The present invention is directed to a patient positioning apparatus for positioning a patient on a patient support structure, such as a surgical table, for a medical procedure. In particular, the present invention is directed to an apparatus for performing a “sandwich and roll” procedure while transferring a patient in a supine position from a bed, gurney or trolley to a prone position on the surgical table.
Certain surgical procedures require changing a patient's body position during said procedure. For example, spinal surgery may require turning the patient over from a prone position to a supine position, and vice versa. When a standard surgical table is used, turning the patient over, or taking a radiograph, often requires transferring the patient between the surgical table and another support, and then back again. Such transfer procedures interrupt the surgical procedure, are cumbersome, and may compromise the surgical site.
Some modern surgical tables, such as modular, multi-articulated patient support systems, have been developed for supporting the patient in a variety of positions and for moving the patient's body in various ways during a surgical procedure, including articulating the patient at the hips, placing the patient in Trendelenburg and reverse-Trendelenburg positions, tilting the patient, and turning the patient over. Such patient support systems typically include a base with a pair of independently adjustable telescoping columns that are connected by and support an articulatable patient support or table top. The patient support may be raised and lowered, tilted and rotated about a longitudinal axis in horizontal and tilted orientations. During some surgeries, a traditional closed patient support is replaced with an open frame patient support that allows the patient's abdomen to depend therethrough.
U.S. Pat. No. 7,152,261 to Jackson, incorporated herein by reference in its entirety, describes a closed frame modular, multi-articulated patient support system with independently adjustable head- and foot-end telescoping risers, which are connected by an adjustable cross-beam, and which support a patient support structure that may be raised, lowered and rotated about a longitudinal axis in various horizontal and tilted orientations. A secondary elevator enables lowering of the foot-end of the patient support to near the floor. A patient placed on the patient support can be rotated 180° after installation of a stationary riser and an imaging table that sandwiches the patient against the patient support.
U.S. Pat. No. 7,565,708 to Jackson, incorporated herein by reference in its entirety, describes an infinitely adjustable open-frame patient support system, wherein the frame can be articulated near a middle thereof, as well as being raised, lowered and rotated about a longitudinal axis in various horizontal and tilted orientations. An imaging table may be attached to and spaced from the patient support, for turning the patient 180°, however, the distance between the patient support and the imaging table must be adjusted manually.
Prior to a surgical procedure, a patient is usually anaesthetized and then place of the patient support. Since the patient starts in a supine position on a gurney, also referred to as a trolley or a stretcher, and must be transferred to a prone position on an open frame support, such positioning procedures can be quite difficult. Accordingly, there is a need for an apparatus for positioning a patient on a surgical table in the prone position.
In a first embodiment of the present invention, a patient positioning apparatus is provided for performing a “sandwich and roll” procedure while positioning a patient in a prone position on a patient support structure. Generally, a patient support structure is as a surgical table having a base with spaced head-end and foot-end elevator subassemblies that removably supports an attached patient support frame that can be rotated about a longitudinal roll axis a distance of up to at least about ±180°. The patient support frame includes either a traditional closed table top or an open frame that allows the patient's abdomen to depend therethrough. The patient positioning apparatus includes head-end and foot-end lift subassemblies that are removably attached to the ends of a transfer table. The head-end and foot-end lift subassemblies are attached to the surgical table head-end and foot-end elevator subassemblies, respectively, such that the transfer table is spaced from the patient support frame. Each lift apparatus includes a gear mechanism, with a lead nut that engages a lead screw, for moving the transfer table toward and away from the patient support frame. An actuator synchronizes the lift subassemblies, so as to maintain the transfer table in a substantially level orientation, relative to the longitudinal roll axis or the floor.
In a further embodiment of the patient positioning apparatus, the transfer table includes a frame joined with a tabletop member. The frame includes a pair of spaced support beams joined by head-end and foot-end cross-beams, and cross-beam brackets for releasable hinged attachment to the head-end and foot-end lift subassemblies, respectively. Quick-release pins hingedly join the brackets of the transfer table with the respective lift subassemblies.
In another further embodiment of the patient positioning apparatus, additional quick release pins removably attach the head-end and foot-end lift subassemblies to the respective head-end and foot-end elevator subassemblies.
In yet another further embodiment of the patient positioning apparatus, each of the lift subassemblies includes a pair of spaced support members; a lead screw spaced from and substantially parallel with the support members; first and second brace members, the first brace member joining a first end of each of the support members and the lead screw and the second brace member joining the second ends of each of the support members and the lead screw, the first brace member including an attachment structure for removable attachment to a respective elevator subassembly; and a carrier member slidably engaging the support members. The carrier member includes a gear subassembly and a bracket. The gear subassembly operably engages the lead screw so as to move the carrier member in a direction selected from toward and away from the first brace member, or toward and away from the longitudinal roll axis. The bracket releasably hingeably attaches the carrier member and the associated lift subassembly to the transfer table.
In a still further embodiment of the patient positioning apparatus, the lead screw is an ACME screw.
In another further embodiment of the patient positioning apparatus, the gear subassembly includes a lead nut that rotatably engages the lead screw, and a motor connector for operable engagement of an external motor.
In still another further embodiment of the patient positioning apparatus, the carrier member includes a pair of sliding brackets, each of which is sized and shaped to slidably engage a support member. In a further embodiment, a bushing is located between each sliding bracket and a respective support member.
