In some embodiments, application processor 512 may also configure other parameters (e.g., in other registers not shown in FIG. 5), such as distances between chirps, duration of chirps, chirp start and end frequencies, etc. Generally, however, the other parameters programmed may be the same for all millimeter-wave radars.


After configuring the first and second time offset thresholds, application processor 512 sends a global trigger (step 102) to millimeter-wave radars 514 and 518, e.g., using SPI bus 510. For example, in some embodiments, application processor 512 sends the global trigger using SPI Broadcast Mode. In other embodiments, the global trigger may be sent in other ways, such as by using a GPIO of application processor 512 that is coupled to both of the millimeter-wave radars 514 and 518.


When the global trigger is received, each millimeter-wave radar 514 and 518 starts their respective local timer 522. Each local timer is configured to generate a local trigger signal CHIRPS_TRIGGER when their respective time offset threshold is reached.


The local trigger signal then causes the respective controller 530 to begin transmitting chirps, e.g., sequentially (e.g., such as shown in FIGS. 3 and 4) using the respective millimeter-wave radar sensor circuit 536.


In some embodiments, since each local trigger CHIRPS_TRIGGER depends on the respective data programmed in respective register 506, it is possible to have controllers 530 with identical hardware for both millimeter-wave radars 514 and 518 while achieving non-overlapping chirp sequences when using a single global trigger, thereby advantageously relieving application processor 512 from the task of maintaining proper timing of the millimeter-wave radars 514 and 518.


Millimeter-wave radar system may be implemented, e.g., in a printed circuit board (PCB), where SPI bus 510 includes PCB traces coupling application processor 512 with millimeter-wave radars 514 and 518. In some embodiments, millimeter-wave radars 514 and 518 have identical hardware.


SPI master 502 and SPI slaves 504 may be implemented in any way known in the alt. For example, SPI slaves 504 may be implemented without support for SPI Broadcast Mode. In such embodiments, each millimeter-wave radar 514 and 518 may include a trigger terminal (not shown) coupled to a global trigger terminal of application processor 512 (not shown). In some embodiments, SPI slaves 504 may implement SPI Broadcast Mode.


Timer 522 may be implemented in any way known in the alt For example, in some embodiments, timer 522 may be implemented with a digital counter such as a digital up-counter that counts up, upon receipt of the frame start signal, to the time offset thresholds stored in register 506. Other embodiments may be implemented with a digital down-counter, or a digital up/down-counter, for example. Other implementations are also possible.


As shown in FIG. 5, each of millimeter-wave radars 514 and 518 include SPI slave 504, controller 530, millimeter-wave radar sensor circuit 536, register 506, and timer 522. Each of millimeter-wave radars 514 and 518 is configured to perform radar functions, such as target detection and tracking, for example. Radar functions, such as target detection and tracking may be performed in any way known in the art.


In some embodiments, part or all of the radar operations may be performed in cooperation with application processor 512. For example, in some embodiments, millimeter-wave radars 514 and 518 may cooperate with application processor 512 to perform beamforming. Beamforming may be performed in any way known in the art. In some embodiments, millimeter-wave radars 514 and 518 may cooperate with application processor 512 to send the chirps in such a manner as to achieve time division multiplexing (TDM). For example, in some embodiments, raw data coming from different millimeter-wave radars (e.g., 514 and 518) can be used for TDM MIMO when the (e.g., known) delay is taken into account. Other radar functions are also possible.


Millimeter-wave radar sensor circuit 536 is configured to transmit and receive radar signals, such as chirps. In some embodiments, millimeter-wave radar sensor circuit 536 may be implemented as a frequency modulated continuous wave (FMCW) sensor.


Millimeter-wave radar sensor circuit 536 may be implemented in any way known in the att. For example, in some embodiments, millimeter-wave radar sensor circuit includes front-end RF circuit 538, and mixed signal circuit 546.


RF circuit 538 is configured to transmit signals (e.g., chirps) towards target(s) and to receive the echo (i.e., reflection) signal from the target(s) in its field of view using one or more antennas (not shown). RF circuit 538 includes transmitter circuit 540 and receiver circuit 542.


Transmitter circuit 540 and receiver circuit 542 may be implemented in any way known in the art. For example, in some embodiments, transmitter circuit 540 includes power amplifiers that amplify the chirps to be transmitted via one or more antenna(s) (not shown).


