1. Technical Field
The present invention relates to multiple ratio geared transmissions for use in an automotive vehicle powertrain and to a control strategy for effecting engagement and release of transmission friction torque establishing elements during a ratio change.
2. Background Art
A multiple-ratio (i.e., step-ratio) automatic transmission in an automotive vehicle powertrain adjusts a gear ratio between a torque source and a driveshaft to meet drive-ability requirements under dynamically-changing driving conditions. Ratio changes are achieved by engaging a so-called on-coming clutch (“OCC”) as a so-called off-going clutch (“OGC”) is released. The clutches, which may be referred to as transmission friction elements or brakes, establish and disestablish power flow paths from an internal combustion engine to vehicle traction wheels. During acceleration of the vehicle, the overall speed ratio, which is the ratio of transmission input shaft speed to transmission output shaft speed, is reduced as vehicle speed increases for a given engine throttle setting. This is an up-shift.
In the case of a synchronous up-shift, the OCC engages to lower both the gear ratio (i.e., the overall speed ratio) and the torque ratio (the ratio of output torque to input torque). The synchronous up-shift event can be divided into three phases, which may be referred to as a preparatory phase, a torque phase, and an inertia phase. The torque phase is a time period when the OGC torque is controlled to decrease toward a non-significant level with an intention to disengage it. Simultaneously, during the torque phase, the OCC is controlled to increase from a non-significant level, thereby initiating the OCC engagement according to a conventional up-shift control. The clutch engagement and disengagement timing results in a momentary activation of two torque flow paths through the gearing, thereby causing torque delivery to drop momentarily at the transmission output shaft. This condition, which can be referred to as a “torque hole,” occurs before the OGC disengages. A vehicle occupant can perceive a large torque hole as an unpleasant shift shock. The preparatory phase is a time period prior to the torque phase. The inertia phase is a time period when the OGC starts to slip due to substantially reduced holding capacity, following the torque phase.
The release timing of the OGC has to be synchronized with a certain OCC torque level at the end of the torque phase. Missed synchronization leads to inconsistent shift quality, often resulting in audible engine flair or gear-set tie-up with a deeper and wider torque hole.
Certain controls employ an open-loop approach for OCC engagement and OGC release control. This open-loop approach requires manual adjustment of OCC and OGC control parameters under multiple operating conditions. As a result, a manufacturer building a vehicle having the transmission has to carry out a relatively long shift quality calibration process for each vehicle program. It is also difficult to account for variability in actuator characteristics and dynamically changing operating conditions, resulting in inconsistent shift quality.
Other controls employ a closed-loop method to consistently release the OGC at an ideal timing based on direct or indirect measurements of OGC torque. However, this closed-loop method does not provide a solution to mitigate a torque hole.
Other control techniques employ a coupled engine-transmission control during the torque phase to reduce or eliminate torque holes. However, in practice, it is difficult to simultaneously synchronize the behaviors of three actuators (i.e., the engine, the OCC, and the OGC) due to their finite controllability in conjunction with the presence of various noise factors. In order to improve the control robustness, certain control techniques aim at reducing errors between target OCC and OGC torques as compared with those derived from torque sensor measurements within a transmission system. However, engine and transmission controls still remain tightly coupled through kinematic constraints. Synchronization or coupling between engine torque control, OCC engagement control, and OGC release control is still required.
In view of the foregoing, there is a need to reduce the complexity of an up-shift control for improved shift consistency and control robustness.
In at least one embodiment, a method for an automatic transmission is provided. The transmission has gearing defining multiple torque flow paths from an input shaft to an output shaft and further has an off-going clutch (“OGC”) and an on-coming clutch (“OCC”) for shifting from a low gear configuration to a high gear configuration during a ratio up-shift event having a preparatory phase, a torque phase, and an inertia phase. The method includes, during the up-shift event, measuring input torque using an input torque sensor in communication with the input shaft. The method includes determining a target input torque profile for the torque phase and a target input torque profile for the inertia phase each based on the input torque measured during the preparatory phase. The method includes, during the torque phase, controlling an engine torque to cause the input torque to achieve the target input torque profile for the torque phase. The method includes, during the inertia phase, controlling the OCC to cause the input torque to achieve the target input torque profile for the inertia phase.
