Television viewing is no longer the static, isolated, or passive pastime that it used to be. Today, viewers have the option of using a computing device, such as a tablet computer or smartphone, as a second screen to view a webpage related to a show they are watching, thereby keeping viewers engaged in a particular program. However, there is a demand for taking second screen experiences further. Specifically, there is a demand for supplemental content (e.g., second screen content) that is synchronized with the primary content users are watching. While users want synchronization between their supplemental content and other programs, they also want and rely on fast network speeds. Thus, systems and methods for providing synchronized supplemental content with minimal impact on network bandwidth and other benefits are desired.
Some or all of the various features described herein may facilitate synchronization of supplemental content (e.g., second screen content) displayed on a second user device (e.g., a second screen device such as a tablet computer, smartphone, laptop, etc.) with primary content displayed on a first user device (e.g., a first screen device such as a television or video display) thereby providing a desirable second screen experience. Some aspects described below allow for synchronization of supplemental content with linear or time shifted primary content while minimizing an impact on network bandwidth.
In accordance with some aspects of the disclosure, a plurality of interfaces (e.g., gateways, user devices, set top boxes, etc.) may receive triggers from a trigger source for supplemental content (e.g., second screen content) to be displayed on second screen devices in synchronicity with primary content. A subset of those interfaces may be selected to represent the plurality, and the subset may report back trigger receipt information to the trigger source, to allow the source to adjust its timing of future triggers for the plurality of interfaces. Because a subset of the interfaces (which may be a relatively small amount of interfaces in comparison to the total number of interfaces) are used to report the triggers, instead of all of the interfaces, the impact on the upstream bandwidth of a service provider's network may be minimized.
In an illustrative embodiment, the disclosure teaches grouping or categorizing interfaces into different zones or groups, and teaches that the interfaces in a common zone or group are expected to receive the same primary content at approximately the same time. In contrast, different zones may receive similar primary content (e.g., a television program), but the primary content may include different advertisements or may be time shifted differently (e.g., have different delays). In each zone, a subset of interfaces are expected to detect and report triggers embedded within or otherwise transmitted with the primary content. The subset of interfaces may vary. In some embodiments, the interfaces themselves or an associated computing device may compute an algorithm to determine whether they should report the trigger. An algorithm may be based on statistical information received from a service provider or some other administrator. The statistical information may be specific to each zone (or group) because, for example, it may be expected that users in some zones are more likely to view certain content than users in another zone. An algorithm may take into account the channel for delivering the primary content, time of day, and other factors when determining whether the interface (or an application associated with the interface) should report a trigger.
In another aspect, and in particular to further reduce network traffic, multipliers may be sent at more frequent intervals than the statistical information, which may include a heavier payload than the multiplier. A multiplier may be a factor used to adjust the subset of interfaces reporting triggers. Regardless of the method for determining whether a trigger should be reported, when the trigger is reported, a trigger detection signal may be sent upstream on the same lines or channel that the primary content is received on. The trigger detection signal may eventually reach one or more servers dedicated for receiving and processing such signals. The server(s) may then push synchronization signals to certain second screen devices that it knows or believes are displaying second screen content associated with the primary content from which the trigger was detected. The server may transmit synchronization signals to second screen devices in response to the trigger detection signals. The second screen devices may then use the synchronization signals to synchronize second screen content, which may be received from another source, e.g., another network or server, or already downloaded on the second screen device. Additionally, aspects of the present disclosure teach computing devices, having a processor and memory storing computer-executable instructions, and other apparatuses to perform the above steps and other steps for improving a second screen experience.
Other details and features will also be described in the sections that follow. This summary is not intended to identify critical or essential features of the inventions claimed herein, but instead merely summarizes certain features and variations thereof.
Some features herein are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements.
In the following description of various illustrative embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments in which aspects of the disclosure may be practiced. It is to be understood that other embodiments may be utilized, and structural and functional modifications may be made, without departing from the scope of the present disclosure.
By way of introduction, the various features described herein may allow a user to consume primary content (e.g., watch a television program) on a first device (e.g., a television) and second screen content, which is synchronized with the primary content, on a second device (e.g., a smartphone, tablet, laptop, etc.). In one example, an interface (e.g., a set top box) associated with the first device may determine whether it should report a trigger detected within the primary content. As a result, a sample of interfaces may report detected triggers instead of all interfaces thereby minimizing the impact of reporting triggers on the upstream bandwidth. This determination may be based on statistical information, a multiplier, and/or other data received from a service provider or other administrator. The system may monitor and update this information so that the reporting of the triggers may be further optimized. Based on detection signals received from the sample of interfaces, synchronization signals may be generated and transmitted (e.g., pushed) to second screen devices so that the second screen devices can synchronize second screen content with the primary content.
There may be one link 101 originating from the local office 103, and it may be split a number of times to distribute the signal to various premises 102 in the vicinity (which may be many miles) of the local office 103. The links 101 may include components not illustrated, such as splitters, filters, amplifiers, etc. to help convey the signal clearly, but in general each split introduces a bit of signal degradation. Portions of the links 101 may also be implemented with fiber-optic cable, while other portions may be implemented with coaxial cable, other lines, or wireless communication paths. By running fiber optic cable along some portions, for example, signal degradation may be significantly minimized, allowing a single local office 103 to reach even farther with its network of links 101 than before.
The local office 103 may include an interface, such as a termination system (TS) 104. More specifically, the interface 104 may be a cable modem termination system (CMTS), which may be a computing device configured to manage communications between devices on the network of links 101 and backend devices such as servers 105-107 (to be discussed further below). The interface 104 may be as specified in a standard, such as the Data Over Cable Service Interface Specification (DOCSIS) standard, published by Cable Television Laboratories, Inc. (a.k.a. CableLabs), or it may be a similar or modified device instead. The interface 104 may be configured to place data on one or more downstream frequencies to be received by modems at the various premises 102, and to receive upstream communications from those modems on one or more upstream frequencies.
The local office 103 may also include one or more network interfaces 108, which can permit the local office 103 to communicate with various other external networks 109. These networks 109 may include, for example, networks of Internet devices, telephone networks, cellular telephone networks, fiber optic networks, local wireless networks (e.g., WiMAX), satellite networks, and any other desired network, and the network interface 108 may include the corresponding circuitry needed to communicate on the external networks 109, and to other devices on the network such as a cellular telephone network and its corresponding cell phones. For example, the network interface 108 may communicate with a wireless device 116 via the external network 109 so that the wireless device 116 may receive supplemental content from the local office 103 or other computing devices connected to the external network 109.
As noted above, the local office 103 may include a variety of servers 105-107 that may be configured to perform various functions. For example, the local office 103 may include a push notification server 105. The push notification server 105 may generate push notifications to deliver data and/or commands to the various premises 102 in the network (or more specifically, to the devices in the premises 102 that are configured to detect such notifications). The local office 103 may also include a content server 106. The content server 106 may be one or more computing devices that are configured to provide content to users at their premises. This content may be, for example, video on demand movies, television programs, songs, text listings, etc. The content server 106 may include software to validate user identities and entitlements, to locate and retrieve requested content, to encrypt the content, and to initiate delivery (e.g., streaming) of the content to the requesting user(s) and/or device(s).
The local office 103 may also include one or more application servers 107. An application server 107 may be a computing device configured to offer any desired service, and may run various languages and operating systems (e.g., servlets and JSP pages running on Tomcat/MySQL, OSX, BSD, Ubuntu, Redhat, HTML5, JavaScript, AJAX and COMET). For example, an application server may be responsible for collecting television program listings information and generating a data download for electronic program guide listings. Another application server may be responsible for monitoring user viewing habits and collecting that information for use in selecting advertisements. Yet another application server may be responsible for formatting and inserting advertisements in a video stream being transmitted to the premises 102. Although shown separately, one of ordinary skill in the art will appreciate that the push server 105, content server 106, and application server 107 may be combined. Further, here the push server 105, content server 106, and application server 107 are shown generally, and it will be understood that they may each contain memory storing computer executable instructions to cause a processor to perform steps described herein and/or memory for storing data, such as information for identifying a user or second screen device.
An example premises 102a, such as a home, may include an interface 120. The interface 120 may include computer-executable instructions (e.g., an application) for performing one or more aspects of the disclosure, such as detecting triggers, determining whether to report triggers, and/or generating detection signals to report triggers. The interface 120 can include any communication circuitry needed to allow a device to communicate on one or more links 101 with other devices in the network. For example, the interface 120 may include a modem 110, which may include transmitters and receivers used to communicate on the links 101 and with the local office 103. The modem 110 may be, for example, a coaxial cable modem (for coaxial cable lines 101), a fiber interface node (for fiber optic lines 101), twisted-pair telephone modem, cellular telephone transceiver, satellite transceiver, local wi-fi router or access point, or any other desired modem device. Also, although only one modem is shown in
The
In some embodiments, the supplemental content manager 201a may be implemented as an application specific integrated circuit (ASIC). That is, the supplemental content manager 201a may be a chip designed specifically for performing the various processes described herein. Further, the ASIC may be implemented within or in communication with various computing devices provided herein.