In a second embodiment of the invention, a method of transferring a patient to a medical patient support structure in a prone position is provided, wherein the patient support structure includes a base with spaced head-end and foot-end elevator subassemblies, a patient support frame removably attached to and supported by the elevator subassemblies, and a rotation mechanism for rotating the patient support frame about a longitudinally extending roll axis a distance of up to at least 180°. The method includes the steps of providing a patient positioning apparatus having head-end and foot-end lift subassemblies and a transfer table; releasably attaching the patient positioning apparatus to the patient support structure; orienting the patient positioning apparatus for patient transfer; placing a patient on the transfer table in a supine position; actuating the head-end and foot-end lift subassemblies so as to move the patient toward the patient support frame, such that the patient is snugly sandwiched between the transfer table and the patient support frame; rotating the patient support structure to the first position, such that the patient supported by the patient support frame in a prone position; and detaching the patient positioning apparatus from the patient support structure.
In a further embodiment of the second embodiment, the step of releasably attaching the patient positioning apparatus to the patient support structure includes attaching the head-end lift subassembly to the head-end elevator subassembly; attaching the foot-end lift subassembly to both the foot-end elevator subassembly; and attaching the transfer table to the head end and foot-end lift subassemblies.
In another further embodiment of the second embodiment, the step of orienting the patient positioning apparatus for patient transfer includes rotating the patient support structure from a first position about 180° about the roll axis such that the transfer table is located below the patient support frame.
In another further embodiment of the second embodiment, the step of actuating the head-end and foot-end lift subassemblies includes actuating a gear subassembly so as to rotate a lead nut relative to a lead screw.
In a third embodiment of the invention, a lifting subassembly for a patient positioning apparatus having a base and a patient support structure, is provided and includes a lifting subassembly that is reversibly attachable to the base and has first and second lifting positions with respect to the base. The lifting subassembly is adapted to move the patient support structure from the first lifting position to the second lifting position in a vertical direction above a floor, and the lifting subassembly is also reversibly rotatably from a first vertical position to a second vertical position with respect to the base.
In a further embodiment of the third embodiment, the lifting subassembly is removable when in the second vertical position.
In another further embodiment of the third embodiment, the lifting subassembly includes a pair of spaced parallel elongate support members, wherein each support member has first and second ends; and spaced parallel first and second brace members. The first brace member joins the first ends of the support members and the second brace member joins the second ends of the support members, so as to provide a frame structure. The lifting subassembly also includes a carrier member that is located between the brace members and is reversibly movable along a length of the support members, whereby the patient support structure is slidingly moved between the first and second lifting positions.
In another further embodiment of the third embodiment, the lifting subassembly includes a lifting mechanism that is adapted to move the carrier member.
In still another further embodiment, the lifting mechanisms includes a lead screw that is spaced from and parallel with the support members and joined with the brace members, and a gear subassembly that engages the lead screw so as to move the carrier member along the length of the support members. In some further embodiments, the carrier member includes at least one engagement member that is adapted for reversibly engaging the patient support structure. In some further embodiments, the carrier member includes a pair of spaced parallel ring members. Each of the ring members includes a through-bore that slidingly receives one of the elongate support members therethrough, such that the carrier member is movable between the brace members. In some further embodiments, at least one of the brace members includes a connection portion adapted for reversible engagement of the base structure.
In another further embodiment of the third embodiment, the lifting subassembly includes a pair of lifting subassemblies. The lifting subassembly includes an actuator, in some embodiments.
In a fourth embodiment, a patient positioning apparatus is provided for positioning a patient on a patient support structure for a medical procedure. The patient support structure has a base that supports a removably attachable patient support frame above a floor and a rotation mechanism for rotating the patient support frame about a longitudinally extending roll axis and between first and second vertical positions with respect to the floor. The patient positioning apparatus includes a lifting subassembly that is reversibly attachable to the base and has a connection portion that is slidingly movable between the first and second lifting positions with respect to a length of the lifting subassembly. The patient positioning apparatus also includes a transfer table that is sized and shaped for receiving and supporting a patient thereon and that is reversibly attachable to the lifting subassembly.
In a further embodiment of the fourth embodiment, the apparatus includes an actuator for actuating the lifting subassembly, so as to move the transfer table between the first and second lifting positions. In a further embodiment, the transfer table includes a bracket for reversible attachment to the lifting subassembly. In some embodiments, the transfer table includes radio-transparent tabletop member.
In a further embodiment of the fourth embodiment, the lifting subassembly includes first and second lifting subassemblies. In a still further embodiment, the first and second lifting subassemblies are independently movable.
In a further embodiment of the fourth embodiment, each of the lift subassemblies includes a pair of spaced apart and substantially parallel support members; a lead screw that is spaced from and substantially parallel with the support members; a first brace member that joins a first end of each of the support members and the lead screw, the first brace member includes an attachment structure for removable attachment to a respective vertical support subassembly. The second brace member joins a second end of each of the support members and the jack screw; and a carrier member that slidably engages the support members. The carrier member has a gear subassembly that operably engages the lead screw so as to reversibly move the carrier member toward and away from the first brace member, and a bracket for releasable hingeable attachment to the transfer table.
In a further embodiment of the fourth embodiment, the gear subassembly includes a lead nut rotatably engaging the lead screw; and a motor connector for operable engagement of an external motor.
In a further embodiment of the fourth embodiment, the carrier member includes a pair of sliding brackets. Each of the sliding bracket is sized and shaped to slidably engage a support member.
In a further embodiment of the fourth embodiment, the apparatus also includes an actuator that is adapted to synchronously actuate the first and second lifting subassemblies, so as to maintain the transfer table in a plane substantially parallel to the roll axis while moving the transfer table between the first and second lifting positions.
In a still further embodiment, one of the first and second lifting positions is closer to the patient support structure than the other of the first and second lifting positions.
