The present invention relates generally to media hangers utilized in copiers and printers; more specifically, to a media hanger/guide with synchronized support members that hold media therebetween, one of which is foldable to allow insertion of new media without displacing the support member's position.
Printing systems such as copiers, printers, facsimile devices or other systems having a print engine for creating visual images, graphics, texts, etc. on a page or other printable medium typically include various media feeding systems for introducing original image media or printable media into the system. Examples include direct thermal and thermal transfer demand printers. Typically, a thermal transfer printer is a printer which prints on media by melting a coating of ribbon so that it stays affixed to the media on which the print is applied. It contrasts with direct thermal printing where no ribbon is present in the process and an image is created by application of heat to a temperature sensitive media. Typically, thermal transfer printers comprise at least one supply spindle operable for supplying a media web and ribbon, a print station, and a take up spindle. New ribbon and media is fed from the supply spindle along a predetermined media feed path to the print station for printing and then the ribbon is wound up by the take up spindle while the media exits the print station.
Problems with current printing systems include alignment and compression issues along the media feed path, which may result in faulty or defective printing. Media hangers and/or guides, also referred to as media storage assemblies, are utilized in such printers and associated devices so as to retain a supply of media and ribbon and initially guide the media through the predetermined media feed path of the printer. Heretofore, the type of media hanger utilized in printers has been dependent upon the type and size of media utilized. This dependency severely limits the anticipated use of the media hanger, and the printer, to only one media type and size. Undesirably, the lack of versatility and configurability in accommodating varying media types and sizes causes a need for separate printers and media guides to be purchased if printing on various types and sizes media is desired. Additionally, conventional media hangers require the manual movement or manipulation of one support member at a time in order to position a media supply media on or about an assembly. However, such movement may result in the media being off center relative to the media feed path.
In accordance with the teachings disclosed herein, embodiments related to a media hanger/guide are disclosed. Embodiments of the present invention provide a configurable and adaptable media hanger/guide operable for use within a printing system that may be used in conjunction with a variety of media types and sizes. Embodiments of the present invention maintain media positioned thereon in a centered position relative to the media feed path by providing synchronized movement of support members located on both sides of the media in either an expansive or compressive manner. Embodiments of the present invention also provide an integral media sensor configured to detect media level or media presence such that an alert to a user may be triggered or displayed.
In an exemplary embodiment, the media hanger/guide includes a media hub having a top surface and a channel extending through a portion of the top surface. The media hanger/guide further includes two mounting brackets, each having an elongated member and each elongated member having a plurality of teeth located thereon. The mounting brackets can be positioned in the channel. Each mounting bracket includes a support member connected thereto. At least a portion of each support member is preferably located outside of the channel of the media hub. The support members can be adapted for lateral movement along the channel of the media hub relative to the top surface of the media hub. The media hanger/guide further includes two gears positioned in the channel. The first gear is preferably in operable connection with the teeth of one of the mounting bracket's elongated members. The second gear is preferably in operable connection with the teeth of the other mounting bracket's elongated members. The gears can also be in operable connection with each other.
In an additional exemplary embodiment, the media hanger/guide further includes a lock movably secured to the media hub. The lock is preferably movable between a first position and a second position. The first position of the lock preferably engages the second mounting bracket and thereby secures the first support member and the second support member in a predetermined position. The second position can disengage the second mounting bracket and thereby allow lateral movement of the first support member and the second support member along the media hub relative to the media hub's top surface.
In another exemplary embodiment, the media hanger/guide further includes a mounting bracket cover positioned within the channel of the media hub. The mounting bracket cover can partially enclose the mounting brackets and the gears within the media hub. The mounting bracket can have elongated apertures positioned to allow lateral movement of the support members.
In another exemplary embodiment, the first support member is allowed to move between a position near a first end of the media hub and a position near the lengthwise-center of the media hub. The second support member is allowed to move between a position near a second end of the media hub, located opposite the first end of the media hub, and a position near the lengthwise-center of the media hub. The relative positions near the lengthwise-center of the media hub can be spaced apart.
In an additional exemplary embodiment, the media hanger/guide further includes one or more sensors located on one or both of the support members.
In a further exemplary embodiment, one or both of the support members can be foldable from a first position to a second position in relation to the media hub. The first position can be a position substantially perpendicular to the media hub. The second position can be a position substantially parallel to the media hub.