One or more aspects of the disclosure may be embodied in computer-usable data and/or computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other data processing device. The computer executable instructions may be stored on one or more computer readable media such as a hard disk, optical disk, removable storage media, solid state memory, RAM, etc. As will be appreciated by one of skill in the art, the functionality of the program modules may be combined or distributed as desired in various embodiments. In addition, the functionality may be embodied in whole or in part in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA), and the like. Particular data structures may be used to more effectively implement one or more aspects of the disclosure, and such data structures are contemplated within the scope of computer executable instructions and computer-usable data described herein.
Referring to
Further, each of the second screen devices 302 may be configured to bi-directionally communicate via a wired and/or wireless connection with the second screen experience management computing device 340 via the network 330. Specifically, the second screen devices 302 may be configured to access the network 330 (e.g., the Internet) to obtain second screen content and to transmit/receive signals via the network 330 to/from the second screen experience management computing device 340. For example, a second screen device 302 may transmit information, such as requests for second screen content, through a wired connection, including the links 101 through which the primary content is supplied to a first screen device 301, to the local office 103 which then routes the transmission to the network 330 so that it may eventually reach the second screen experience management computing device 340. That is, the second screen device 302 may connect to the interface 120 and communicate with the second screen experience management computing device 340 over the links 101 used to transmit the primary content downstream. Alternatively, a second screen device 302 may wirelessly communicate via, for example, a WiFi connection and/or cellular backhaul, to connect to the network 330 (e.g., the Internet) and ultimately to the second screen experience management computing device 340. Accordingly, although not shown, the network 330 may include cell towers and/or wireless routers for communicating with the second screen devices 302.
Although
Still referring to
The zones may also be defined based on the similarity in the content they receive. For example, members of each zone may receive the same primary content, including identical advertisements, that is received by other members in the zone. In other words, the local office 103 may deliver the same primary content to each of the interfaces 120 in the same zone so that users of the interfaces 120 are exposed to the same advertisements. Interfaces 120 in different zones may receive different content. In particular, the advertisements delivered to the interfaces 120 of different zones may be different. For example, all of the interfaces 120 in Zone 1 may receive a television program with an advertisement for a car during a commercial break, while all of the interfaces 120 in Zone 2 may receive the same television program but the advertisement at the same commercial break may be for a clothing store. In this example, the television program is the same, but the television programs may also be different. Further, the frequencies of the channels used to transmit the primary content may vary among the different zones. For example, in Zone 1, the primary content provided by NBC may be transmitted at a first frequency (e.g., 552 MHz), while in Zone 2, the primary content provided by NBC may be transmitted at a second frequency (e.g., 750 MHz). Similarly, the logical channels (e.g., channel 25) used to transmit the primary content may vary among the different zones. For example, in Zone 1, the primary content provided by NBC may be on channel 24, while in Zone 2, the primary content provided by NBC may be on channel 25.
It should be understood that interfaces 120 in different zones may also receive the same primary content including the same advertisements; however this might not always be the case. Further, while the content delivered to each of the interfaces 120 in the same zone may be the same, it should be understood that the precise time at which the content arrives at the interfaces 120 in the same zone may be different. For example, there may be delays in transmitting the content such that one interface in Zone 1 receives the content at a first time, whereas another interface in Zone 1 receives the same content at a second time a few seconds later.
As mentioned,
The primary content C1 and C2 (including, e.g., programming content and advertising content) may include triggers embedded within the content, or sent contemporaneously with the primary content, such as in a different logical data stream. The same content may have the same triggers. For example, primary content C1 delivered to interface 102a may include the same triggers as the primary content C1 delivered to the interface 102b. Meanwhile, the primary content C2 may have different triggers than the primary content C1. For example, even where the primary content C1 and primary content C2 are similar (e.g., where C1 and C2 both include the same television show), the primary content C1 may have different commercials than the primary content C2, and therefore, the triggers in the different commercials may be different. These triggers may be embedded by content creators (not shown) at the time the primary content C1, C2 is created or by the local office 103 (or other content providers) before delivering the primary content to the appropriate interfaces 120. The triggers may be embedded within, or synchronized with, the content C1, C2 at constant or variable intervals. For example, the content C1, C2 may include a different trigger every five minutes. The triggers may include information identifying the associated primary content C1, C2 or any other information, such as information for supplementing the primary content C1, C2. The triggers also may include a unique or random identifier that may allow the trigger to be identified. Various formats for the triggers may be used. For example, the triggers may use the Enhanced TV Binary Interchange Format (EBIF) or comply with standards for digital program insertion of the Society of Cable Telecommunications Engineers (SCTE), such as SCTE 35, and may be sent in a data stream in synchronization with the primary content C1, C2. Alternatively, the trigger may be a vertical blanking interval (VBI) trigger embedded within the video stream of the primary content C1, C2 (e.g., using closed captioning fields). Further, in some embodiments, watermarks in the video and/or audio streams of the primary content C1, C2 may be used as triggers.
As shown in
Further, although the interface 120b in the example of
Additionally, one should understand that the interface 120c which is in a different zone from interface 120a might not benefit from the detection signal sent by the interface 120a. Because the primary content C2 may be different than the primary content C1 (e.g., primary content C2 may include different advertisements inserted into the programming content), the detection signal sent in response to the trigger in the content C1 might not help to synchronize second screen content on the second screen device 302c with the primary content on the first screen device 301c.
Still referring to
The synchronization signal S1 may be a multicast signal pushed to a plurality of second screen devices 302 listening for multicast signals. The second screen devices 302 may then determine whether the synchronization signal S1 is related to the second screen content SSC it is presenting. For example, where the interface 120a is streaming one television show and the interface 120b is streaming another television show, the synchronization signal S1, multicasted to both the second screen device 302a and second screen device 302b, might only be received and used by the second screen device 302a because the detection signal D was sent from interface 120a associated with the second screen device 302a. In this example, the second screen device 302b might ignore the multicasted synchronization signal S1 because its associated interface 120b is not streaming the same television show. Where the synchronization signal S1 is a multicast signal, it may be sent to all second screen devices 302 in the same zone, or all second screen devices 302 regardless of zones (the latter case is not depicted in
Alternatively, the synchronization signal S1 may include a plurality of signals that are selectively pushed to particular second screen devices 302 that have identified themselves as presenting (or desiring to present) related second screen content SSC. For instance, each time a second screen device 302 is directed to present different second screen content SSC, the second screen device 302 may send a signal to the synchronization manager 542 informing the synchronization manager 542 of the second screen content that it is presenting. As a result, the synchronization manager 542 may learn which second screen devices 302 should be sent synchronization signals related to such second screen content SSC.
The synchronization signal S2 may be different from the synchronization signal S1 because the second screen device 302c is associated with the interface 120c in a different zone than the zone Z which includes interfaces 120a and 120b. The synchronization signal S1 might not be useful to the second screen device 302c because the content C2 received by the interface 120c is not necessarily the same as the content C1. The synchronization signal S2 may be transmitted by the same synchronization manager 542 that transmits synchronization signal S1. However, the synchronization manager 542 may transmit the synchronization signal S2 in response to a different detection signal (not shown), than detection signal D, that is transmitted to the synchronization manager 542 by another interface 120 (not shown) in the same zone as the interface 120c. Also, although not shown in
Further,
Once a second screen device 302 receives second screen content SSC and a synchronization signal S1, S2, the second screen device 302 may perform synchronization. Specifically, the second screen device 302 may use a received synchronization signal S1, S2 to determine which segment or time point in the second screen content SSC to present. For example, if there are 30 segments of the second screen content SSC and the synchronization signal S1 indicates that the 20th segment should be presented, the second screen device 302 will analyze the second screen content SSC to present the 20th segment. As a result, the second screen content SSC presented on the second screen device 302 may be synchronized with the primary content C1, C2 on the associated first screen device 301. This synchronization is illustrated by the dashed lines connecting the second screen devices 302 with their associated first screen devices 301.