In a still further embodiment, when in the closer of the first and second lifting positions, a patient on the transfer table is substantially sandwiched between the transfer table and the patient support structure.
Various objects and advantages of this invention will become apparent from the following description taken in relation to the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention.
The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.
Referring now to the drawings, a patient positioning apparatus of the present invention is generally denoted by the numeral 1. The patient positioning apparatus is useful for positioning a patient 2 in a prone position on a patient support structure 4, or surgical table, such as for a medical procedure. An exemplary patient support structure 4 is shown in
Numerous patient support structures 4 find use with the patient positioning apparatus 1 of the present invention, including those described in U.S. Pat. Nos. 7,152,261, 7,343,635, 7,565,708, and 7,739,762, and also U.S. Publication No. 2009-0282614, U.S. patent application Ser. No. 12/803,525, filed on Jun. 22, 2010 and entitled “Surgery Table Apparatus,” U.S. patent application Ser. No. 12/803,173, filed on Jun. 21, 2010 and entitled “Patient Positioning Support Structure,” U.S. patent application Ser. No. 12/803,192, filed on Sep. 9, 2010 and entitled “Patient Positioning Support Structure,” and U.S. patent application Ser. No. 13/317,012, filed on Oct. 6, 2011 and entitled “Patient Positioning Support Structure,” all of which are incorporated by reference herein in their entirety.
The exemplary patient support structure 4 depicted in
At least one of the illustrated patient support structure elevator subassemblies 8, 10 includes a rotation mechanism 14 for rotating the patient support frame 12 about a longitudinally extending roll axis R, which extends between rotational pivot points P of the patient support structure 4. The rotational mechanism 14 advantageously enables infinitely adjustable rotation and tilting of the patient support frame 12 a distance or amount of up to at least ±180° from a first position. Such tilting provides improved access to the patient 2, and enables turning the patient 2 over between prone and supine positions, for surgical access to the patient's front and back without removing the patient 2 from the frame 12. Some patient support structures 4 are configured such that the patient support frame 12 is rotatable up to at least 360° in either direction.
Referring now to
The head-end and foot-end lift subassemblies 22 and 24 are removably attachable to the head-end and foot-end elevator subassemblies 8 and 10, respectively, such as shown in
Referring now to
The head-end and foot-end cross-beams 38 join the head and foot ends 40, 42 of the spaced support beams 36. Each cross-beam 38 includes a linkage bracket 44 with a substantially cylindrical horizontal channel 45 for releasable hinged attachment to the respective head-end and foot-end lift subassemblies 22, 24, such as described in greater detail below. Preferably, the linkage bracket 44 is a pair of spaced linkage brackets 44 that join the associated cross-beams 38 with the associated lift subassemblies 22, 24, such as is described below.
As shown in
The tabletop member 35 has first and second sides, 56 and 58, respectively, and head- and foot-ends, which are generally denoted by the numerals 60 and 62, respectively. The tabletop member 35 is attached to the support beams 36 and optionally to the cross-beams 38, generally on its second side 58, which may also be referred to as the bottom or lower side. The patient 2 is placed upon the tabletop member first side 56, which may also be referred to as the top or upper side. The tabletop member 35 may be fabricated from any suitable resilient material known in the art, which preferably is at least one of light weight and substantially radio-transparent. In some embodiments, the tabletop member 35 is an imaging table top. It is foreseen that an imaging table may be substituted for the transfer table 20.
Referring now to
The cylindrical support members 64 are cylindrically shaped solid rods or hollow tubes that extend between the first and second brace members 66 and 68, respectively. As shown in
The lead screw 70 is a power screw that translates turning motion of the gear subassembly 72 into the linear motion, such as upward and downward, of the transfer table 20. The lead screw 70 extends between the first and second brace members 66 and 68, and is spaced from and parallel to the support members 64. In some embodiments, the lead screw 70 is an ACME screw with a trapezoidal thread form, which offers high strength and ease of manufacture. In some embodiments, the lead screw includes a non-trapezoidal thread form. In other embodiments, the lead screw is a metric screw. As is discussed in greater detail below, the lead screw 70 engages the gear subassembly 72, which is housed within the carrier member 74. The lead screw 70 is spaced equally from each of the support members 64, so as to balance lifting power transferred through the carrier member 70 to the engagement brackets 50. Consequently, the engagement brackets 50 are moved evenly along the support members 64, with respect to the lead screw 70.
The first brace member 66 holds a first end of each of the support members 64 and of the lead screw 70 in spaced relation to one another. Additionally, the first brace member 66 joins the associated lift subassembly 22, 24 to a respective patient support structure elevator subassembly 8, 10. Each first brace member 66 includes a pair of spaced connection portions 84 for attaching the lift subassembly 22, 24 to the patient support structure 4. In the illustrated embodiment, the connection portions 84 are generally rectangularly prism-shaped and extend outwardly in an outboard direction, so as to be releasably matingly engageable by complementary attachment bracket, generally 85, of the elevator subassemblies 8, 10. However, it is foreseen that the connection portions 84 may have other three-dimensional shapes with a cross-section such as but not limited to circular, ovular, trapezoidal and rectangular.
Each connection portion 84 includes a substantially cylindrical through-bore 86 extending between its inboard and outboard sides 88, 90, respectively. The through-bores 86 are sized and shaped to receiver a quick release pin 52′ therethrough. Thus, a quick release pin 52′ extends from the outboard side 90 of each of the connection portion 84, through the associated through-bore 86 and outward to the inboard side 88. When attached to the patient support structure 4, each quick release pin 52′ also engages an elevator subassembly attachment bracket 85 that is mated with the associated connection portion 84, so as to hold the mated bracket 85 and connection portion 84 together in a substantially rigid, non-hingeable configuration. In some embodiments, the pair of quick release pins 52′ are replaced by a longer pin or rod that extends through both of the through-bores 86. Other attachment structures for attaching the lift subassemblies 22, 24 to the patient support structure flare foreseen.