Mixed signal circuit 546 is configured to control RF circuit 538 to transmit signals (e.g., chirps), and to receive the echo signal. Mixed signal circuit 546 is also configured to translate the RF signals into digital signals that are then transmitted to controller 530.


Mixed signal circuit 546 may be implemented in any way known in the art. For example, in some embodiments, mixed signal circuit 546 includes one or more band-pass filters (BPFs), low-pass filters (LPFs), mixers, low-noise amplifier (LNA), intermediate frequency (IF) amplifiers, phase-locked loops (PLLs) and analog-to-digital converters (ADCs).


Controller 530 is configured to process the signals received from millimeter-wave radar sensor circuit 536 and transmit it to application processor 512, e.g., via SPI bus 510.


Controller 530 may be implemented in any way known in the aft, such as a general purpose controller or processor, application-specific integrated circuit (ASIC), or any other implementation. Controller 530 typically includes digital block 532 for general control purposes (e.g., controlling millimeter-wave radar sensor circuit 536) and a signal processing block 534 for processing the signals received from millimeter-wave radar sensor circuit 536. Digital block 532 may include a finite state machine (FSM), e.g., to control timing of the chirps transmitted. Signal processing block 534 may be implemented with a digital signal processor (DSP).


In some embodiments, millimeter-wave radar sensor circuit 536, controller 530, register 506, timer 522, and SPI slave 504 are implemented inside the same package. Some embodiments also include one or more antenna(s) (not shown) inside the same package. Other embodiments may implement one or more of the millimeter-wave radar sensor circuit 536, controller 530, register 506, timer 522, and SPI slave 504 as discrete components of the millimeter-wave radar, e.g., coupled to the same PCB. Other embodiments implement millimeter-wave system 500 using more than one PCB. Other implementations are also possible.


Application processor 512 may be implemented in any way known in the aft, such as a general purpose controller or processor, ASIC, or any other implementation.



FIG. 6 shows a schematic diagram of millimeter-wave system 600, according to an embodiment of the present invention. Millimeter-wave system 600 operates in a similar manner as millimeter-wave system 500. Millimeter-wave system 600, however, includes a global trigger line coupled between a GPIO of application processor 512 and the millimeter-wave radars 514 and 518. The global trigger line may be implemented, e.g., as a trace in the PCB.


Example embodiments of the present invention are summarized here. Other embodiments can also be understood from the entirety of the specification and the claims filed herein.


Example 1. A method including: receiving a global trigger with a first millimeter-wave radar; receiving the global trigger with a second millimeter-wave radar; generating a first internal trigger of the first millimeter-wave radar after a first offset duration from the global trigger; generating a second internal trigger of the second millimeter-wave radar after a second offset duration from the global trigger; start transmitting first millimeter-wave radar signals with the first millimeter-wave radar based on the first internal trigger; and start transmitting second millimeter-wave radar signals with the second millimeter-wave radar based on the second internal trigger, where the second offset duration is different from the first offset duration, and where the first and second millimeter-wave radar signals are transmitted sequentially so as to exhibit no temporal overlap.


Example 2. The method of example 1, further including generating the global trigger with an application processor.


Example 3. The method of one of examples 1 or 2, further including generating the global trigger using a general purpose input/output (GPIO) pin of the application processor, where the GPIO pin is coupled to the first and second millimeter-wave radars.


Example 4. The method of one of examples 1 to 3, further including generating the global trigger using a master out slave in (MOSI) line of a serial peripheral interface (SPI).


Example 5. The method of one of examples 1 to 4, further including: programming the first offset duration into the first millimeter-wave radar; and programming the second offset duration into the second millimeter-wave radar.


Example 6. The method of one of examples 1 to 5, further including: after receiving the global trigger by the first millimeter-wave radar, starting a first digital counter of the first millimeter-wave radar, and when a first count of the first digital counter reaches a first time offset threshold corresponding to the first offset duration, generating the first internal trigger; and after receiving the global trigger by the second millimeter-wave radar, starting a second digital counter of the second millimeter-wave radar, and when a second count of the second digital counter reaches a second time offset threshold corresponding to the second offset duration, generating the second internal trigger.


Example 7. The method of one of examples 1 to 6, where the first time offset threshold is stored in a first register of the first millimeter-wave radar, and where the second time offset threshold is stored in a second register of the second millimeter-wave radar.


Example 8. The method of one of examples 1 to 7, further including: programming the first time offset threshold into the first register; and programming the second time offset threshold into the second register.