While
In accordance with the above, second screen devices 302 may synchronize second screen content SSC with linear primary content based on synchronization signals S1, S2 that are generated in response to detection signals D sent from other premises 102. In comparison, second screen devices 302 attempting to synchronize second screen content SSC with time-shifted primary content (e.g., video on-demand content) might only use synchronization signals S1, S2 that are generated in response to detection signals sent from an interface 120 at the same premises 102. Alternatively, second screen devices 302 may synchronize second screen content SSC with time-shifted primary content using audio recognition processes to analyze the audio of the time-shifted primary content or using triggers received, via a wired or wireless connection, directly from the interface 120 at the same premises 102. Accordingly, the system 500 may differentiate interfaces 120 presenting linear primary content from interfaces 120 presenting time-shifted programming content. For example, the synchronization manager 542 may be configured to determine whether a received detection signal D is generated in response to consumption of time-shifted primary content. If so, the synchronization manager 542 may transmit a unicast synchronization signal to the particular second screen device 302 being used to present second screen content SSC in synchronization with the time-shifted primary content.
In step 601, a user may use a web browser to access a web portal. This can be done using the second screen device 302 or another device with Internet access. Once at the web portal, a user may create an account in step 602. This may be done by entering a username and/or a password. By creating an account, a user may subscribe to a service of the present disclosure that provides a synchronized second screen experience.
In step 603, a user can register his/her particular second screen device 302 with the service of the present disclosure so that synchronization signals and second screen content may be received by the second screen device 302. During this registration process, the user may associate a default interface 120, and therefore a default zone, with the second screen device 302 and/or with a username used to log into a second screen experience application on the second screen device 302. For example, a user in
At the completion of step 603, an application on the second screen device 302 may have stored an interface 120 identifier. Thus, when the second screen device 302 subsequently sends a request for content, a computing device, such as the second screen content server 541 or the synchronization manager 542, may determine where (e.g., in which zone) the second screen device 302 is located. As a result, the second screen device 302 may receive the appropriate synchronization signals S1, S2 or synchronized second screen content.
In step 604, a user may designate the type of device so different signal formats can be sent depending on the device. Step 604 may also allow the user to enter other user preferences, such as preferences related to types of supplemental content (e.g., coupons, bonus videos, trivia questions, etc.) or parental controls to restrict access to certain second screen content. It is contemplated that different users consuming the same primary content C1, C2 within the same zone (and even through the same interface 120) may wish to receive different supplemental content. In other words, the second screen experience may be customized for users by providing a variety of supplemental content for any given piece of primary content C1, C2. Accordingly, the user preferences received in step 604 may be used by second screen devices 302 to control what supplemental content is received and/or presented. For example, a second screen device 302 may receive multiple versions of second screen content SSC for the same primary content and determine which version to present based on user preferences entered in step 604. Therefore, the user preferences may also be used to select which synchronization signal to use or control how synchronization is performed so that the presented second screen content SSC is synchronized with the primary content. Once preferences are submitted, a user profile associated with the account created in step 602 may exist. This user profile may be updated by returning to the web portal and editing the preferences.
The process of
With the second screen device 302 turned on, synchronicity between the supplemental content on the second screen device 302 and the primary content on the first screen device 301 may be calibrated at step 703. For example, calibration may be performed using the second screen device 302 to account for a propagation delay of the primary content to the interface 120 and/or first screen device 301 or of the synchronization signal to the second screen device 302. The propagation delay may be a time elapsing from a time that the primary content is transmitted from, for example, the local office 103 to a time that the primary content reaches the first screen device 301 and/or interface 120, or a time elapsing from a time that a synchronization signal is transmitted from, for example, the synchronization manager 542 to a time that it reaches the second screen device 302. In some situations, primary content may be received by different interfaces 120 at different times although it is transmitted to the interfaces 120 at the same time. Also, second screen devices 302 within the same zone may receive synchronization signals at different times. To carry out calibration to account for such propagation delays, a second screen device 302 may connect to the interface 120 and/or first screen device 301 via a wired and/or wireless connection. Through the connection, the first screen device 301 and/or interface 120 may inform the second screen device 302 of the propagation delay. Specifically, the interface 120 and/or first screen device 301 may compute a propagation delay by comparing a time that primary content was transmitted with a time that the primary content was received and provide this information to the second screen device 302. Calibration may also be performed by a second screen device 302 by comparing a time when a dummy synchronization signal is transmitted to a time that it is received. This information may be used when presenting the second screen content SCS according to a synchronization signal S1, S2. In some embodiments, a test may be performed to achieve calibration. For example, a user may make a selection on the second screen device 302 in response to some event (e.g., the start of a television program, start/end of a commercial break, etc.) associated with the primary content presented on the first screen device 301 which may allow the second screen device 302 to compute a propagation delay. Although the calibration at step 703 is shown as occurring after step 702 and before step 704, it should be understood that the calibration may take place at other times in the process and/or may be performed multiple times.
At step 704, a user may operate the second screen device 302 to execute an application that is designed to provide an interface for users to consume second screen content SSC. In some examples, simply turning on the second screen device 302 may trigger the application to run, and thus, provide a second screen experience. The application may be stored on the second screen device 302. Once the application begins to run, a user may log into a second screen experience service. Logging-in may include providing a username and/or password or other identification information. By logging-in to the second screen experience, a user may enter the second screen device 302 into a service network so that the correct synchronization signals S1, S2 and/or second screen content SSC may be provided to the second screen device 302.
In step 705, a user may select second screen content SSC that the user wishes to download and/or consume. Specifically, a user may operate the application to specify second screen content SSC. The application may provide the user with a listing of second screen content SSC available for consumption. The listing may be sorted based on the primary content C1, C2 it is associated with. Accordingly, a user may enter or otherwise identify which primary content they are viewing in order to select the second screen content they would like to consume. That is, based on the selection of the primary content C1, C2 being consumed, the corresponding second screen content SSC may be selected. The second screen device 302 may communicate with the interface 120 and/or first screen device 301 to identify this selection. Further, where the second screen device 302 is used to turn on the first screen device 301 or tune the first screen device 301 to a particular channel or service, the second screen device 302 may automatically (e.g., without further user input) select the appropriate second screen content SSC based on the identification of the selected channel or service. Also, there might not be a requirement that the user is consuming the primary content C1, C2 associated with the second screen content SSC that the user selects. In other words, a user may select second screen content SSC even though he/she is not consuming the associated primary content C1, C2. Another optional feature of the application may be the ability to provide a preview of the second screen content SSC that is available for download.
Step 706 includes a step of determining whether the location of the second screen content SSC is to be changed. As mentioned with respect to
If is determined that the second screen device 302 is in a different zone than its location setting currently indicates, the location setting may be updated at step 707. After the proper zone is indicated in the location setting, step 708 may be performed to transmit a request for second screen content SSC. The second screen content request may be transmitted by the second screen device 302 via a network 530 to a second screen content server 541 and/or a synchronization manager 542. The second screen content request may indicate the zone in which the second screen device 302 is located and/or the second screen content SSC desired by the user. In some cases, the second screen content request may include multiple signals. For example, one signal may indicate the zone in which the second screen device 302 is located and may be transmitted to the synchronization manager 542, while another signal may indicate the second screen content desired and may be sent to the second screen content server 541. In some cases, the zone might not be indicated, and the second screen content server 541, synchronization manager 542, and/or other computing device 200 on the network 530 may determine the zone associated with the second screen device 302 based on information stored in a profile associated with the second screen device 302. For example, the synchronization manager 542 may determine an identity of the second screen device 302 sending the second screen content request from an identifier in the request and determine the zone by referring to a profile set up for the second screen device as explained above with respect to
In response to the request for second screen content SSC, at step 709, the second screen content server 541 may transmit the appropriate second screen content SSC to the second screen device 302 that sent the request. Accordingly, at step 709, the second screen device 302 may receive the second screen content SSC it requested. The second screen device 302 may display the second screen content SSC once it is received or may buffer the second screen content SSC until a synchronization signal S1, S2 is received.
Additionally, the second screen device 302 may receive a synchronization signal S1, S2 from the synchronization manager 542 at step 710. In some examples, the synchronization signal S1, S2 may be addressed to a particular second screen device 302 that sent the request for second screen content SSC. In other examples, one or more of the synchronization signals S1, S2 may be a multicast signal so as to be received by a plurality of second screen devices 302. Further, in some examples, the synchronization signals S1, S2 may be sent by the synchronization manager 542 in response to a detection signal D received from an interface 120 and/or the second screen content request. In other words, a detection signal D and/or the second screen content request may trigger the synchronization manager 542 to transmit the synchronization signals S1, S2. Subsequently, the second screen device 302 may synchronize the second screen content SSC with the primary content, which may be presented on a first screen device 301, according to a received synchronization signal S1, S2 at step 711. For example, referring to
Further, step 712 may be performed to determine whether there is a change in the second screen content SSC requested. The application on the second screen device 302 may check whether a user has requested different second screen content SSC. This determination may be made based on user provided input (e.g., user input selecting different second screen content SSC from a list) or a detection that the second screen device 302 was used to change the primary content presented on the first screen device 301. If it is determined that new second screen content SSC has not been requested (No at step 712), the process may return to step 710 and may wait to receive another synchronization signal S1, S2 in order to maintain synchronization. Meanwhile, if it is determined that new second screen content SSC has been requested (Yes at step 712), the process may return to step 705 to select the new second screen content SSC.