In a still further exemplary embodiment, the media hanger/guide includes mounting brackets, each having an elongated member wherein each elongated member includes a plurality of teeth located thereon. Each mounting bracket can also have a support member connected thereto. The media hanger/guide can further include two gears. The first gear can be in operable connection with the teeth of one of the mounting bracket's elongated members. The second gear is in operable connection with the teeth of the other mounting bracket's elongated members. The gears are preferably also in operable connection with each other.
In an additional exemplary embodiment, the media hanger/guide further includes one or more sensors located on one or both of the support members.
In a further exemplary embodiment, one or both of the support members can be foldable from a first position to a second position in relation to the mounting brackets. The first position can be a position substantially perpendicular to the mounting brackets. The second position can be a position substantially parallel to the mounting brackets.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present exemplary embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the detailed description, serve to explain the principles and operations thereof.
The present subject matter may take form in various components and arrangements of components, and in various steps and arrangements of steps. The appended drawings are only for purposes of illustrating exemplary embodiments and are not to be construed as limiting the subject matter.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings in which exemplary embodiments of the invention are shown. However, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. These exemplary embodiments are provided so that this disclosure will be both thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Further, as used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. In certain instances, well-known methods, procedures, components, and circuits have not been described in detail.
Referring now to the drawings,
Media hanger/guide 100 can further include first support member 103, and second support member 104. Support members 103 and 104 can be adapted for lateral movement along channel 105. Apertures 117a, 117b can direct lateral movement of first support member 103 and second support member 104.
One or more media sensors 106a, 106b (see
According to aspects of the present invention, at least one optional lock 107 can be movably secured to media hub 102 for locking first support member 103 and/or second support member 104 in a predetermined position along channel 105 of media hub 102. In an exemplary embodiment, lock 107 can be a cam locking handle; however, although shown in the figures as a locking handle, lock 107 may be of any type of lock capable of maintaining the position of support member 103, 104. Lock 107 can be utilized to hold media hanger/guide 100 in an open position as shown in
Lock 107 can allow first support member 103 and first support member 104 to be maintained in various positions along channel 105 of media hub 102. Such positioning may be desirable when using fan-fold media. Lock 107 can be rotated between a first position and a second position. Positioning lock 107 in a first position can secure first support member 103 and second support member 104 in predetermined positions and positioning lock 107 in a second position can allow lateral movement of first support member 103 and second support member 104 along channel 105 of media hub 102.
Referring now to
Media hanger/guide 100 can be utilized in conjunction with a variety of media types and sizes. Although not shown, embodiments of the present invention can be used to guide and house media of various forms, including, but not limited to, rolled media and fan-fold media.
Referring now to
Providing one or more foldable support members can allow for loading of media having the same size as previously loaded media without having to move the support members. By way of non-limiting example, if first support member 103 and second support member 104 were previously adapted to fit a certain size media, then new media of the same size can be loaded without linear movement of the support members along channel 105. If pivot point 410 is located at the base of second support member 104 and if second support member 104 is foldable by approximately ninety degrees from a substantially vertical start position, the new media roll can be loaded onto media hub 102.
Now referring to
In an exemplary embodiment, first mounting bracket 512a and second mounting bracket 512b are synchronized utilizing a rack and pinion system 500. First mounting bracket 512a can comprise first mount 513a and first elongated member 514a having plurality of teeth 515a thereon. Similarly, second mounting bracket 512b can comprise second mount 513b and second elongated member 514b having a plurality of teeth 515b thereon.
First gear 516a and second gear 516b can engage teeth 515a and teeth 515b, respectively, such that when rotational motion is applied to gear first gear 516a and second gear 516b, first elongated member 514a and second elongated member 514b move. First gear 516a and second gear 516b can be positioned such that they can engage one another. In such a manner, when one of first support member 103 or first support member 104 is adjusted, a rotational motion is initially applied to the respective first gear 516a or second gear 516b, causing rotational movement of the respective opposite gear 516b or 516a and movement of both first elongated member 514a and second elongated member 514b occurs. Adjustment of first support member 103 and second support member 104 can be manual and/or automatic.
First mount 513a and second mount 513b can be used for connecting first support member 103 and second support member 104, respectively, thereto. This support member mounting bracket system can allow simultaneous and synchronous adjustment of first support member 103 and second support member 104. For example, when one support member is adjusted, the other support member is oppositely adjusted in a simultaneous manner.