In at least one embodiment, a synchronous automatic transmission is provided. The transmission includes an input shaft connectable to an engine via a torque converter, an output shaft, and gearing defining multiple torque flow paths from the input shaft to the output shaft. The transmission further includes an off-going clutch (“OGC”) and an on-coming clutch (“OCC”) for shifting from a low gear configuration to a high gear configuration during a ratio up-shift event having a preparatory phase, a torque phase, and an inertia phase. The transmission further includes an input torque sensor in communication with the input shaft and configured to measure input torque during the up-shift event. The transmission further includes a controller in communication with the OGC, the OCC, the engine, and the input torque sensor. The controller is configured to: determine a target input torque profile for the torque phase and a target input torque profile for the inertia phase each based on the input torque measured during the preparatory phase; during the torque phase, control an engine torque to cause the input torque to achieve the target input torque profile for the torque phase; and during the inertia phase, control the OCC to cause the input torque to achieve the target input torque profile for the inertia phase.
In at least one embodiment, a method is provided. The method includes measuring input torque during an up-shift having preparatory, torque, and inertia phases. The method includes determining target input torque profiles for the torque and inertia phases based on the input torque during the preparatory phase. The method includes, during the torque phase, controlling an engine torque to cause the input torque to achieve the target profile for the torque phase. The method includes, during the inertia phase, controlling an on-coming clutch to cause the input torque to achieve the target profile for the inertia phase.
Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the present invention that may be embodied in various and alternative forms. The figures are not necessarily to scale, some features may be exaggerated or minimized to show details of particular components. In addition, any or all features from one embodiment may be combined with any other embodiment. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for the claims and/or as a representative basis for teaching one skilled in the art to variously employ the present invention.
As indicated, the shifting of a multiple-ratio (i.e., step-ratio) automatic transmission is accompanied by applying and/or releasing friction elements (such as plate clutches, band-brakes, etc.) which change speed and torque relationships by altering planetary gear configurations. The friction elements may be actuated hydraulically, mechanically, or through other means. A realizable combination of planetary gear configurations determines a total number of ratio steps. Although various planetary gear configurations are used in automatic transmissions, the basic principle of shift kinematics is similar.
During a typical synchronous clutch-to-clutch up-shift event from a lower gear configuration to a higher gear configuration, both the gear ratio (the transmission input shaft speed/transmission output shaft speed) and the torque ratio (the transmission output shaft torque/transmission input shaft torque) become lower. During the up-shift event, a friction element (i.e., the off-going clutch (“OGC”)) associated with the lower gear configuration disengages while a different friction element (i.e., the on-coming clutch (“OCC”)) associated with a higher gear configuration engages.
An embodiment of the present invention provides a closed-loop control method which eliminates or reduces torque holes while de-coupling engine control from transmission control based on measured or estimated transmission input torque signals. The control method is intended to reduce the complexity of up-shift control for improved shift consistency and control robustness. The control method is further intended to deliver a consistent and improved shift quality while reducing shift calibration requirements.
Referring now to
Although the powertrain shown in
The powertrain shown in
A compound planetary gear set 18 includes a ring gear 19, which is driveably connected to an output shaft 13. Sun gear 20 acts as a torque input element for gear set 18. A second sun gear 21 engages long planet pinions 22, which in turn engage ring gear 19 and short pinions 23. Sun gear 20 also engages pinions 23.
The pinions form a compound pinion assembly supported on carrier 24, which can be selectively braked by brake 25, which is identified in
As indicated, conventional transmission 10 has a low gear configuration in
During a synchronous up-shift from the low gear configuration to the high gear configuration, OGC 25 is released and OCC 26 is applied. At this time, sun gear 21 is braked by OCC 26. OCC 26 functions as a reaction point for compound planetary gear set 18. During this up-shift from a low to high gear configuration, both the gear ratio and the torque ratio become lower.