Referring to Table 1, the 5% in the cell for Channel 25 at 8:00 am indicates that 5% of the interfaces 120 expected to tune to Channel 25 at 8:00 am are desired to provide detection signals D to report detected triggers. Notably, the percentages of for each piece of primary content (e.g., television program) may be different so that a common number of detection signals may be received regardless of how many people are consuming the primary content. As discussed in more detail below, the interfaces 120 may use this sampling information to determine whether they should send detection signals D in response to detected triggers.
Further, the sampling information may be specific for a particular zone. In other words, different zones may have different sampling information, and therefore, a table similar to Table 1 may be determined for each zone. Moreover, the sampling information may change as ratings change. For example, if the primary content on channel 29 at 8:00 am becomes less popular, the percentage of 3% may be increased because the number of interfaces 120 tuned to that primary content may decrease, and a larger subset of those interfaces may be relied upon to provide the detection signals D for triggers within that primary content.
It should be understood that the data represented by Table 1 is just one example form that the sampling information may take. The sampling information may take other forms from which similar information may be derived. For example, instead of including percentages in the cells of Table 1, the cells could indicate numbers of expected viewers, and from such numbers, the interfaces 120 can determine how often they should report triggers.
It is recognized that the sampling information might not reflect actual viewership and/or that popularity of primary content may fluctuate. That is, fewer or more people than expected may be watching a particular channel at a particular time, and therefore, the amount of detection signals transmitted may be different than desired. Thus, it may become desirable to adjust the sampling information thereby fine-tuning the number of detection signals transmitted upstream in response to detected triggers. To allow for such an adjustment, a multiplier may be determined. For example, if it is determined that the percentage indicated in the sampling information is too high, and as a result, more than enough detection signals D are being received, then a multiplier may be determined which when multiplied by the percentage of the sampling information would decrease the percentage. For example, if the percentage of 60% for channel 28 at 8:00 am causes twice the amount of detection signals D than desired to be transmitted, a multiplier of 0.5 may be determined and sent to the interfaces 120 using the 60% so that those interfaces 120 will use an adjusted percentage of 30% (60%×0.5) to determine whether to report detection signals D going forward. In contrast, if the percentage of 10% for channel 25 at 9:00 am causes a quarter (¼) of the amount of detection signals D than desired to be transmitted, a multiplier of 4 may be determined and sent to the interfaces 120 using the 10% so that those interfaces 120 will use an adjusted percentage of 40% (10%×4) to determine whether to report detection signals D going forward.
A multiplier may be determined for each zone. Therefore, if fewer detection signals than expected are received from interfaces 120 in a first zone, while more detection signals than expected are received from interfaces 120 in a second zone, the multiplier for the first zone may be higher than that of the second zone. Multipliers may include a single value and may be determined at shorter intervals than the sampling information. Thus, transmission of the multipliers may use less bandwidth than transmission of updated sampling information.
Step 803 may include transmitting the sampling information and a multiplier from a local office 103, synchronization manager 542, or other computing device on the network 530 to one or more interfaces 120. The transmission at step 803 may be a multicast transmission in which the sampling information and multiplier are pushed to a plurality of interfaces 120. Further, this transmission may take place at a predetermined time. For example, the sampling information and multiplier may be transmitted downstream from the local office 103 to each interface 120 at a set time once a day. While transmission of the sampling information may be limited to conserve bandwidth, updated multipliers may be transmitted more frequently.
At step 804, the sampling information and multiplier may be received by one or more interfaces 120. The interfaces 120 may store the sampling information and multiplier in a local cache.
Step 805 illustrates that the local office 103 may also transmit the primary content C1, C2 having embedded triggers downstream to the interfaces 120. This primary content C1, C2 may originate at content providers. The primary content C1, C2 along with the embedded triggers may be received by the interfaces 120 at step 806. The interface 120 may include a receiver configured to tune to a particular frequency to pick up a particular channel among the primary content C1, C2.
Upon receiving the primary content C1, C2, the interfaces 120 may analyze the primary content C1, C2 to detect triggers embedded within the content at step 807. The triggers may be embedded within primary content C1, C2 at periodic intervals or at random intervals. Once a trigger is detected, the interface 120 may proceed to step 808. At step 808, each interface 120 that detects a trigger may determine whether it should send a detection signal D in response to detecting that particular trigger. In order to reduce upstream bandwidth, it may be desirable that not all interfaces 120 transmit a detection signal D in response to every trigger. For each trigger, only some interfaces 120 within a zone might send a detection signal D. Each interface 120 may make the determination on a trigger-by-trigger basis as to whether it should transmit a detection signal D. If the interface 120 determines not to send the detection signal D (No at step 808), the interface 120 may continue to monitor the primary content C1, C2 to detect another trigger. That is, the process may return to step 807 to detect the next trigger when the interface 120 determines not to transmit a detection signal D in response to the most recently detected trigger. Further details regarding the determination at step 808 will be described below.
If the interface 120 determines that it will transmit a detection signal D (Yes at step 808), the detection signal D may be generated and transmitted at step 809. The transmitted detection signal D may include an identifier to identify the primary content being presented on the first screen device 301, an identifier to identify the trigger that the detection signal D is being transmitted in response to, and/or time information indicating a time at which the trigger was detected (or a time at which the detection signal D is generated). The detection signal D may be transmitted to the synchronization manager 542 via the network 530 (e.g., the Internet). The detection signal D may be an IP packet (e.g., IPv4 or IPv6 packet) addressed to the synchronization manager 542.
The detection signal D may be received by the synchronization manager 542 at step 810. The synchronization manager 542 may decode the detection signal D to determine the zone that the interface 120, which transmitted the detection signal D, is located within. Further, the synchronization manager 542 may decode the detection signal D to determine which trigger the detection signal D was sent in response to. For example, the synchronization manager 542 may determine an identifier from within the detection signal D that identifies a trigger. From this identifier, the synchronization manager 542 may determine the zone that the detection signal D came from and/or the content that the trigger was embedded within. As shown in
After receiving a detection signal D, the synchronization manager 542 may identify one or more second screen devices 302 to which a synchronization signal S1, S2 should be transmitted at step 811. Specifically, the synchronization manager 542 may determine which second screen devices 302 are in the same zone as the zone from which the detection signal D, received in step 810, is sent. This determination may be based on information stored in a database of the synchronization manager 542. The information may include a listing of all second screen devices 302 registered with a particular service and registered to have a particular default zone. Thus, for example, if the detection signal D received in step 810 was from an interface 120 in zone 2, the synchronization manager 542 may identify all second screen devices 302 that have been set with zone 2 as their default zone. In this example, the synchronization manager 542 may identify second screen devices 302 whether or not they are turned on or off and/or regardless of what they are currently being used for (e.g., the second screen devices 302 may be identified even though they are not being used to consume second screen content). In other cases, the synchronization manager 542 may identify only those second screen devices 302 that are currently operating within the same zone as the interface 120 that sent the detection signal D. As discussed above, a user may manipulate a second screen device 302 to specify the location (e.g., indicate the zone) in which the second screen device 302 is currently operating. This location information (e.g., the current zone of the second screen device 302) may be sent to the synchronization manager 542. Thus, when the synchronization manager 542 receives a detection signal D, the synchronization manager 542 may use the information it has received, specifying which second screen devices 302 are in which zones, to identify the second screen devices 302 that are currently operating in the same zone associated with the detection signal D. Further, the synchronization manager 542 may also keep track of what second screen content SSC is being requested from which second screen devices 302. Thus, in some examples, the second screen devices 302 identified by the synchronization manager 542 may be those second screen devices 302 that have requested the second screen content SSC associated with the same primary content C1, C2 that the detection signal D is associated with. Accordingly, for example, if a detection signal D was transmitted from zone 2, instead of identifying all second screen devices 302 in zone 2, the synchronization might only identify those second screen devices 302 in zone 2 that have requested second screen content SSC associated with the same primary content C1, C2 that the detection signal D is associated with.