The second brace member 68 holds the second ends of the support members 64 and the lead screw 70 in substantially the same spaced relation to one another as does the first brace member 66, such that the support members 64 and the lead screw 70 are oriented, configured or run substantially parallel to one another. In some embodiments, one or more of the support members 64 and the lead screw 70 extend through the second brace member 68. In other embodiments, one or more of the support members 64 and the lead screw 70 do not extend through the second brace member 68.
Referring to
The carrier member 74 extends between and slidingly engages both of the support members 64, such that movement of the carrier member 74 is guided by the support members 64. The carrier member 74 is slidingly movable toward or away from the first brace ember 66, with respect to the support member 46. The carrier member 74 includes a pair of ring members 94, wherein a ring member 94 is associated with each of the support members 64. Each ring member 94 includes at least one ring structure 96 with a through-bore 98 through which the associated support member 64 is slidingly received. In the illustrated embodiment, each ring member 94 includes a pair of ring structures 96 that are aligned so as to be coaxial with the associated support member 64. A bushing 100 is located in each of the ring structure through-bores 96. Each of the bushings 100 includes a through-bore that receives a support member 64 therethrough, such that the bushing through-bore and the support member 64 are coaxial. The smooth inner surface of each bushing through-bore provides a bearing surface for linear motion of the associated support member 64.
Each carrier member 74 also includes a housing 104 for the gear subassembly 72, which operably engages the associated lead screw 70. As shown in
The drive gear 110 includes a gear engagement portion 116 that is associated with the housing access portion 106. The actuator 26, such as but not limited to an external motor, operably connects with the gear engagement portion 116, so as to actuate, power or drive the gear subassembly 72. In some embodiments, the actuator 26 connects, or plugs, directly to the drive gear 110. In other embodiments, the actuator 26 connects indirectly to the gear engagement portion 116 such as but not limited to by a cord that can be plugged thereinto. Numerous alternative configurations known in the art are foreseen.
Upon actuation by the actuator 26, the gear subassembly 72 engages the lead screw 70 by rotating the lead nut 114 in a clockwise or a counter clockwise direction, so as to rotatingly move the lead nut 114 along the length of the lead screw 70, such that, depending upon the direction of lead nut 114 rotation, the carrier member 74 is moved in a direction selected from toward and away from the first brace member 66, thereby lowering and raising the associated end of an attached transfer table 20. For example, the gear drive rotates, causing the rotatingly engaged gear to rotate, such as clockwise or counter clockwise, which in turn causes the lead nut 114 to rotate with respect to the lead screw 70. As is known in the art, such rotation causes the lead nut 114 to rotatingly move up and down the lead screw 70, depending upon the direction of lead nut rotation 114 (e.g., clockwise or counter clockwise).
Referring now to
Referring to
Next, as shown in
As shown in
Next, as shown in
Referring now to
Once the patient 2 is supported by the patient support frame 12 of the patient support structure 4, the patient positioning apparatus 1 may be removed from the patient support structure 4. Such removal is performed by reversing the installation steps described above. For example, the transfer table 20 is lifted a distance above the patient 2 by reversing the actuator 26 and rotating the lead nut 114 with respect to the lead screw 70, such that the patient 2 is no longer sandwiched between the transfer table 20 and the patient support frame 12. Then the quick release pins 52 are removed, and the transfer table 20 is removed from the lift subassemblies 22, 24. And then the lift subassemblies 22, 24 are removed from the respective elevator subassemblies 8, 10 by disconnection, or removal, of the quick release pins 52′.
In some circumstances, it is desirable to turn a patient 2 over, from a prone position to a supine position, while the patient 2 is supported on the patient support frame 4, such as is shown in
It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.