The following is an exemplary use of an embodiment of synchronized media hanger/guide 100. If second support member 104 is in an upright position, second support member 104 can be folded such that it is substantially parallel to media hub 102. Media roll 301 (or any other type of media) can be loaded on media hub 102. Once media roll 301 is loaded, second support member 104 can be positioned such that it is substantially perpendicular to media hub 102. First support member 103 and second support member 104 can be manipulated so as to move first support member 103 and second support member 104 toward or away from one another along media hub 102 to a desired position. Channel 105 and apertures 117 can provide guidance and/or structural support for the movement of first support member 103 and second support member 104 along media hub 102. Simultaneous and synchronized movement can allow for media 301 to be centered within media guide/hanger 100. Lock 107 may be rotated to lock first support member 103 and second support member 104 into position.
Having now described the invention, the construction, the operation and use of exemplary embodiments thereof, and the advantageous new and useful results obtained thereby, the new and useful constructions, and reasonable mechanical equivalents thereof obvious to those skilled in the art, are set forth in the appended claims.
This application claims priority to provisional patent application No. 61/562,643 filed Nov. 22, 2011, entitled “Synchronized Media Hanger/Guide”, the contents of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
687443 | Succie | Nov 1901 | A |
4143977 | Kurihara et al. | Mar 1979 | A |
4177731 | Kleist et al. | Dec 1979 | A |
4788558 | Caldwell et al. | Nov 1988 | A |
4788559 | Ende | Nov 1988 | A |
4872659 | Kato et al. | Oct 1989 | A |
4924240 | Herbert et al. | May 1990 | A |
4991846 | Sondej | Feb 1991 | A |
5028155 | Sugiura et al. | Jul 1991 | A |
5087137 | Burnard et al. | Feb 1992 | A |
5206662 | Fox et al. | Apr 1993 | A |
5326182 | Hagstrom | Jul 1994 | A |
5397192 | Khormaee | Mar 1995 | A |
5468076 | Hirano et al. | Nov 1995 | A |
5490638 | Driftmyer et al. | Feb 1996 | A |
5564841 | Austin et al. | Oct 1996 | A |
5600350 | Cobbs et al. | Feb 1997 | A |
5650730 | Herbst, Jr. | Jul 1997 | A |
5684516 | Cseledy et al. | Nov 1997 | A |
5790162 | Adams et al. | Aug 1998 | A |
5813343 | Harb | Sep 1998 | A |
5820280 | Fox | Oct 1998 | A |
5836704 | Lau et al. | Nov 1998 | A |
5870114 | Numata et al. | Feb 1999 | A |
5872585 | Donato et al. | Feb 1999 | A |
5874980 | West | Feb 1999 | A |
5909233 | Hamman et al. | Jun 1999 | A |
5927875 | Lau et al. | Jul 1999 | A |
5978004 | Ehrhardt | Nov 1999 | A |
5995128 | Adams et al. | Nov 1999 | A |
6014229 | Yun | Jan 2000 | A |
6020906 | Adams et al. | Feb 2000 | A |
6034708 | Adams et al. | Mar 2000 | A |
6057870 | Monnier et al. | May 2000 | A |
6070048 | Nonaka et al. | May 2000 | A |
6082914 | Barrus et al. | Jul 2000 | A |
6095704 | Jaeger et al. | Aug 2000 | A |
6099178 | Spurr et al. | Aug 2000 | A |
6129463 | Lau et al. | Oct 2000 | A |
6201255 | Torchalski et al. | Mar 2001 | B1 |
6283024 | George | Sep 2001 | B1 |
6289730 | Elgee | Sep 2001 | B1 |
6302604 | Bryant et al. | Oct 2001 | B1 |
6389241 | Cernusak et al. | May 2002 | B1 |
6396070 | Christensen et al. | May 2002 | B1 |
6520614 | Kaneko | Feb 2003 | B2 |
6616362 | Bouverie et al. | Sep 2003 | B2 |
6825864 | Botten et al. | Nov 2004 | B2 |
6840689 | Barrus et al. | Jan 2005 | B2 |