In sum,
Referring now to
The synchronous up-shift event of
Torque phase 32 ends and inertia phase 33 begins when OGC 25 starts slipping, as shown at 39. OGC 25 may slip before its capacity reaches zero or a non-significant level, as shown at 39, if the load exerted onto OGC 25 exceeds its torque-holding capacity. During inertia phase 33, OGC 25 slip speed rises (not shown) while OCC 26 slip speed decreases toward zero, as shown at 40 and 45. The engine speed drops, as shown at 41, as the planetary gear configuration changes. During inertia phase 33, the output shaft torque is primarily affected by OCC 26 torque capacity. This causes the output torque to rapidly move to level 42, which corresponds to OCC torque capacity 43 at the beginning of inertia phase 33. Under certain conditions, this may lead to a large torque oscillation at output shaft 13 that can be perceptible to a vehicle occupant as an unpleasant shift shock.
Referring now to
Referring now to
Transmission 55 is the same as conventional transmission 10 shown in
Referring now to
A powertrain controller (illustrated with reference to
Again, the up-shift event is divided into three phases: a preparatory phase 101, a torque phase 102, and an inertia phase 103. During preparatory phase 101, the controller initiates a command to stroke OCC 26 to prepare for its engagement while reducing torque capacity of OGC 25, as shown at 105, as a step toward its release. The controller increases engine torque reserve or transmission input torque reserve in a controlled manner without significantly raising engine torque output, as shown at 106, and input torque 104. Herein, engine torque reserve is defined as the amount of accessible torque that can be readily drawn as required during torque phase 102. This may be achieved by increasing engine throttle while retarding spark timing simultaneously in a controlled manner based on the measured input torque feedback. Alternatively, other means such as electronic valve timing control and a turbo charger control may be utilized to increase engine torque reserve or transmission input torque reserve.
A control algorithm constructs a target input torque profile 107 for torque phase 102 and a target input torque profile 108 for inertia phase 103 based on the input torque measurements during preparatory phase 101. During torque phase 102, the controller maintains OGC torque capacity at a reduced level without OGC slipping, as shown at 109, while increasing OCC torque capacity, as shown at 110.
The OGC and OCC controls may be performed based on an open-loop approach to achieve a prescribed torque profile. Alternatively, the OGC and OCC controls may be based on a closed loop approach. If OGC release control is based on an open loop method, it is advantageous to calibrate control parameters to induce a slight gear-set tie-up. According to a conventional control, a tie-up leads to a wider and deeper torque hole with inconsistent shift feel.
However, in accordance with embodiments of the present invention, the controller taps into engine torque reserve and adjusts engine output torque during torque phase 102, as shown at 111, by engine spark timing or other means to achieve target input torque profile 107, thereby eliminating or reducing a torque hole during torque phase 102, shown with reference to 112, even with a gear-set tie-up. Alternatively, an auxiliary electronic motor may be used to supplement engine torque to achieve a target transmission input torque level. At the end of torque phase 102, OGC torque capacity is dropped toward zero for its release, as shown at 113. When OGC 25 starts slipping (not shown), torque phase 102 ends and inertia phase 103 begins.
During inertia phase 103, OCC torque capacity 114 primarily affects output shaft torque 115 and input shaft torque 116. The controller adjusts the actuator of OCC 26 to achieve target input torque profile 108 through a close loop control based on input torque measurements during inertia phase 103, as shown at 116. The controller may truncate the engine torque during inertia phase 103, as shown at 117, according to a conventional engine control practice. An effect of engine torque variability on input and output shaft torque (more specifically, inertia torque variability) can be eliminated by a closed-loop OCC torque control designed to achieve a target input torque profile. During inertia phase 103, the engine speed decreases, as shown at 118, as OCC slip speed drops, as shown at 119. When OCC 26 is securely engaged, as shown at 120, the up-shift event completes. The controller raises OCC torque capacity, as shown at 121, for securely holding OCC 26 while removing engine torque truncation, as shown at 122.