This application is a division of U.S. application Ser. No. 15/042,897, filed Feb. 12, 2016, which is a continuation of U.S. application Ser. No. 13/955,642, filed Jul. 31, 2013, now U.S. Pat. No. 9,295,433, which claims the benefit of U.S. Provisional Application No. 61/742,167, filed Aug. 3, 2012, and entitled “Synchronized Patient Elevation And Positioning Apparatus For Use With Patient Positioning Support Systems,” the entirety of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
377377 | Ferry | Feb 1888 | A |
392743 | Millen | Nov 1888 | A |
430635 | Fox | Jun 1890 | A |
769415 | Smock | Sep 1904 | A |
987423 | Barnett | Mar 1911 | A |
1032743 | Courtney | Jul 1912 | A |
1046430 | Beitz | Dec 1912 | A |
1098209 | Allen | May 1914 | A |
1098477 | Cashman | Jun 1914 | A |
1143618 | Ewald | Jun 1915 | A |
1160451 | Sanford | Nov 1915 | A |
1171713 | Gilkerson | Feb 1916 | A |
1356467 | Payne | Oct 1920 | A |
1404482 | Sawyer | Jan 1922 | A |
1482439 | McCullough | Feb 1924 | A |
1524399 | Krueger | Jan 1925 | A |
1528835 | McCullough | Mar 1925 | A |
1667982 | Pearson | May 1928 | A |
1780399 | Munson | Nov 1930 | A |
1799692 | Knott | Apr 1931 | A |
1938006 | Blanchard | Dec 1933 | A |
1990357 | Ward | Feb 1935 | A |
2188592 | Hosken et al. | Jan 1940 | A |
2261297 | Seib | Nov 1941 | A |
2411768 | Welch | Nov 1946 | A |
2475003 | Black | Jul 1949 | A |
2636793 | Meyer | Apr 1953 | A |
2688410 | Nelson | Sep 1954 | A |
2792945 | Brenny | May 1957 | A |
3046071 | Shampaine et al. | Jul 1962 | A |
3049726 | Getz | Aug 1962 | A |
3281141 | Smiley et al. | Oct 1966 | A |
3302218 | Stryker | Feb 1967 | A |
3584321 | Buchanan | Jun 1971 | A |
3599964 | Magni | Aug 1971 | A |
3640416 | Temple | Feb 1972 | A |
3766384 | Anderson | Oct 1973 | A |
3814414 | Chapa | Jun 1974 | A |
3827089 | Grow | Aug 1974 | A |
3832742 | Stryker | Sep 1974 | A |
3868103 | Pageot et al. | Feb 1975 | A |
3937054 | Hortvet et al. | Feb 1976 | A |
3988790 | Mracek et al. | Nov 1976 | A |
4101120 | Seshima | Jul 1978 | A |
4131802 | Braden et al. | Dec 1978 | A |
4144880 | Daniels | Mar 1979 | A |
4148472 | Rais et al. | Apr 1979 | A |
4175550 | Leininger et al. | Nov 1979 | A |
4186917 | Rais et al. | Feb 1980 | A |
4195829 | Reser | Apr 1980 | A |
4227269 | Johnston | Oct 1980 | A |
4230100 | Moon | Oct 1980 | A |
4244358 | Pyers | Jan 1981 | A |
4292962 | Krause | Oct 1981 | A |
4391438 | Heffington, Jr. | Jul 1983 | A |
4435861 | Lindley | Mar 1984 | A |
4474364 | Brendgord | Oct 1984 | A |
4503844 | Siczek | Mar 1985 | A |
4552346 | Schnelle et al. | Nov 1985 | A |
4712781 | Watanabe | Dec 1987 | A |
4715073 | Butler | Dec 1987 | A |
4718077 | Moore et al. | Jan 1988 | A |
4763643 | Vrzalik | Aug 1988 | A |
4771785 | Duer | Sep 1988 | A |
4830337 | Ichiro et al. | May 1989 | A |
4850775 | Lee et al. | Jul 1989 | A |
4862529 | Peck | Sep 1989 | A |
4872656 | Brendgord et al. | Oct 1989 | A |
4872657 | Lussi | Oct 1989 | A |
4887325 | Tesch | Dec 1989 | A |
4937901 | Brennan | Jul 1990 | A |
4939801 | Schaal et al. | Jul 1990 | A |
4944500 | Mueller et al. | Jul 1990 | A |
4953245 | Jung | Sep 1990 | A |
4970737 | Sagel | Nov 1990 | A |
4989848 | Monroe | Feb 1991 | A |
5013018 | Sicek et al. | May 1991 | A |
5088706 | Jackson | Feb 1992 | A |
5131103 | Thomas et al. | Jul 1992 | A |
5131105 | Harrawood et al. | Jul 1992 | A |
5131106 | Jackson | Jul 1992 | A |
5161267 | Smith | Nov 1992 | A |
5163890 | Perry, Jr. | Nov 1992 | A |
5181289 | Kassai | Jan 1993 | A |
5208928 | Kuck et al. | May 1993 | A |
5210887 | Kershaw | May 1993 | A |
5210888 | Canfield | May 1993 | A |
5230112 | Harrawood et al. | Jul 1993 | A |
5231741 | Maguire | Aug 1993 | A |
5239716 | Fisk | Aug 1993 | A |
5274862 | Palmer, Jr. | Jan 1994 | A |
5294179 | Rudes et al. | Mar 1994 | A |
5333334 | Kassai | Aug 1994 | A |
5393018 | Roth et al. | Feb 1995 | A |
5444882 | Andrews et al. | Aug 1995 | A |
5461740 | Pearson | Oct 1995 | A |
5468216 | Johnson et al. | Nov 1995 | A |
5487195 | Ray | Jan 1996 | A |
5499408 | Nix | Mar 1996 | A |
5524304 | Shutes | Jun 1996 | A |
5544371 | Fuller | Aug 1996 | A |
5579550 | Bathrick et al. | Dec 1996 | A |
5588705 | Chang | Dec 1996 | A |
5613254 | Clayman et al. | Mar 1997 | A |
5640730 | Godette | Jun 1997 | A |
5645079 | Zahiri et al. | Jul 1997 | A |
5658315 | Lamb et al. | Aug 1997 | A |
5659909 | Pfeuffer et al. | Aug 1997 | A |
5673443 | Marmor | Oct 1997 | A |
5737781 | Votel | Apr 1998 | A |
5754997 | Lussi et al. | May 1998 | A |
5774914 | Johnson et al. | Jul 1998 | A |
5794286 | Scott et al. | Aug 1998 | A |
5829077 | Neige | Nov 1998 | A |