Example 9. The method of one of examples 1 to 8, further including performing beamforming using the first and second millimeter-wave radars.


Example 10. A system including: an application processor configured to generate a global trigger; a first millimeter-wave radar including: a first timer configured to generate a first internal trigger after a first offset duration from the global trigger, a first millimeter-wave radar sensor circuit, and a first controller configured to generate first millimeter-wave radar signals based on the first internal trigger using the first millimeter-wave radar sensor circuit; and a second millimeter-wave radar that includes: a second timer configured to generate a second internal trigger after a second offset duration from the global trigger, a second millimeter-wave radar sensor circuit, and a second controller configured to generate second millimeter-wave radar signals based on the second internal trigger using the second millimeter-wave radar sensor circuit, where the second offset duration is different from the first offset duration so that the first and second millimeter-wave radar signals are transmitted sequential and without temporal overlap.


Example 11. The system of example 10, where the first millimeter-wave radar further includes a first serial peripheral interface (SPI) slave circuit, where the second millimeter-wave radar further includes a second SPI slave circuit, and where the application processor includes an SPI master circuit coupled to the first and second SPI slave circuits via an SPI bus.


Example 12. The system of one of examples 10 or 11, where the application processor is configured to send the global trigger to the first and second SPI slave circuits using the SPI bus.


Example 13. The system of one of examples 10 to 12, where the application processor is configured to: program the first offset duration into the first millimeter-wave radar using the SPI bus; and program the second offset duration into the second millimeter-wave radar using the SPI bus.


Example 14. The system of one of examples 10 to 13, further including a printed circuit board (PCB) coupled to the application processor, and to the first and second millimeter-wave radars, where the PCB includes the SPI bus.


Example 15. The system of one of examples 10 to 14, where the first timer includes a first counter, where the first millimeter-wave radar further includes a first register configured to store a first time offset threshold corresponding to the first offset duration, where the second timer includes a second counter, and where the second millimeter-wave radar further includes a second register configured to store a second time offset threshold corresponding to the second offset duration.


Example 16. The system of one of examples 10 to 15, where the first counter is configured to start counting up after receiving the global trigger, and to generate the first internal trigger when a first count of the first counter reaches the first time offset threshold, and where the second counter is configured to start counting up after receiving the global trigger, and to generate the second internal trigger when a second count of the second counter reaches the second time offset threshold.


Example 17. The system of one of examples 10 to 16, where the application processor is configured to send the global trigger using a GPIO terminal that is coupled to respective trigger terminals of the first and second millimeter-wave radars.


Example 18. A system including: an application processor configured to generate a global trigger; a first millimeter-wave radar including: a first trigger terminal configured to receive the global trigger, a first timer configured to generate a first internal trigger after a first offset duration from the global trigger, a first millimeter-wave radar sensor circuit, and a first controller configured to generate first millimeter-wave radar signals based on the first internal trigger using the first millimeter-wave radar sensor circuit; and a second millimeter-wave radar that includes: a second trigger terminal configured to receive the global trigger, a second timer configured to generate a second internal trigger after a second offset duration from the global trigger, a second millimeter-wave radar sensor circuit, and a second controller configured to generate second millimeter-wave radar signals based on the second internal trigger using the second millimeter-wave radar sensor circuit, where the second offset duration is different from the first offset duration so that the first and second millimeter-wave radar signals are transmitted sequentially and without temporal overlap.


Example 19. The system of example 18, where the first millimeter-wave radar further includes a first serial peripheral interface (SPI) slave circuit, where the second millimeter-wave radar further includes a second SPI slave circuit, where the application processor includes an SPI master circuit coupled to the first and second SPI slave circuits via an SPI bus, and where the application processor is configured to: program the first offset duration into the first millimeter-wave radar using the SPI bus; and program the second offset duration into the second millimeter-wave radar using the SPI bus.


Example 20. The system of one of examples 18 or 19, where the first timer includes a first counter, where the first millimeter-wave radar further includes a first register configured to store a first time offset threshold corresponding to the first offset duration, where the second timer includes a second counter, and where the second millimeter-wave radar further includes a second register configured to store a second time offset threshold corresponding to the second offset duration.


While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.