Referring now to
Referring now to
The control sequence begins with the powertrain controller initiating a shift event and defining the start of the preparatory phase (i.e., setting i=0) as shown in block 201. The controller then prepares the actuator of the OCC for its engagement as shown in block 202 while reducing OGC torque capacity without slipping as shown in block 203. Input torque sensor 60 measures transmission input torque at every control time step i or at time ti and provides the corresponding input torque signal indicative of the measured transmission input torque to the controller as shown in block 204. The controller raises engine torque reserve Tres toward a desired level Tres-target while maintaining a steady transmission input torque level through a closed loop control based on measured input torque Tin(ti) as shown in block 205. The desired level Tres-target is determined based on engine operating conditions. The controller generates a target input torque profile Tin-target(t) for both the torque phase and the inertia phase based on available engine torque reserve Tres(ti) and input torque measurements Tin(ti) as shown in block 206.
As described, the controller generates the target input torque profile Tin-target(t) for both the torque and inertia phases according to a control algorithm provided by blocks 204, 205, and 206. The control algorithm is indicated by block 200 which encompasses blocks 204, 205, and 206. This control algorithm will be described in greater detail below with reference to
The controller determines the end of the preparatory phase when Tres(ti) reaches Tres-target or when i reaches a pre-calibrated time interval Iend as shown in block 207. The controller iterates the control loop as shown at 208 until the conditions in block 207 are met. When the preparatory phase ends (i.e., when the conditions in block 207 are met), the control sequence moves to the start of the torque phase and the controller sets the control loop index j to 0 as shown in block 209. The controller raises OCC torque capacity toward a pre-determined target level TOCC-target for its engagement as shown in block 210 while further reducing OGC torque capacity with or without slipping as shown in block 211. If OGC 25 is allowed to slip, it needs to maintain enough capacity to allow only an incipient slip level. Input torque level Tin(ti) is measured by input torque sensor 60 at each control time step j or at time tj as shown in block 212. The controller computes the difference ΔTin between the measured input torque Tin(ti) and the target input torque profile Tin-target(t) as shown in block 213. Subsequently, the controller adjusts the engine torque level through spark timing control or other means such as the use of an auxiliary electric motor to minimize the error ΔTin through a closed loop control as shown in block 214.
The controller determines the end of the torque phase when the OCC torque capacity TOCC assumes the pre-determined target level TOCC-target or when j reaches a pre-determined time interval Jend as shown in block 215. The OCC torque capacity TOCC can be determined based on torque estimation algorithms. Alternatively, the torque phase ends when the load exerted on OGC 25 approaches zero.
As previously mentioned, a detrimental effect of mild gear-set tie-up, such as a deeper and wider torque hole, is mitigated by actively maintaining input torque level Tin(t) at a desired target level Tin-target(t). Therefore, unlike a conventional clutch-to-clutch control method, the control method in accordance with the present invention does not require a precise synchronization of OCC torque level and OGC release timing for consistent shift quality as long as they are calibrated toward gear-set tie-up.
The controller iterates the control loop beginning from block 215 as shown at 216 until the end-of-torque phase conditions in block 215 are met. When the torque phase ends (i.e., when the conditions in block 215 are met), the control sequence moves to the start of the inertia phase and OGC 25 is totally released as shown in block 217.
At the start of the inertia phase, the controller sets its time step index k to 0 as shown in block 218. The controller may modulate or truncate the engine torque according to a conventional engine control practice during the inertia phase as shown in block 219 in order to complete OCC engagement within a targeted inertia phase duration. The controller continues to collect from input torque sensor 60 input torque measurements Tin(tk) at every control time step tk as shown in block 220. The controller computes the error ΔTk between the measured input torque Tin(tk) and the target input torque profile Tin-target(tk) as shown in block 221. The controller adjusts the actuator of OCC 26 to reduce the error ΔTk in a closed loop manner as shown in block 222. Until OCC slip speed ωOCC reaches zero as shown in block 223, the controller iterates the control loop as shown at 224. When the inertia phase ends, the controller removes engine torque truncation and raises OCC torque capacity for securely locking OCC 26 to complete the shift control sequence as shown in block 225.