5862549 | Morton et al. | Jan 1999 | A |
5870784 | Elliott | Feb 1999 | A |
5890238 | Votel | Apr 1999 | A |
5901388 | Cowan | May 1999 | A |
5937456 | Norris | Aug 1999 | A |
5940911 | Wang | Aug 1999 | A |
5996151 | Bartow et al. | Dec 1999 | A |
6000076 | Webster et al. | Dec 1999 | A |
6035465 | Rogozinski | Mar 2000 | A |
6049923 | Ochiai | Apr 2000 | A |
6058532 | Allen | May 2000 | A |
6109424 | Doan | Aug 2000 | A |
6212713 | Kuck et al. | Apr 2001 | B1 |
6224037 | Novick | May 2001 | B1 |
6240582 | Reinke | Jun 2001 | B1 |
6260220 | Lamb et al. | Jul 2001 | B1 |
6282736 | Hand et al. | Sep 2001 | B1 |
6282738 | Heimbrock et al. | Sep 2001 | B1 |
6286164 | Lamb et al. | Sep 2001 | B1 |
6287241 | Ellis | Sep 2001 | B1 |
6295666 | Takaura | Oct 2001 | B1 |
6295671 | Reesby et al. | Oct 2001 | B1 |
6315564 | Levisman | Nov 2001 | B1 |
6322251 | Ballhaus et al. | Nov 2001 | B1 |
6438777 | Bender | Aug 2002 | B1 |
6496991 | Votel | Dec 2002 | B1 |
6499162 | Lu | Dec 2002 | B1 |
6505365 | Hanson et al. | Jan 2003 | B1 |
6526610 | Hand et al. | Mar 2003 | B1 |
6634043 | Lamb et al. | Oct 2003 | B2 |
6638299 | Cox | Oct 2003 | B2 |
6662388 | Friel | Dec 2003 | B2 |
6668396 | Wei | Dec 2003 | B2 |
6681423 | Zachrisson | Jan 2004 | B2 |
6701553 | Hand et al. | Mar 2004 | B1 |
6779210 | Kelly | Aug 2004 | B1 |
6791997 | Beyer et al. | Sep 2004 | B2 |
6794286 | Aoyama et al. | Sep 2004 | B2 |
6817363 | Biondo et al. | Nov 2004 | B2 |
6854137 | Johnson | Feb 2005 | B2 |
6857144 | Huang | Feb 2005 | B1 |
6862759 | Hand et al. | Mar 2005 | B2 |
6885165 | Henley et al. | Apr 2005 | B2 |
6971131 | Bannister | Dec 2005 | B2 |
6971997 | Ryan et al. | Dec 2005 | B1 |
7003828 | Roussy | Feb 2006 | B2 |
7055195 | Roussy | Jun 2006 | B2 |
7089612 | Rocher et al. | Aug 2006 | B2 |
7103931 | Somasundaram et al. | Sep 2006 | B2 |
7137160 | Hand et al. | Nov 2006 | B2 |
7152261 | Jackson | Dec 2006 | B2 |
7171709 | Weismiller | Feb 2007 | B2 |
7189214 | Saunders | Mar 2007 | B1 |
7197778 | Sharps | Apr 2007 | B2 |
7213279 | Weismiller et al. | May 2007 | B2 |
7234180 | Horton et al. | Jun 2007 | B2 |
7290302 | Sharps | Nov 2007 | B2 |
7331557 | Dewert | Feb 2008 | B2 |
7343635 | Jackson | Mar 2008 | B2 |
7428760 | McCrimmon | Sep 2008 | B2 |
7437785 | Farooqui | Oct 2008 | B2 |
7552490 | Saracen et al. | Jun 2009 | B2 |
7565708 | Jackson | Jul 2009 | B2 |
7596820 | Nielsen et al. | Oct 2009 | B2 |
7653953 | Lopez-Sansalvador | Feb 2010 | B2 |
7669262 | Skripps et al. | Mar 2010 | B2 |
7739762 | Lamb et al. | Jun 2010 | B2 |
7874030 | Cho et al. | Jan 2011 | B2 |
7874695 | Jensen | Jan 2011 | B2 |
7882583 | Skripps | Feb 2011 | B2 |
8056163 | Lemire et al. | Nov 2011 | B2 |
8060960 | Jackson | Nov 2011 | B2 |
8381331 | Sharps | Feb 2013 | B2 |
8584281 | Diel et al. | Nov 2013 | B2 |
8635725 | Tannoury et al. | Jan 2014 | B2 |
8677529 | Jackson | Mar 2014 | B2 |
8707476 | Sharps | Apr 2014 | B2 |
8707484 | Jackson | Apr 2014 | B2 |
8719979 | Jackson | May 2014 | B2 |
8826474 | Jackson | Sep 2014 | B2 |
8826475 | Jackson | Sep 2014 | B2 |
8839471 | Jackson | Sep 2014 | B2 |
8844077 | Jackson et al. | Sep 2014 | B2 |
8856986 | Jackson | Oct 2014 | B2 |
D720076 | Sharps et al. | Dec 2014 | S |
8938826 | Jackson | Jan 2015 | B2 |
8978180 | Jackson | Mar 2015 | B2 |
9180062 | Jackson | Nov 2015 | B2 |
9186291 | Jackson et al. | Nov 2015 | B2 |
9198817 | Jackson | Dec 2015 | B2 |
9205013 | Jackson | Dec 2015 | B2 |
9211223 | Jackson | Dec 2015 | B2 |
9226865 | Jackson et al. | Jan 2016 | B2 |
9265679 | Jackson | Feb 2016 | B2 |
9265680 | Sharps et al. | Feb 2016 | B2 |
9289342 | Jackson | Mar 2016 | B2 |
9295433 | Jackson et al. | Mar 2016 | B2 |
9301897 | Jackson | Apr 2016 | B2 |
9308145 | Jackson | Apr 2016 | B2 |
9339430 | Jackson et al. | May 2016 | B2 |
9358170 | Jackson | Jun 2016 | B2 |
9364380 | Jackson | Jun 2016 | B2 |
9402775 | Jackson et al. | Aug 2016 | B2 |
9414982 | Jackson | Aug 2016 | B2 |
9456945 | Jackson | Oct 2016 | B2 |
9468576 | Jackson | Oct 2016 | B2 |
9504622 | Jackson | Nov 2016 | B2 |
9510987 | Jackson et al. | Dec 2016 | B2 |
9549863 | Jackson et al. | Jan 2017 | B2 |
9561145 | Jackson et al. | Feb 2017 | B2 |
9572734 | Jackson et al. | Feb 2017 | B2 |
9610206 | Jackson | Apr 2017 | B2 |
9622928 | Jackson et al. | Apr 2017 | B2 |
9636266 | Jackson | May 2017 | B2 |
20010037524 | Truwit | Nov 2001 | A1 |
20020170116 | Borders et al. | Nov 2002 | A1 |
20030074735 | Zachrisson | Apr 2003 | A1 |
20030145383 | Schwaegerle | Aug 2003 | A1 |
20040098804 | Varadharajulu et al. | May 2004 | A1 |
20040133983 | Newkirk et al. | Jul 2004 | A1 |