Regardless of which second screen devices 302 are identified or how they are identified, the identified set of second screen devices 302 may be sent a synchronization signal in step 812. The synchronization signal may serve to notify second screen devices 302 of the portion or point in time of the primary content presented on the first screen device 301. Based on this information, the second screen device 302 may determine which portion of the second screen content SSC, which it has previously received, should be presented. Thus, the second screen device 302 may synchronize the second screen content SSC with the primary content C1, C2 presented on the first screen device 301 at step 813. For example, the second screen device 302 may use a segment number included within the synchronization signal S1, S2 to identify a portion of the primary content C1, C2 that is being presented on the first screen device 301 and to determine a corresponding portion of the second screen content SSC to present. Alternatively, the second screen device 302 may use time information included in the synchronization signal S1, S2 to identify a point in time of the primary content C1, C2 and to determine a corresponding portion of the second screen content SSC to present. Notably, the second screen content SSC may be indexed by time points of the primary content C1, C2 and/or segment numbers of the primary content C1, C2 so that the corresponding portions of the second screen content SSC can be determined from the information in the synchronization signals S1, S2.
In some examples, second screen content SSC may be indexed according to its own time points and/or segment numbers. In such examples, the synchronization manager 542 may translate the detection signals D into information indicating the time points and/or segment numbers of the second screen content SSC. The synchronization manager 542 may then generate and transmit synchronization signals S1, S2 including this information so that the second screen device 302 may use this information to extract the appropriate portion of second screen content SSC to present. In light of this disclosure, it should be understood that the second screen content SSC and primary content C1, C2 may be correlated with one another in various manners, and therefore, the synchronization signals S1, S2 may include various types of information that can be used by second screen devices 302 to synchronize the second screen content SSC with the primary content C1, C2.
The process of
Once a trigger is detected in step 901a, the interface 120 may determine time information at step 902a. The time information may indicate a time of day (e.g., 8:07 am) or a time period (e.g., 8:00 am to 8:30 am). The interface 120 may include an internal clock for this purpose. Alternatively, the interface 120 may extract time of day information from another signal or the trigger itself. Further, at step 903a, the interface 120 may determine a channel (e.g., television channel) or other identifier indicating the stream of primary content C1, C2 being presented on the first screen device 301. Based on the time information determined in step 902a and the channel determined in step 903a, the interface 120 may retrieve a value indicating a percentage of interfaces 120 that the system would like to report detection signals D. This percentage may be extracted from statistical information previously sent to the interface 120 or retrieved in response to detecting the trigger at step 901a. Where statistics (e.g., television ratings) demonstrate that the channel determined in step 903a at the time determined in step 902a receives low viewership, the percentage retrieved at step 904a may be relatively high so that the synchronization manager 542 can be guaranteed to receive a detection signal D. In contrast, where statistics (e.g., television ratings) demonstrate that the channel determined in step 903a at the time determined in step 902a receives high viewership, the percentage retrieved at step 904a may be relatively low so that the synchronization manager 542 can be guaranteed to receive a detection signal D without being overwhelmed with a high volume of detection signals D.
Additionally, at step 905a, an interface 120 may retrieve a multiplier. The interface 120 may receive multipliers relatively frequently, and therefore, the multiplier retrieved at step 905a may be the most recently received multiplier. The retrieved multiplier may be specific to the zone in which the interface 120 resides. The multiplier may be used to adjust the statistics on a zone-by-zone basis in realization that users in different zones may have different preferences. Moreover, the multiplier may provide a lightweight (in terms of payload) means for adjusting the statistics as time passes. The multiplier may offer a way to adjust the statistics when it is determined that the statistics are not accurately representing the present viewership. For example, a spike in viewership of a particular television program may result due to uncommon circumstances (e.g., a current event involving an actor may increase viewership of a television program featuring that actor), and the multiplier may allow for a real-time adjustment of the statistics.
Using the percentage and multiplier, the interface may execute an algorithm at step 906a. The algorithm may be predetermined or provided to the interface 120 from an external source. The results of executing the algorithm may dictate whether the interface 120 sends a detection signal D. Various algorithms may be used in step 906a. The algorithms may take into account a random number, an identifier of the trigger, a MAC address of the interface 120, epoch time, and/or other factors in addition to the multiplier and percentage described above.
Regardless of the algorithm, step 907a may be performed to determine whether based on the results of the algorithm, the interface 120 should send a detection signal D. If the interface 120 determines that it should not send a detection signal D, the process may return to step 901a to detect the next trigger within the primary content C1, C2. However, if the interface 120 determines that it should send a detection signal D, the interface 120 may generate the detection signal D. Generating the detection signal D may encompass packaging an identifier of the trigger detected in step 901a in an IP packet having a header addressed to the synchronization manager 542. The interface 120 may then transmit the detection signal D, via the network 530, to the synchronization manager 542 at step 908a.
After the random number is generated, the algorithm may be executed by the interface 120 at step 906b. In the example of
As shown in
After receiving a detection signal D, the synchronization manager 542 may decode the detection signal D to determine an identifier of the detection signal D at step 1002. This identifier may correspond to an identifier of the trigger that prompted the detection signal D to be sent in the first place. From the identifier, the synchronization manager 542 may determine a zone in which the detection signal D originated. That is, the synchronization manager 542 may determine which zone the interface 120 that sent the detection signal D is located in. The synchronization manager 542 may also determine the identity of the primary content C1, C2 (and/or a portion thereof) containing the trigger that prompted the detection signal D to be transmitted. Additionally, or alternatively, the synchronization manager 542 may decode the detection signal D to identify the MAC address or IP address associated with the interface 120 that sent the detection signal D, and determine the zone of the interface 120 from this information. Further, the synchronization manager 542 may track MAC addresses and IP addresses of the interfaces 120 sending the detection signals D to verify that the system is working properly. If it is determined, based on collected MAC addresses or IP addresses, that a particular interface 120 is sending too many detection signals D, the synchronization manager 542 may alert an operator (or other administrative entity) that the system or the particular interface 120 might be malfunctioning.
The decoded information may be stored at step 1003. Specifically, the synchronization manager 542 may store, or cause another computing device to store (e.g., a database), information identifying the primary content C1, C2 having the trigger that caused the detection signal D to be sent, the zone from which the detection signal D was sent (or other location information, e.g., a MAC address), and/or a time that the detection signal D was transmitted (or received). Because many detection signals D may be received at the same time or within a short period of time from one another, the decoded information may be temporarily stored and discarded after a set period of time. In some examples, temporarily storing the decoded information may be sufficient because the decoded information might only be used to determine how many interfaces 120 are responding to the same trigger. Since the detection signals D received in response to the same trigger are expected to be received within a relatively short time period of one another, after a certain time period, the decoded information may be deleted from memory because it may be assumed that all of the detection signals D for that trigger should have been received.
In step 1004, the synchronization manager 542 may compare the stored information with desired results. For example, the synchronization manager 542 may evaluate the information stored in step 1003 to determine how many similar detection signals D are being received. Specifically, the synchronization manager 542 may count the number of detection signals D that were received from the same zone in response to the same trigger as the detection signal D received in step 1001. The synchronization manager 542 may then compare this sum to a predetermined value representing the desired results to determine whether the sum is greater than, less than, or equal to the predetermined value. In step 1004 of
In step 1005, the synchronization manager 542 may determine whether too many responses to triggers (e.g., detection signals) are being received. Specifically, the synchronization manager 542 may determine whether the number of detection signals D received from a particular zone in response to a particular trigger exceeds the desired results based on the comparison in step 1004. An upper threshold may be used to determine what number is too many. For example, it may be acceptable to receive a certain number of detection signals D (e.g., 5 signals) over the desired results (e.g., 20 signals), but it may be considered too many if an upper threshold (e.g., 50 total signals) is exceeded. If too many responses are being received (Yes at step 1005), step 1006 may be performed to decrease a multiplier. By decreasing the multiplier, which interfaces 120 use to determine whether to send the detection signals D, the number of detection signals transmitted from the interfaces 120 may be reduced. As a result, the upstream bandwidth of the links 101 and the network 530 may be conserved and network congestion may be reduced. After the multiplier is decreased, the multiplier may be transmitted at step 1007 to each of the interfaces 120 in the zone identified as responding with too many detection signals D. Step 1007 may be performed periodically (e.g., once a day) or soon after the multiplier is decreased. By controlling when the multiplier is transmitted in step 1007, the system may be fine-tuned to balance reliability with network traffic. For example, by controlling step 1007 to transmit the multiplier once a day, the system may avoid over-reacting to uncommon circumstances.