Claims
  • 1. A method comprising: transmitting a global trigger to first and second millimeter-wave radars via a serial bus using a data line of a first serial interface circuit without using a signal line dedicated only to the global trigger, wherein a frequency of the global trigger is less than a frequency of a clock signal of the first serial interface circuit;generating a first internal trigger of the first millimeter-wave radar in response to the global trigger;generating a second internal trigger of the second millimeter-wave radar in response to the global trigger;start transmitting first millimeter-wave radar signals with the first millimeter-wave radar based on the first internal trigger; andstart transmitting second millimeter-wave radar signals with the second millimeter-wave radar based on the second internal trigger.
  • 2. The method of claim 1, further comprising generating the global trigger with an application processor.
  • 3. The method of claim 1, further comprising transmitting the global trigger via a master out slave in (MOSI) line of a serial peripheral interface (SPI).
  • 4. The method of claim 1, wherein: generating the first internal trigger comprises generating the first internal trigger of the first millimeter-wave radar after a first offset duration from the global trigger; andgenerating the second internal trigger comprises generating the second internal trigger of the second millimeter-wave radar after a second offset duration from the global trigger, wherein: the second offset duration is different from the first offset duration, andthe first and second millimeter-wave radar signals are transmitted sequentially so as to exhibit no temporal overlap.
  • 5. The method of claim 4, further comprising: programming the first offset duration into the first millimeter-wave radar; andprogramming the second offset duration into the second millimeter-wave radar.
  • 6. The method of claim 4, further comprising: after receiving the global trigger by the first millimeter-wave radar, starting a first digital counter of the first millimeter-wave radar, and when a first count of the first digital counter reaches a first time offset threshold corresponding to the first offset duration, generating the first internal trigger; andafter receiving the global trigger by the second millimeter-wave radar, starting a second digital counter of the second millimeter-wave radar, and when a second count of the second digital counter reaches a second time offset threshold corresponding to the second offset duration, generating the second internal trigger.
  • 7. The method of claim 6, wherein the first time offset threshold is stored in a first register of the first millimeter-wave radar, and wherein the second time offset threshold is stored in a second register of the second millimeter-wave radar.
  • 8. The method of claim 7, further comprising: programming the first time offset threshold into the first register; andprogramming the second time offset threshold into the second register.
  • 9. The method of claim 1, further comprising performing beamforming using the first and second millimeter-wave radars.
  • 10. A system comprising: an application processor comprising a first serial interface circuit coupled to a serial bus, the application processor configured to: generate a global trigger and transmit the global trigger to first and second millimeter-wave radars using a data line of the first serial interface circuit without using a signal line a dedicated only to the global trigger, wherein a frequency of the global trigger is less than a frequency of a clock signal of the first serial interface circuit;the first millimeter-wave radar comprising: a first local serial interface circuit coupled to the serial bus, the first local serial interface circuit configured to receive the global trigger via the serial bus,a first millimeter-wave radar sensor circuit, anda first controller configured to generate first millimeter-wave radar signals based on the first internal trigger using the first millimeter-wave radar sensor circuit; andthe second millimeter-wave radar that comprises: a second local serial interface circuit coupled to the serial bus, the second local serial interface circuit configured to receive the global trigger via the serial bus,a second millimeter-wave radar sensor circuit, anda second controller configured to generate second millimeter-wave radar signals based on the second internal trigger using the second millimeter-wave radar sensor circuit.
  • 11. The system of claim 10, wherein the first local serial interface circuit comprises a first serial peripheral interface (SPI) slave circuit, wherein the second local serial interface circuit comprises a second SPI slave circuit, and wherein the first serial interface circuit comprises an SPI master circuit coupled to the first and second SPI slave circuits via an SPI bus.