6846121 | Bouverie et al. | Jan 2005 | B2 |
6857714 | Hoberger et al. | Feb 2005 | B2 |
6900449 | Bolash et al. | May 2005 | B2 |
6942403 | Hohberger et al. | Sep 2005 | B2 |
7042478 | Bouverie et al. | May 2006 | B2 |
7071961 | Ullenius et al. | Jul 2006 | B2 |
7079168 | Ullenius et al. | Jul 2006 | B2 |
7150572 | McNestry et al. | Dec 2006 | B2 |
7162460 | Cleckler et al. | Jan 2007 | B2 |
7205561 | Chelvayohan et al. | Apr 2007 | B2 |
7255343 | So | Aug 2007 | B2 |
7375832 | Bouverie et al. | May 2008 | B2 |
7456995 | Stephens | Nov 2008 | B2 |
7502042 | Hitz et al. | Mar 2009 | B2 |
7537404 | Bouverie et al. | May 2009 | B2 |
7600684 | Tobin et al. | Oct 2009 | B2 |
7667874 | MacDonald et al. | Feb 2010 | B2 |
7699550 | Bouverie et al. | Apr 2010 | B2 |
7824116 | Lyman | Nov 2010 | B2 |
7845632 | Windsor et al. | Dec 2010 | B2 |
7857414 | Eun et al. | Dec 2010 | B2 |
7876223 | Yamaguchi et al. | Jan 2011 | B2 |
7891892 | Chiu | Feb 2011 | B2 |
7907159 | Matsuo et al. | Mar 2011 | B2 |
7934881 | Lodwig et al. | May 2011 | B2 |
7938501 | Takamiya et al. | May 2011 | B2 |
8142087 | Kugimachi | Mar 2012 | B2 |
20010008612 | Liljestrand et al. | Jul 2001 | A1 |
20030081024 | Vives et al. | May 2003 | A1 |
20030141655 | Bryer | Jul 2003 | A1 |
20040008365 | Hobbs | Jan 2004 | A1 |
20040114024 | Bouverie et al. | Jun 2004 | A1 |
20040165927 | Fisher et al. | Aug 2004 | A1 |
20050002715 | Fries et al. | Jan 2005 | A1 |
20050189693 | Ko | Sep 2005 | A1 |
20050190368 | Ehrhardt, Jr. et al. | Sep 2005 | A1 |
20050204940 | Elliott et al. | Sep 2005 | A1 |
20060007295 | Ueda | Jan 2006 | A1 |
20060045601 | Endo | Mar 2006 | A1 |
20060055721 | Burdette et al. | Mar 2006 | A1 |
20060157911 | Learmonth et al. | Jul 2006 | A1 |
20060159504 | Blanchard, Jr. et al. | Jul 2006 | A1 |
20060180737 | Consiglio | Aug 2006 | A1 |
20070022233 | Bridges et al. | Jan 2007 | A1 |
20070040326 | Noda et al. | Feb 2007 | A1 |
20070059078 | Silverbrook et al. | Mar 2007 | A1 |
20070138738 | Motohashi et al. | Jun 2007 | A1 |
20090038495 | Butzen et al. | Feb 2009 | A1 |
20090103806 | Nakami | Apr 2009 | A1 |
20090244584 | McGarry et al. | Oct 2009 | A1 |
20100066782 | Yamamoto et al. | Mar 2010 | A1 |
20100147990 | McLawhorn | Jun 2010 | A1 |
20100169513 | Levin | Jul 2010 | A1 |
20100247222 | Bouverie et al. | Sep 2010 | A1 |
20100319561 | Colquitt et al. | Dec 2010 | A1 |
20110042883 | Wang et al. | Feb 2011 | A1 |
20110132643 | Hattori et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
04552558 | Sep 2010 | JP |
Entry |
---|
Written Opinion of the International Searching Authority, PCT/US2012/036297, Jul. 17, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/039043, Aug. 3, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/041093, Aug. 7, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/043734, Sep. 21, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/043709, Sep. 21, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/043772, Sep. 14, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/046712, Oct. 5, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/049417, Nov. 2, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/050938, Nov. 6, 2012. |
Written Opinion of the International Searching Authority, PCT/US2012/060956, Jan. 11, 2013. |
Written Opinion of the International Searching Authority, PCT/US2012/066291, Feb. 5, 2013. |
Number | Date | Country | |
---|---|---|---|
20130126664 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61562643 | Nov 2011 | US |