20040168253 | Hand et al. | Sep 2004 | A1 |
20040219002 | Lenaers | Nov 2004 | A1 |
20060248650 | Skripps | Nov 2006 | A1 |
20070056105 | Hyre et al. | Mar 2007 | A1 |
20070107126 | Koch et al. | May 2007 | A1 |
20070113336 | Sharps | May 2007 | A1 |
20070157385 | Lemire et al. | Jul 2007 | A1 |
20070174965 | Lemire et al. | Aug 2007 | A1 |
20070266516 | Cakmak | Nov 2007 | A1 |
20080216241 | Mangiardi | Sep 2008 | A1 |
20090126116 | Lamb et al. | May 2009 | A1 |
20090235456 | Bock | Sep 2009 | A1 |
20100037397 | Wood | Feb 2010 | A1 |
20100107790 | Yamaguchi | May 2010 | A1 |
20100192300 | Tannoury et al. | Aug 2010 | A1 |
20100223728 | Hutchison et al. | Sep 2010 | A1 |
20110107517 | Lamb et al. | May 2011 | A1 |
20110197361 | Hornbach et al. | Aug 2011 | A1 |
20120005832 | Turner et al. | Jan 2012 | A1 |
20120144589 | Skripps et al. | Jun 2012 | A1 |
20120174319 | Menkedick | Jul 2012 | A1 |
20120246829 | Lamb et al. | Oct 2012 | A1 |
20120246830 | Hornbach | Oct 2012 | A1 |
20130111666 | Jackson | May 2013 | A1 |
20130133137 | Jackson | May 2013 | A1 |
20130269710 | Hight | Oct 2013 | A1 |
20130282234 | Roberts et al. | Oct 2013 | A1 |
20130312188 | Jackson | Nov 2013 | A1 |
20140068861 | Jackson et al. | Mar 2014 | A1 |
20140201914 | Jackson | Jul 2014 | A1 |
20140208512 | Jackson | Jul 2014 | A1 |
20140317847 | Jackson | Oct 2014 | A1 |
20150007391 | Xu | Jan 2015 | A1 |
20150059094 | Jackson | Mar 2015 | A1 |
20150113733 | Diel et al. | Apr 2015 | A1 |
20150150743 | Jackson | Jun 2015 | A1 |
20160000620 | Koch | Jan 2016 | A1 |
20160000621 | Jackson et al. | Jan 2016 | A1 |
20160000626 | Jackson et al. | Jan 2016 | A1 |
20160000627 | Jackson et al. | Jan 2016 | A1 |
20160000629 | Jackson et al. | Jan 2016 | A1 |
20160008201 | Jackson | Jan 2016 | A1 |
20160038364 | Jackson | Feb 2016 | A1 |
20160136027 | Jackson | May 2016 | A1 |
20160166452 | Jackson et al. | Jun 2016 | A1 |
20160213542 | Jackson | Jul 2016 | A1 |
20160296395 | Jackson et al. | Oct 2016 | A1 |
20160317372 | Jackson | Nov 2016 | A1 |
20160317373 | Jackson et al. | Nov 2016 | A1 |
20160346148 | Jackson et al. | Dec 2016 | A1 |
20160346149 | Jackson et al. | Dec 2016 | A1 |
20170071809 | Jackson et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2467091 | Dec 2001 | CN |
2226010 | Jun 2014 | EP |
569758 | Jun 1945 | GB |
810956 | Mar 1959 | GB |
S53763 | Jan 1978 | JP |
2000-060995 | Feb 2000 | JP |
2000-116733 | Apr 2000 | JP |
WO9907320 | Feb 1999 | WO |
WO 0007537 | Feb 2000 | WO |
WO2000062731 | Oct 2000 | WO |
WO2001060308 | Aug 2001 | WO |
WO 02078589 | Oct 2002 | WO |
WO2003070145 | Aug 2003 | WO |
WO 2007130679 | Nov 2007 | WO |
WO2009054969 | Apr 2009 | WO |
WO2009100692 | Aug 2009 | WO |
WO2010051303 | May 2010 | WO |
Entry |
---|
Brochure of Smith & Nephew on Spinal Positioning System, 2003, 2004. |
Complaint for Patent Infringement, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Aug. 7, 2012). |
First Amended Complaint for Patent Infringement and Correction of Inventorship, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Sep. 21, 2012). |
Defendant Mizuho Orthopedic Systems, Inc.'s Answer to First Amended Complaint and Counterclaims, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Nov. 1, 2012). |
Plaintiff Roger P. Jackson, MD's, Reply to Counterclaims, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Nov. 26, 2012). |
Roger P. Jackson's Disclosure of Asserted Claims and Preliminary Infringement Contentions, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Jan. 4, 2013). |
Second Amended Complaint for Patent Infringement, for Correction of Inventorship, for Breach of a Non-Disclosure and Confidentiality Agreement, and for Misappropriation of Dr. Jackson's Right of Publicity, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Jan. 28, 2013). |
Defendant Mizuho Orthopedic Systems, Inc.'s Answer to Second Amended Complaint and Counterclaims, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Feb. 19, 2013). |
Defendant Mizuho Osi's Invalidity Contentions Pursuant to the Parties' Joint Scheduling Order, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Feb. 22, 2013). |
Plaintiff Roger P. Jackson, MD's, Reply to Second Counterclaims, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Mar. 12, 2013). |
Roger P. Jackson, MD's Disclosure of Proposed Terms to Be Construed, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Apr. 5, 2013). |
Defendant Mizuho Orthopedic Systems, Inc.'s Disclosure of Proposed Terms and Claim Elements for Construction, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Apr. 5, 2013). |