  • 12. The system of claim 11, further comprising a printed circuit board (PCB) coupled to the application processor, and to the first and second millimeter-wave radars, wherein the PCB comprises the SPI bus.
  • 13. The system of claim 11, wherein: the first millimeter-wave radar further comprises a first timer configured to generate a first internal trigger after a first offset duration from the global trigger;the second millimeter-wave radar further comprises a second timer configured to generate a second internal trigger after a second offset duration from the global trigger; andthe second offset duration is different from the first offset duration so that the first and second millimeter-wave radar signals are transmitted sequentially and without temporal overlap.
  • 14. The system of claim 13, wherein the application processor is configured to: program the first offset duration into the first millimeter-wave radar using the SPI bus; andprogram the second offset duration into the second millimeter-wave radar using the SPI bus.
  • 15. The system of claim 13, wherein the first timer comprises a first counter, wherein the first millimeter-wave radar further comprises a first register configured to store a first time offset threshold corresponding to the first offset duration, wherein the second timer comprises a second counter, and wherein the second millimeter-wave radar further comprises a second register configured to store a second time offset threshold corresponding to the second offset duration.
  • 16. The system of claim 15, wherein the first counter is configured to start counting up after receiving the global trigger, and to generate the first internal trigger when a first count of the first counter reaches the first time offset threshold, and wherein the second counter is configured to start counting up after receiving the global trigger, and to generate the second internal trigger when a second count of the second counter reaches the second time offset threshold.
  • 17. A system comprising: an application processor comprising a first serial interface circuit coupled to a serial bus, the application processor configured to: generate a global trigger and transmit the global trigger to first and second millimeter-wave radars using the first serial interface circuit without using a dedicated trigger line, wherein the global trigger is transmitted via a master out slave in (MOSI) of a serial peripheral interface (SPI);the first millimeter-wave radar comprising: a first local serial interface circuit coupled to the serial bus, the first local serial interface circuit configured to receive the global trigger via the serial bus,a first millimeter-wave radar sensor circuit, anda first controller configured to generate first millimeter-wave radar signals based on the first internal trigger using the first millimeter-wave radar sensor circuit; andthe second millimeter-wave radar that comprises: a second local serial interface circuit coupled to the serial bus, the second local serial interface circuit configured to receive the global trigger via the serial bus,a second millimeter-wave radar sensor circuit, anda second controller configured to generate second millimeter-wave radar signals based on the second internal trigger using the second millimeter-wave radar sensor circuit.
  • 18. The system of claim 17, wherein: the first millimeter-wave radar further comprises a first timer configured to generate a first internal trigger after a first offset duration from the global trigger;the second millimeter-wave radar further comprises a second timer configured to generate a second internal trigger after a second offset duration from the global trigger; andthe second offset duration is different from the first offset duration so that the first and second millimeter-wave radar signals are transmitted sequentially and without temporal overlap.
  • 19. The system of claim 18, wherein the first local serial interface circuit comprises a first SPI slave circuit, wherein the second local serial interface circuit comprises a second SPI slave circuit, wherein the first serial interface circuit comprises an SPI master circuit coupled to the first and second SPI slave circuits via an SPI bus, and wherein the application processor is configured to: program the first offset duration into the first millimeter-wave radar using the SPI bus; andprogram the second offset duration into the second millimeter-wave radar using the SPI bus.
  • 20. The system of claim 18, wherein the first timer comprises a first counter, wherein the first millimeter-wave radar further comprises a first register configured to store a first time offset threshold corresponding to the first offset duration, wherein the second timer comprises a second counter, and wherein the second millimeter-wave radar further comprises a second register configured to store a second time offset threshold corresponding to the second offset duration.
Parent Case Info