If the synchronization manager 542 determines that there are not an excess number of responses (No at step 1005), step 1008 may be performed to determine whether too few responses are received. Specifically, the synchronization manager 542 may determine whether the number of detection signals D received from a particular zone in response to a particular trigger is less than the desired results based on the comparison in step 1004. A lower threshold may be used to determine what number of detection signals D is too few. For example, it may be acceptable to receive a certain number of detection signals D (e.g., 10 signals) below the desired results (e.g., 20 signals), but it may be considered too few if a lower threshold (e.g., 5 total signals) is not met. If too few responses are being received (Yes at step 1008), step 1009 may be performed to increase a multiplier. By increasing the multiplier, which interfaces 120 use to determine whether to send the detection signals D, the number of detection signals D transmitted from the interfaces 120 may be increased. As a result, the synchronization manager 542 may ensure that it receives enough detection signals D so that it can send a synchronization signal to provide a reliable synchronized experience for users of the second screen devices 302. After the multiplier is increased, the multiplier may be transmitted at step 1010 to each of the interfaces 120 in the zone identified as responding with too few detection signals D. Step 1010 may be performed periodically (e.g., once a day) or soon after the multiplier is decreased. By controlling when the multiplier is transmitted in step 1010, the system may be fine-tuned to balance reliability with network traffic.
If it is determined that a sufficient amount of detection signals D are received at step 1008, the process may return to step 1001 to continue to monitor subsequently received detection signals D. The process may also return to step 1001 after transmitting the adjusted multiplier in either steps 1007 or 1010.
Although example embodiments are described above, the various features and steps may be combined, divided, omitted, and/or augmented in any desired manner, depending on the specific secure process desired. For example, the process of
Number | Name | Date | Kind |
---|---|---|---|
5287489 | Nimmo et al. | Feb 1994 | A |
5321750 | Nadan | Jun 1994 | A |
5353121 | Young et al. | Oct 1994 | A |
5485221 | Banker et al. | Jan 1996 | A |
5583563 | Wanderscheid et al. | Dec 1996 | A |
5589892 | Knee et al. | Dec 1996 | A |
5592551 | Lett et al. | Jan 1997 | A |
5594509 | Florin et al. | Jan 1997 | A |
5613057 | Caravel | Mar 1997 | A |
5621456 | Florin et al. | Apr 1997 | A |
5657072 | Aristides et al. | Aug 1997 | A |
5659793 | Escobar et al. | Aug 1997 | A |
5666645 | Thomas et al. | Sep 1997 | A |
5675752 | Scott et al. | Oct 1997 | A |
5694176 | Bruette et al. | Dec 1997 | A |
5802284 | Karlton et al. | Sep 1998 | A |
5826102 | Escobar et al. | Oct 1998 | A |
5844620 | Coleman et al. | Dec 1998 | A |
5850218 | LaJoie et al. | Dec 1998 | A |
5852435 | Vigneaux et al. | Dec 1998 | A |
5860073 | Ferrel et al. | Jan 1999 | A |
5883677 | Hofmann | Mar 1999 | A |
5892902 | Clark | Apr 1999 | A |
5892905 | Brandt et al. | Apr 1999 | A |
5905492 | Straub et al. | May 1999 | A |
5929849 | Kikinis | Jul 1999 | A |
5990890 | Etheredge | Nov 1999 | A |
5996025 | Day et al. | Nov 1999 | A |
6002394 | Schein et al. | Dec 1999 | A |
6005561 | Hawkins et al. | Dec 1999 | A |
6008803 | Rowe et al. | Dec 1999 | A |
6008836 | Bruck et al. | Dec 1999 | A |
6016144 | Blonstein et al. | Jan 2000 | A |
6025837 | Matthews, III et al. | Feb 2000 | A |
6049823 | Hwang | Apr 2000 | A |
6061695 | Slivka et al. | May 2000 | A |
6067108 | Yokote et al. | May 2000 | A |
6088722 | Herz et al. | Jul 2000 | A |
6091411 | Straub et al. | Jul 2000 | A |
6094237 | Hashimoto | Jul 2000 | A |
6141003 | Chor et al. | Oct 2000 | A |
6148081 | Szymanski et al. | Nov 2000 | A |
6162697 | Singh et al. | Dec 2000 | A |
6169543 | Wehmeyer | Jan 2001 | B1 |
6172677 | Stautner et al. | Jan 2001 | B1 |
6177931 | Alexander et al. | Jan 2001 | B1 |
6191781 | Chaney et al. | Feb 2001 | B1 |
6195692 | Hsu | Feb 2001 | B1 |
6205582 | Hoarty | Mar 2001 | B1 |
6219839 | Sampsell | Apr 2001 | B1 |
6239795 | Ulrich et al. | May 2001 | B1 |
6240555 | Shoff et al. | May 2001 | B1 |
6281940 | Sciammarella | Aug 2001 | B1 |
6292187 | Gibbs et al. | Sep 2001 | B1 |
6292827 | Raz | Sep 2001 | B1 |
6295057 | Rosin et al. | Sep 2001 | B1 |
6314569 | Chernock et al. | Nov 2001 | B1 |
6317885 | Fries | Nov 2001 | B1 |
6345305 | Beck et al. | Feb 2002 | B1 |
6405239 | Addington et al. | Jun 2002 | B1 |
6415438 | Blackketter et al. | Jul 2002 | B1 |
6421067 | Kamen et al. | Jul 2002 | B1 |
6426779 | Noguchi et al. | Jul 2002 | B1 |
6442755 | Lemmons et al. | Aug 2002 | B1 |
6477705 | Yuen et al. | Nov 2002 | B1 |
6486920 | Arai et al. | Nov 2002 | B2 |
6522342 | Gagnon et al. | Feb 2003 | B1 |
6529950 | Lumelsky et al. | Mar 2003 | B1 |
6532589 | Proehl et al. | Mar 2003 | B1 |
6564263 | Bergman et al. | May 2003 | B1 |
6567104 | Andrew et al. | May 2003 | B1 |
6571392 | Zigmond et al. | May 2003 | B1 |
6591292 | Morrison et al. | Jul 2003 | B1 |
6621509 | Eiref et al. | Sep 2003 | B1 |
6636887 | Augeri | Oct 2003 | B1 |
6658661 | Arsenault et al. | Dec 2003 | B1 |
6678891 | Wilcox et al. | Jan 2004 | B1 |
6684400 | Goode et al. | Jan 2004 | B1 |
6731310 | Craycroft et al. | May 2004 | B2 |
6760043 | Markel | Jul 2004 | B2 |
6763522 | Kondo et al. | Jul 2004 | B1 |
6766526 | Ellis | Jul 2004 | B1 |
6806887 | Chernock et al. | Oct 2004 | B2 |
6857128 | Borden, IV et al. | Feb 2005 | B1 |
6886029 | Pecus et al. | Apr 2005 | B1 |
6910191 | Segerberg et al. | Jun 2005 | B2 |
6918131 | Rautila et al. | Jul 2005 | B1 |
7028327 | Dougherty et al. | Apr 2006 | B1 |
7065785 | Shaffer et al. | Jun 2006 | B1 |
7103904 | Blackketter et al. | Sep 2006 | B1 |
7114170 | Harris et al. | Sep 2006 | B2 |
7134072 | Lovett et al. | Nov 2006 | B1 |
7152236 | Wugofski et al. | Dec 2006 | B1 |
7162694 | Venolia | Jan 2007 | B2 |
7162697 | Markel | Jan 2007 | B2 |
7197715 | Valeria | Mar 2007 | B1 |
7207057 | Rowe | Apr 2007 | B1 |
7213005 | Mourad et | May 2007 | B2 |
7221801 | Jang et al. | May 2007 | B2 |
7237252 | Billmaier | Jun 2007 | B2 |
7293275 | Krieger et al. | Nov 2007 | B1 |