Mizuho Orthopedic Systems, Inc.'s Disclosure of Proposed Claim Constructions and Extrinsic Evidence, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. May 13, 2013). |
Plaintiff Roger P. Jackson, MD's Disclosure of Preliminary Proposed Claim Constructions, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. May 13, 2013). |
Defendant Mizuho Osi's Amended Invalidity Contentions Pursuant to the Parties' Joint Scheduling Order, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. May 15, 2013). |
Joint Claim Construction Chart and Joint Prehearing Statement, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Jun. 7, 2013). |
Defendant Mizuho Orthopedic Systems, Inc.'s Objections and Responses to Plaintiff's First Set of Interrogatories, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Jun. 24, 2013). |
Defendant Mizuho Orthopedic Systems, Inc.'s Opening Claim Construction Brief, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Jul. 31, 2013). |
Plaintiff Roger P. Jackson, MD's Opening Claim Construction Brief, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Jul. 31, 2013). |
Appendix A Amended Infringement Contentions Claim Chart for Mizuho's Axis System Compared to U.S. Pat. No. 7,565,708, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Aug. 12, 2013). |
Appendix B Amended Infringement Contentions Claim Chart for Mizuho's Axis System Compared to U.S. Pat. No. 8,060,960, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Aug. 12, 2013). |
Appendix C Amended Infringement Contentions Claim Chart for Mizuho's Proaxis System Compared to U.S. Pat. No. 7,565,708, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Aug. 12, 2013). |
Appendix D Amended Infringement Contentions Claim Chart for Mizuho's Proaxis System Compared to U.S. Pat. No. 8,060,960, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Aug. 12, 2013). |
Plaintiff Roger P. Jackson, MD's Responsive Claim Construction Brief, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Aug. 16, 2013). |
Defendant Mizuho Orthopedic Systems, Inc's Brief in Response to Plaintiff's Opening Claim Construction Brief, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Aug. 16, 2013). |
Plaintiff Roger P. Jackson, Md's Suggestions in Support of His Motion to Strike Exhibit A of Mizuho's Opening Claim Construction Brief, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Aug. 16, 2013). |
Defendant Mizuho Orthopedic Systems, Inc.'s Opposition to Plaintiff's Motion to Strike, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Sep. 3, 2013). |
Transcript of Claim Construction Hearing, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Oct. 11, 2013). |
Plaintiff Roger P. Jackson, MD's Claim Construction Presentation for U.S. District Judge Nanette K. Laughrey, Jackson v. Mizuho Orthopedic Sys., In., No. 4:12-CV-01031 (W.D. Mo. Oct. 11, 2013). |
Mizuho's Claim Construction Argument, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Oct. 11, 2013). |
Order, Jackson v. Mizuho Orthopedic Sys., Inc., No. 4:12-CV-01031 (W.D. Mo. Apr. 4, 2014). |
Brochure of OSI on Modular Table System 90D, pp. 1-15, date of first publication: Unknown. |
Pages from website http://www.schaerermayfieldusa.com, pp. 1-5, date of first publication: Unknown. |
European Search Report, EP11798501.0, dated Mar. 30, 2015. |
Canadian Office Action, CA2803110, dated Mar. 5, 2015. |
Chinese Office Action, CN 201180039162.0, dated Jan. 19, 2015. |
Japanese Office Action, JP 2014-142074, dated Jun. 18, 2015. |
Japanese Office Action, JP 2014-132463, dated Jun. 18, 2015. |
Quayle Action, U.S. Appl. No. 14/792,216, dated Sep. 9, 2015. |
Australian Patent Examination Report No. 2, AU2014200274, dated Oct. 9, 2015. |
European Examination Report, EP11798501.0, dated Nov. 12, 2015. |
Japanese Final Rejection (English version), JP 2014-142074, dated Dec. 6, 2015. |
International Search Report and Written Opinion of the International Searching Authority, PCT/US2015/039400, dated Dec. 7, 2015, 13 pages. |
Japanese Office Action, JP 2016-041088, dated Apr. 12, 2016. |
U.S. Appl. No. 15/421,994, filed Feb. 1, 2017, Jackson et al. |
U.S. Appl. No. 15/431,439, filed Feb. 13, 2017, Jackson. |
U.S. Appl. No. 15/479,007, filed Apr. 4, 2017, Jackson. |
U.S. Appl. No. 15/483,063, filed Apr. 10, 2017, Jackson et al. |
Number | Date | Country | |
---|---|---|---|
20170189254 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
61742167 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15042897 | Feb 2016 | US |
Child | 15465289 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13955642 | Jul 2013 | US |
Child | 15042897 | US |