This application claims is a continuation application of U.S. patent Ser. No. 16/779,104, filed on Jan. 31, 2021, now U.S. Pat. No. 11,808,883, which application is hereby incorporated herein by reference.

US Referenced Citations (129)
Number Name Date Kind
4241347 Albanese et al. Dec 1980 A
6147572 Kaminski et al. Nov 2000 A
6414631 Fujimoto Jul 2002 B1
6636174 Arikan et al. Oct 2003 B2
7048973 Sakamoto et al. May 2006 B2
7057564 Tsai et al. Jun 2006 B2
7171052 Park Jan 2007 B2
7317417 Arikan et al. Jan 2008 B2
7596241 Rittscher et al. Sep 2009 B2
7692574 Nakagawa Apr 2010 B2
7873326 Sadr Jan 2011 B2
7889147 Tam et al. Feb 2011 B2
8228382 Pattikonda Jul 2012 B2
8497805 Rofougaran et al. Jul 2013 B2
8659369 Rofougaran et al. Feb 2014 B2
8731502 Salle et al. May 2014 B2
8836596 Richards et al. Sep 2014 B2
8847814 Himmelstoss et al. Sep 2014 B2
8860532 Gong et al. Oct 2014 B2
8976061 Chowdhury Mar 2015 B2
9172132 Kam et al. Oct 2015 B2
9182476 Wintermantel Nov 2015 B2
9202105 Wang et al. Dec 2015 B1
9413079 Kamgaing et al. Aug 2016 B2
9495600 Heu et al. Nov 2016 B2
9886095 Pothier Feb 2018 B2
9935065 Baheti et al. Apr 2018 B1
10481700 Gummadi et al. Nov 2019 B1
20030179127 Wienand Sep 2003 A1
20040238857 Beroz et al. Dec 2004 A1
20060001572 Gaucher et al. Jan 2006 A1
20060049995 Imaoka et al. Mar 2006 A1
20060067456 Ku et al. Mar 2006 A1
20070210959 Herd et al. Sep 2007 A1
20080106460 Kurtz et al. May 2008 A1
20080238759 Carocari et al. Oct 2008 A1
20080291115 Doan et al. Nov 2008 A1
20080308917 Pressel et al. Dec 2008 A1
20090073026 Nakagawa Mar 2009 A1
20090085815 Jakab et al. Apr 2009 A1
20090153428 Rofougaran et al. Jun 2009 A1
20090315761 Walter et al. Dec 2009 A1
20100207805 Haworth Aug 2010 A1
20110299433 Darabi et al. Dec 2011 A1
20120087230 Guo et al. Apr 2012 A1
20120092284 Rofougaran et al. Apr 2012 A1
20120116231 Liao et al. May 2012 A1
20120195161 Little et al. Aug 2012 A1
20120206339 Dahl Aug 2012 A1
20120265486 Klofer et al. Oct 2012 A1
20120268314 Kuwahara et al. Oct 2012 A1
20120280900 Wang et al. Nov 2012 A1
20130027240 Chowdhury Jan 2013 A1
20130106673 McCormack et al. May 2013 A1
20140028542 Lovitt et al. Jan 2014 A1
20140070994 Schmalenberg et al. Mar 2014 A1
20140145883 Baks et al. May 2014 A1
20140324888 Xie et al. Oct 2014 A1
20150181840 Tupin, Jr. et al. Jul 2015 A1
20150185316 Rao et al. Jul 2015 A1
20150212198 Nishio et al. Jul 2015 A1
20150243575 Strothmann et al. Aug 2015 A1
20150277569 Sprenger et al. Oct 2015 A1
20150325925 Kamgaing et al. Nov 2015 A1
20150346820 Poupyrev et al. Dec 2015 A1
20150348821 Iwanaga et al. Dec 2015 A1
20150364816 Murugan et al. Dec 2015 A1
20160018511 Nayyar et al. Jan 2016 A1
20160041617 Poupyrev Feb 2016 A1
20160041618 Poupyrev Feb 2016 A1
20160061942 Rao et al. Mar 2016 A1
20160061947 Patole et al. Mar 2016 A1
20160098089 Poupyrev Apr 2016 A1
20160103213 Ikram et al. Apr 2016 A1
20160109566 Liu et al. Apr 2016 A1
20160118353 Ahrens et al. Apr 2016 A1
20160135655 Ahn et al. May 2016 A1
20160146931 Rao et al. May 2016 A1
20160146933 Rao et al. May 2016 A1
20160178730 Trotta et al. Jun 2016 A1
20160187462 Altus et al. Jun 2016 A1
20160191232 Subburaj et al. Jun 2016 A1
20160223651 Kamo et al. Aug 2016 A1
20160240907 Haroun Aug 2016 A1
20160249133 Sorensen Aug 2016 A1
20160252607 Saboo et al. Sep 2016 A1
20160259037 Molchanov et al. Sep 2016 A1
20160266233 Mansour Sep 2016 A1
20160269815 Liao et al. Sep 2016 A1
20160291130 Ginsburg et al. Oct 2016 A1
20160299215 Dandu et al. Oct 2016 A1
20160306034 Trotta et al. Oct 2016 A1
20160320852 Poupyrev Nov 2016 A1
20160320853 Lien et al. Nov 2016 A1
20160327633 Kumar et al. Nov 2016 A1
20160334502 Ali et al. Nov 2016 A1
20160349845 Poupyrev et al. Dec 2016 A1
20170033062 Liu et al. Feb 2017 A1