7305696 | Thomas et al. | Dec 2007 | B2 |
7313806 | Williams et al. | Dec 2007 | B1 |
7337457 | Pack et al. | Feb 2008 | B2 |
7360232 | Mitchell | Apr 2008 | B2 |
7363612 | Satuloori et al. | Apr 2008 | B2 |
7406705 | Crinon et al. | Jul 2008 | B2 |
7440967 | Chidlovskii | Oct 2008 | B2 |
7464344 | Carmichael et al. | Dec 2008 | B1 |
7516468 | Deller et al. | Apr 2009 | B1 |
7523180 | DeLuca et al. | Apr 2009 | B1 |
7587415 | Gaurav et al. | Sep 2009 | B2 |
7624416 | Vandermolen et al. | Nov 2009 | B1 |
7640487 | Amielh-Caprioglio et al. | Dec 2009 | B2 |
7702315 | Engstrom et al. | Apr 2010 | B2 |
7703116 | Moreau et al. | Apr 2010 | B1 |
7721307 | Hendricks et al. | May 2010 | B2 |
7743330 | Hendricks et al. | Jun 2010 | B1 |
7752258 | Lewin et al. | Jul 2010 | B2 |
7861259 | Barone, Jr. | Dec 2010 | B2 |
7913286 | Sarachik et al. | Mar 2011 | B2 |
7958528 | Moreau et al. | Jun 2011 | B2 |
8266652 | Roberts et al. | Sep 2012 | B2 |
8296805 | Tabatabai et al. | Oct 2012 | B2 |
8365230 | Chane et al. | Jan 2013 | B2 |
8381259 | Khosla | Feb 2013 | B1 |
8448208 | Moreau et al. | May 2013 | B2 |
8660545 | Redford et al. | Feb 2014 | B1 |
8699862 | Sharifi et al. | Apr 2014 | B1 |
8793256 | McIntire et al. | Jul 2014 | B2 |
8850495 | Pan | Sep 2014 | B2 |
8863196 | Patil et al. | Oct 2014 | B2 |
8938675 | Holladay | Jan 2015 | B2 |
8973063 | Spilo | Mar 2015 | B2 |
9021528 | Moreau et al. | Apr 2015 | B2 |
20010014206 | Artigalas et al. | Aug 2001 | A1 |
20010027563 | White et al. | Oct 2001 | A1 |
20010049823 | Matey | Dec 2001 | A1 |
20010056573 | Kovac et al. | Dec 2001 | A1 |
20010056577 | Gordon et al. | Dec 2001 | A1 |
20020010928 | Sahota | Jan 2002 | A1 |
20020016969 | Kimble | Feb 2002 | A1 |
20020023270 | Thomas et al. | Feb 2002 | A1 |
20020026642 | Augenbraun et al. | Feb 2002 | A1 |
20020041104 | Graf et al. | Apr 2002 | A1 |
20020042915 | Kubischta et al. | Apr 2002 | A1 |
20020059094 | Hosea et al. | May 2002 | A1 |
20020059586 | Carney et al. | May 2002 | A1 |
20020059629 | Markel | May 2002 | A1 |
20020067376 | Martin et al. | Jun 2002 | A1 |
20020069407 | Fagnani et al. | Jun 2002 | A1 |
20020070978 | Wishoff et al. | Jun 2002 | A1 |
20020078444 | Krewin et al. | Jun 2002 | A1 |
20020078449 | Gordon et al. | Jun 2002 | A1 |
20020083450 | Kamen et al. | Jun 2002 | A1 |
20020100041 | Rosenberg et al. | Jul 2002 | A1 |
20020107973 | Lennon et al. | Aug 2002 | A1 |
20020108122 | Alao et al. | Aug 2002 | A1 |
20020120609 | Lang et al. | Aug 2002 | A1 |
20020124254 | Kikinis | Sep 2002 | A1 |
20020144269 | Connelly | Oct 2002 | A1 |
20020144273 | Reto | Oct 2002 | A1 |
20020147645 | Alao et al. | Oct 2002 | A1 |
20020152477 | Goodman et al. | Oct 2002 | A1 |
20020156839 | Peterson et al. | Oct 2002 | A1 |
20020169885 | Alao et al. | Nov 2002 | A1 |
20020170059 | Hoang | Nov 2002 | A1 |
20020171691 | Currans et al. | Nov 2002 | A1 |
20020171940 | He et al. | Nov 2002 | A1 |
20020184629 | Sie et al. | Dec 2002 | A1 |
20020188944 | Noble | Dec 2002 | A1 |
20020196268 | Wolff et al. | Dec 2002 | A1 |
20020199190 | Su | Dec 2002 | A1 |
20030001880 | Holtz et al. | Jan 2003 | A1 |
20030005444 | Crinon et al. | Jan 2003 | A1 |
20030005453 | Rodriguez et al. | Jan 2003 | A1 |
20030014752 | Zaslavsky et al. | Jan 2003 | A1 |
20030014753 | Beach et al. | Jan 2003 | A1 |
20030018755 | Masterson et al. | Jan 2003 | A1 |
20030023970 | Panabaker | Jan 2003 | A1 |
20030025832 | Swart et al. | Feb 2003 | A1 |
20030028873 | Lemmons | Feb 2003 | A1 |
20030041104 | Wingard et al. | Feb 2003 | A1 |
20030051246 | Wilder et al. | Mar 2003 | A1 |
20030056216 | Wugofski et al. | Mar 2003 | A1 |
20030056218 | Wingard et al. | Mar 2003 | A1 |
20030058948 | Kelly et al. | Mar 2003 | A1 |
20030066081 | Barone et al. | Apr 2003 | A1 |
20030067554 | Klarfeld et al. | Apr 2003 | A1 |
20030070170 | Lennon | Apr 2003 | A1 |
20030079226 | Barrett | Apr 2003 | A1 |
20030084443 | Laughlin et al. | May 2003 | A1 |
20030084444 | Ullman et al. | May 2003 | A1 |
20030084449 | Chane et al. | May 2003 | A1 |
20030086694 | Davidsson | May 2003 | A1 |
20030093790 | Logan et al. | May 2003 | A1 |
20030093792 | Labeeb et al. | May 2003 | A1 |
20030097657 | Zhou et al. | May 2003 | A1 |
20030110500 | Rodriguez | Jun 2003 | A1 |
20030110503 | Perkes | Jun 2003 | A1 |
20030115219 | Chadwick | Jun 2003 | A1 |
20030115612 | Mao et al. | Jun 2003 | A1 |
20030126601 | Roberts et al. | Jul 2003 | A1 |
20030132971 | Billmaier et al. | Jul 2003 | A1 |
20030135464 | Mourad et al. | Jul 2003 | A1 |
20030140097 | Schloer | Jul 2003 | A1 |
20030151621 | McEvilly et al. | Aug 2003 | A1 |
20030158777 | Schiff et al. | Aug 2003 | A1 |
20030172370 | Satuloori et al. | Sep 2003 | A1 |
20030182663 | Gudorf et al. | Sep 2003 | A1 |
20030189668 | Newnam et al. | Oct 2003 | A1 |
20030204814 | Elo et al. | Oct 2003 | A1 |
20030204846 | Breen et al. | Oct 2003 | A1 |
20030204854 | Blackketter et al. | Oct 2003 | A1 |
20030207696 | Willenegger | Nov 2003 | A1 |
20030226141 | Krasnow et al. | Dec 2003 | A1 |
20030229899 | Thompson et al. | Dec 2003 | A1 |
20040003402 | McKenna | Jan 2004 | A1 |
20040019900 | Knightbridge et al. | Jan 2004 | A1 |
20040019908 | Williams et al. | Jan 2004 | A1 |
20040025180 | Begeja et al. | Feb 2004 | A1 |
20040031015 | Ben-Romdhane et al. | Feb 2004 | A1 |
20040031058 | Reisman | Feb 2004 | A1 |
20040039754 | Harple | Feb 2004 | A1 |
20040078814 | Allen | Apr 2004 | A1 |
20040107437 | Reichardt et al. | Jun 2004 | A1 |
20040107439 | Hassell et al. | Jun 2004 | A1 |
20040128699 | Delpuch et al. | Jul 2004 | A1 |
20040133923 | Watson et al. | Jul 2004 | A1 |
20040136698 | Mock | Jul 2004 | A1 |
20040172648 | Xu et al. | Sep 2004 | A1 |
20040194136 | Finseth et al. | Sep 2004 | A1 |
20040199578 | Kapczynski et al. | Oct 2004 | A1 |
20040221306 | Noh | Nov 2004 | A1 |
20040226051 | Carney et al. | Nov 2004 | A1 |
20050005288 | Novak | Jan 2005 | A1 |
20050015796 | Bruckner et al. | Jan 2005 | A1 |
20050015804 | LaJoie et al. | Jan 2005 | A1 |
20050028208 | Ellis et al. | Feb 2005 | A1 |
20050086172 | Stefik | Apr 2005 | A1 |
20050125835 | Wei | Jun 2005 | A1 |
20050149972 | Knudson | Jul 2005 | A1 |
20050155063 | Bayrakeri et al. | Jul 2005 | A1 |
20050262542 | DeWeese et al. | Nov 2005 | A1 |
20050283800 | Ellis et al. | Dec 2005 | A1 |
20050287948 | Hellwagner et al. | Dec 2005 | A1 |
20060004743 | Murao et al. | Jan 2006 | A1 |
20060059525 | Jerding et al. | Mar 2006 | A1 |