20170045607 Bharadwaj et al. Feb 2017 A1
20170052618 Lee et al. Feb 2017 A1
20170054449 Mani et al. Feb 2017 A1
20170060254 Molchanov et al. Mar 2017 A1
20170070952 Balakrishnan et al. Mar 2017 A1
20170074974 Rao et al. Mar 2017 A1
20170074980 Adib et al. Mar 2017 A1
20170090014 Subburaj et al. Mar 2017 A1
20170090015 Breen et al. Mar 2017 A1
20170115377 Giannini et al. Apr 2017 A1
20170131395 Reynolds et al. May 2017 A1
20170139036 Nayyar et al. May 2017 A1
20170141453 Waelde et al. May 2017 A1
20170170947 Yang Jun 2017 A1
20170176574 Eswaran et al. Jun 2017 A1
20170192847 Rao et al. Jul 2017 A1
20170201019 Trotta Jul 2017 A1
20170212597 Mishra Jul 2017 A1
20170235692 Ahamed Aug 2017 A1
20170364160 Malysa et al. Dec 2017 A1
20180046255 Rothera et al. Feb 2018 A1
20180074173 Trotta Mar 2018 A1
20180101239 Yin et al. Apr 2018 A1
20180115409 Nayyar Apr 2018 A1
20180225230 Litichever Aug 2018 A1
20190173528 Keehr Jun 2019 A1
20190350465 Sahin et al. Nov 2019 A1
20190386665 Shalita Dec 2019 A1
20200003862 Doaré Jan 2020 A1
20200025870 Melzer Jan 2020 A1
20210149834 Fletcher May 2021 A1
Foreign Referenced Citations (28)
Number Date Country
1463161 Dec 2003 CN
1716695 Jan 2006 CN
101490578 Jul 2009 CN
101585361 Nov 2009 CN
102788969 Nov 2012 CN
102967854 Mar 2013 CN
103529444 Jan 2014 CN
203950036 Nov 2014 CN
102008054570 Jun 2010 DE
102011100907 Jan 2012 DE
102011075725 Nov 2012 DE
102014118063 Jul 2015 DE
2247799 Mar 1992 GB
2001174539 Jun 2001 JP
2004198312 Jul 2004 JP
2006234513 Sep 2006 JP
2008029025 Feb 2008 JP
2008089614 Apr 2008 JP
2009069124 Apr 2009 JP
2011529181 Dec 2011 JP
2012112861 Jun 2012 JP
2013521508 Jun 2013 JP
2014055957 Mar 2014 JP
20090063166 Jun 2009 KR
20140082815 Jul 2014 KR
2007060069 May 2007 WO
2013009473 Jan 2013 WO
2016033361 Mar 2016 WO
Non-Patent Literature Citations (28)
Entry
Thayaparan, T. et al., “Micro-Doppler Radar Signatures for Intelligent Target Recognition,” Defence Research and Development Canada, Technical Memorandum, DRDC Ottawa TM 2004-170, Sep. 2004, 73 pages.
Chen, Xiaolong et al., “Detection and Extraction of Marine Target with Micromotion via Short-Time Fractional Fourier Transform in Sparse Domain,” IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC, Aug. 5-8, 2016, 5 pages.
Chen, Xiaolong et al., “Detection and Extraction of Target with Micromotion in Spiky Sea Clutter via Short-Time Fractional Fourier Transform”, IEEE Transactions on Geoscience and Remote Sensing, vol. 52, No. 2, Feb. 2014, pp. 1002-1018.
Chuanhua, Du, “FMCW Radar Range-Doppler Processing and Beam Formation Technology,” Chinese Doctoral Dissertations & Master's Theses Full Text Database (Masters)—Information Science and Technology Series, China National Knowledge Infrastructure, ISSN 1674-0246, CN 11-9144/G, Dec. 16, 2004-Mar. 2015, 14 pages.
Deacon, Peter et al., “Frequency Modulated Continuous Wave (FMCW) Radar,” Design Team 6 Technical Lecture, Nov. 9, 2011, 27 pages.
Dham, Vivek “Programming Chirp Parameters in TI Radar Devices,” Application Report SWRA553, Texas Instruments, May 2017, 15 pages.
Diederichs, Kailtyn et al., “Wireless Biometric Individual Identification Utilizing Millimeter Waves”, IEEE Sensors Letters, vol. 1, No. 1, IEEE Sensors Council 3500104, Feb. 2017, 4 pages.
Dooring Alert Systems, “Riders Matter,” http:\\dooringalertsystems.com, printed Oct. 4, 2017, 16 pages.
Filippelli, Mario et al., “Respiratory dynamics during laughter,” J Appl Physiol, (90), op. 1441-1446, Apr. 2001, http://jap.physiology.org/content/jap/90/4/1441.full.pdf.
Fox, Ben, “The Simple Technique That Could Save Cyclists' Lives,” https://www.outsideonline.com/2115116/simple-technique-could-save-cyclists-lives, Sep. 19, 2016, 6 pages.
Gu, Changzhan et al., “Assessment of Human Respiration Patterns via Noncontact Sensing Using Doppler Multi-Radar System”, Sensors, Mar. 2015, 15(3), pp. 6383-6398, doi: 10.3390/s150306383.
Guercan, Yalin “Super-resolution Algorithms for Joint Range-Azimuth-Doppler Estimation in Automotive Radars,” Technische Universitet Delft, TUDelft University of Technology Challenge the Future, Jan. 25, 2017, 72 pages.
Inac, Ozgur et al., “A Phased Array RFIC with Built-In Self-Test Capabilities,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, No. 1, Jan. 2012, 10 pages.
Infineon, “BT24MTR11 Using BGT24MTR11 in Low Power Applications 24 GHz Rader,” Application Note AN341, Revision: Rev 1.0, Infineon Technologies AG, Munich, Germany, Dec. 2, 2013, 25 pages.
Killedar, Abdulraheem “XWR1xxx Power Management Optimizations—Low Cost LC Filter Solution,” Application Report SWRA577, Texas Instruments, Oct. 2017, 19 pages.
Kizhakkel, V., “Pulsed Radar Target Recognition Based on Micro-Doppler Signatures Using Wavelet Analysis”, A Thesis, Graduate Program in Electrical and Computer Engineering, Ohio State University, January 2013-May 2013, 118 pages.
Kuehnke, Lutz “Phased Array Calibration Procedures Based on Measured Element Patterns,” Eleventh International Conference on Antennas and Propagation, IEEE Conf., Publ. No. 480, Apr. 17-20, 2001, 4 pages.
Lim, Soo-Chul et al., “Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface Using Infrared Line Image Sensors,” Sensors 2015, ISSN 1424-8220, vol. 15, 16642-16653, doi:10.3390/s150716642, www.mdpi.com/journal/sensors, Jul. 15, 2009, 12 pages.
Lin, Jau-Jr et al., “Design of an FMCW radar baseband signal processing system for automotive application,” SpringerPlus a SpringerOpen Journal, (2016) 5:42, http://creativecommons.org/licenses/by/4.0/, DOI 10.1186/ s40064-015-1583-5; Jan. 2016, 16 pages.
Microwave Journal Frequency Matters, “Single-Chip 24 GHz Radar Front End,” Infineon Technologies AG, www.microwavejournal.com/articles/print/21553-single-chip-24-ghz-radar-front-end, Feb. 13, 2014, 2 pages.
Qadir, Shahida G., et al., “Focused ISAR Imaging of Rotating Target in Far-Field Compact Range Anechoic Chamber,” 14th International Conference on Aerospace Sciences & Aviation Technology, ASAT-14-241-IP, May 24-26, 2011, 7 pages.
Richards, Mark A., “Fundamentals of Radar Signal Processing,” McGraw Hill Electronic Engineering, ISBN: 0-07-144474-2, Jun. 2005, 93 pages.
Schroff, Florian et al., “FaceNet: A Unified Embedding for Face Recognition and Clustering,” CVF, CVPR2015, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Mar. 12, 2015, pp. 815-823.
Simon, W., et al., “Highly Integrated KA-Band Tx Frontend Module Including 8x8 Antenna Array,” IMST GmbH, Germany, Asia Pacific Microwave Conference, Dec. 7-10, 2009, 63 pages.
Suleymanov, Suleyman, “Design and Implementation of an FMCW Radar Signal Processing Module for Automotive Applications,” Master Thesis, University of Twente, Aug. 31, 2016, 61 pages.
Thayaparan, T. et al., “Intelligent target recognition using micro-Doppler radar signatures,” Defence R&D Canada, Radar Sensor Technology III, Proc. of SPIE, vol. 7308, 730817, Dec. 9, 2009, 11 pages.
Wilder, Carol N., et al., “Respiratory patterns in infant cry,” Canada Journal of Speech, Human Communication Winter, 1974-75, http://cjslpa.ca/files/1974_HumComm_Vol_01/No_03_2-60/Wilder_Baken_HumComm_1974.pdf, pp. 18-34.
Xin, Qin et al., “Signal Processing for Digital Beamforming FMCW SAR,” Hindawi Publishing Corporation, Mathematical Problems in Engineering, vol. 2014, Article ID 859890, http://dx.doi.org/10.1155/2014/859890, Apr. 15, 2014, 11 pages.
Related Publications (1)
Number Date Country
20240036161 A1 Feb 2024 US
Continuations (1)
Number Date Country
Parent 16779104 Jan 2020 US
Child 18481490 US