20060068818 | Leitersdorf | Mar 2006 | A1 |
20060080707 | Laksono | Apr 2006 | A1 |
20060105793 | Gutowski et al. | May 2006 | A1 |
20060156336 | Knudson et al. | Jul 2006 | A1 |
20060195865 | Fablet | Aug 2006 | A1 |
20060200842 | Chapman et al. | Sep 2006 | A1 |
20060206470 | McIntyre | Sep 2006 | A1 |
20060206912 | Klarfeld et al. | Sep 2006 | A1 |
20060248572 | Kitsukama et al. | Nov 2006 | A1 |
20070064715 | Lloyd | Mar 2007 | A1 |
20070112761 | Xu et al. | May 2007 | A1 |
20070220016 | Estrada et al. | Sep 2007 | A1 |
20070271587 | Rowe | Nov 2007 | A1 |
20080037722 | Klassen | Feb 2008 | A1 |
20080060011 | Kelts | Mar 2008 | A1 |
20080071770 | Schloter et al. | Mar 2008 | A1 |
20080189740 | Carpenter et al. | Aug 2008 | A1 |
20080196070 | White et al. | Aug 2008 | A1 |
20080235725 | Hendricks | Sep 2008 | A1 |
20080276278 | Krieger et al. | Nov 2008 | A1 |
20080288644 | Gilfix et al. | Nov 2008 | A1 |
20080317233 | Rey et al. | Dec 2008 | A1 |
20090019485 | Ellis et al. | Jan 2009 | A1 |
20090024629 | Miyauchi | Jan 2009 | A1 |
20090094632 | Newnam et al. | Apr 2009 | A1 |
20090094651 | Damm | Apr 2009 | A1 |
20090164904 | Horowitz et al. | Jun 2009 | A1 |
20090222872 | Schlack | Sep 2009 | A1 |
20090228441 | Sandvik | Sep 2009 | A1 |
20090249427 | Dunnigan et al. | Oct 2009 | A1 |
20090271829 | Larsson et al. | Oct 2009 | A1 |
20090292548 | Van Court | Nov 2009 | A1 |
20100077057 | Godin et al. | Mar 2010 | A1 |
20100079670 | Frazier et al. | Apr 2010 | A1 |
20100175084 | Ellis et al. | Jul 2010 | A1 |
20100180300 | Carpenter et al. | Jul 2010 | A1 |
20100223640 | Reichardt et al. | Sep 2010 | A1 |
20100250190 | Zhang et al. | Sep 2010 | A1 |
20100251284 | Ellis et al. | Sep 2010 | A1 |
20110055282 | Hoving | Mar 2011 | A1 |
20110058101 | Earley et al. | Mar 2011 | A1 |
20110087348 | Wong | Apr 2011 | A1 |
20110093909 | Roberts et al. | Apr 2011 | A1 |
20110131204 | Bodin et al. | Jun 2011 | A1 |
20110209180 | Ellis et al. | Aug 2011 | A1 |
20110214143 | Rits et al. | Sep 2011 | A1 |
20110219419 | Reisman | Sep 2011 | A1 |
20110246495 | Mallinson | Oct 2011 | A1 |
20110247042 | Mallinson | Oct 2011 | A1 |
20120002111 | Sandoval | Jan 2012 | A1 |
20120054811 | Spears | Mar 2012 | A1 |
20120117151 | Bill | May 2012 | A1 |
20120227073 | Hosein et al. | Sep 2012 | A1 |
20120233646 | Coniglio et al. | Sep 2012 | A1 |
20120295686 | Lockton | Nov 2012 | A1 |
20120324002 | Chen | Dec 2012 | A1 |
20120324495 | Matthews, III et al. | Dec 2012 | A1 |
20120324518 | Thomas et al. | Dec 2012 | A1 |
20130110769 | Ito | May 2013 | A1 |
20130111514 | Slavin et al. | May 2013 | A1 |
20130262997 | Markworth et al. | Oct 2013 | A1 |
20130298038 | Spivack et al. | Nov 2013 | A1 |
20130326570 | Cowper et al. | Dec 2013 | A1 |
20130332839 | Frazier et al. | Dec 2013 | A1 |
20130332852 | Castanho et al. | Dec 2013 | A1 |
20130347018 | Limp et al. | Dec 2013 | A1 |
20130347030 | Oh | Dec 2013 | A1 |
20140006951 | Hunter | Jan 2014 | A1 |
20140009680 | Moon et al. | Jan 2014 | A1 |
20140032473 | Enoki et al. | Jan 2014 | A1 |
20140089423 | Jackels | Mar 2014 | A1 |
20140149918 | Asokan et al. | May 2014 | A1 |
20140150022 | Oh et al. | May 2014 | A1 |
20140325359 | Vehovsky et al. | Oct 2014 | A1 |
20140365302 | Walker | Dec 2014 | A1 |
20150026743 | Kim | Jan 2015 | A1 |
20150263923 | Kruglick | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
0624039 | Nov 1994 | EP |
0963115 | Dec 1999 | EP |
1058999 | Dec 2000 | EP |
1080582 | Mar 2001 | EP |
2323489 | Sep 1998 | GB |
9963757 | Dec 1999 | WO |
0011869 | Mar 2000 | WO |
0033576 | Jun 2000 | WO |
0110115 | Feb 2001 | WO |
0182613 | Nov 2001 | WO |
02063426 | Aug 2002 | WO |
02063471 | Aug 2002 | WO |
02063851 | Aug 2002 | WO |
02063878 | Aug 2002 | WO |
03009126 | Jan 2003 | WO |
03026275 | Mar 2003 | WO |
2011053271 | May 2011 | WO |
2012094105 | Jul 2012 | WO |
2012154541 | Nov 2012 | WO |
Entry |
---|
Canadian Office Action—CA 2,685,833—Dated Jan. 22, 2015. |
European Extended Search Report—EP 13192112.4—Dated May 11, 2015. |
Fernando Pereira, “The MPEG-4 Book”, Prentice Hall, Jul. 10, 2002. |
Michael Adams, “Open Cable Architecture”, Cisco Press, Dec. 3, 1999. |
Andreas Kraft and Klaus Hofrichter, “An Approach for Script-Based Broadcast Application Production”, Springer-Verlag Brling Heidelberg, pp. 74-82, 1999. |
Mark Riehl, “XML and Perl”, Sams, Oct. 16, 2002. |
MetaTV, Inc., PCT/US02/29917 filed Sep. 19, 2002, International Search Report dated Apr. 14, 2003; ISA/US; 6 pages. |
Sylvain Devillers, “Bitstream Syntax Definition Language: an Input to MPEG-21 Content Representation”, Mar. 2001, ISO, ISO/IEC JTC1/SC29/WG11 MPEG01/M7053. |
Shim, et al., “A SMIL Based Graphical Interface for Interactive TV”, Internet Tech. Laboratory Dept. of Comp. Engineering, San Jose State University, pp. 257-266, 2003. |
Yoon, et al., “Video Gadget: MPET-7 Based Audio-Visual Content Indexing and Browsing Engine”, LG Electronics Institute of Technology, 2001, pp. 59-68. |
Watchwith webpage; http://www.watchwith.com/content—owners/watchwith—plalform—components.jsp (last visited Mar. 12, 2013). |
Matt Duffy; TVplus App reveals content click-through rates north of 10% across sync enabled programming; http://www.tvplus.com/blog/TVplus-App-reveals-content-click-through-rates-north-of-10-Percent-across-sync-enabled-programming (retrieved from the Wayback Machine on Mar. 12, 2013). |
“In Time for Academy Awards Telecast, Companion TV App Umami Debuts First Real-Time Sharing of a TV Program's Images”; Umami News; http:www.umami.tv/2012-02-23.html (retrieved from the Wayback Machine on Mar. 12, 2013). |
Boronat F et al: “Multimedia group and inter-stream synchronization techniques: A comparative study”, Information Systems. Pergamon Press. Oxford. GB. vol. 34. No. 1. Mar. 1, 2009. pp. 108-131. XP025644936. |
Extended European Search Report—EP14159227.9—Mailing Date: Sep. 3, 2014. |
Response to European Office Action—European Appl. 13192112.4—submitted Dec. 9, 2015. |
CA Office Action—CA App 2,685,833—Mailed Jan. 27, 2016. |
European Office Action—EP App 14159227.9—Dated Jul. 12, 2016. |
Agnieszka Zagozdzinnska et al. “TRIDAQ Systems in HEP Experiments at LHC Accelerator” Kwartalnik Elektroniki I Telekomunikacji, vol. 59, No. 4, Jan. 1, 2013. |
CA Response to Office Action—CA Appl. 2,685,833—Submitted Jul. 17, 2015. |
Number | Date | Country | |
---|---|---|---|
20140280695 A1 | Sep 2014 | US |