Referring now to
In operation, the controller samples a transmission input torque measurement from input torque sensor 60 at every control time step i or at time ti as shown in block 204. The controller raises engine torque reserve Tres(ti) toward a desired torque level Tres-target while maintaining a steady transmission input torque level through a closed loop control based on the measured input torque Tin(ti) as shown in block 205. Specifically, the controller maintains the input torque Tin(ti+1) within Tin(ti)+ΔTin(ti), where ΔTin is a pre-determined threshold parameter. The desired torque level Tres-target is determined based on engine operating conditions.
As indicated by block 303, the controller generates a final input torque target Tin-target-final by multiplying Tin(ti) by a pre-determined gear ratio Rgear where Rgear is associated with the gear ratio changing. The controller constructs the target input torque profile Tin-target(t) for the torque phase by raising the torque level linearly from the current level Tin(ti) to the final target Tin-target-final between tTP and tIP (or over the torque phase ΔtTP) as shown in block 304, where tTP and tIP are the beginning of the torque phase and the inertia phase, respectively. The controller maintains the target input torque profile Tin-target(t) for the inertia phase at the final target Tin-target-final during the inertia phase ΔtIP as shown in block 304.
It is noted that the beginning of the torque phase tTP is dynamically adjusted at every control time step depending on when the preparatory phase ends. Further, the torque phase ΔtTP and the inertia phase ΔtIP may be determined based on desired target intervals.
The engine torque reserve Tres(ti) may not achieve its desired target Tres-target(ti) at the end of the preparatory phase. In this case, the controller re-calculates the final input torque target T*in-target-final based on Tres(ti) as shown in block 305, were “a” is a scaling parameter.
The controller re-constructs a target input torque profile Tin-target(t) for the torque phase by increasing the torque level linearly from Tin(ti) to the final target T*in-target-final as shown in block 306. The controller re-constructs a target input torque profile Tin-target(t) for the inertia phase by increasing the torque level linearly from T*in-target-final to Tin-target-final over ΔtIP as shown in block 306. The target input torque profile Tin-target(t) is stored in a memory of the controller as shown in block 206 to enable input-torque based shift control according to the present invention.
Referring now to
Referring now to
As described, embodiments of the present invention may have the following features and advantages. A unique process to control synchronous clutch-to-clutch up-shift events for a vehicle powertrain system having a step-ratio automatic transmission system equipped with an input shaft torque sensing device and means to increase or supplement engine torque during shifting, including a step-ratio, pre-transmission hybrid electric vehicle. The use of transmission input torque measurements to select a desired input torque profile and to control transmission input torque to achieve the desired input torque profile in a closed loop manner during a synchronous clutch-to-clutch up-shift event. A process to select a desired input torque profile for both torque and inertia phases based on measured input torque during the preparatory phase of up-shifting. A process to increase engine torque through a closed-loop control based on input torque measurements while maintaining a steady input torque level during the preparatory phase. A process to adjust a desired input torque profile for torque and inertia phases based on available engine torque reserve which is created during the preparatory phase of up-shifting. A process to control engine torque in a controlled manner based on error between measured transmission input torque and target input torque profile during the torque phase. A process to control OCC torque in a controlled manner based on error between measured transmission input torque and target input torque level during the inertia phase. A process to eliminate or reduce torque hole for eliminated or reduced shift shock and for increased driving comfort.
Engine torque control and OCC torque capacity are decoupled through the use of input torque measurements. As a result, the detrimental effects of OCC clutch control variability, such as inconsistent shift feel, are eliminated or reduced by maintaining transmission input torque at a desired level through a closed loop engine torque control based on measured input torque. Sensitivity of missed-synchronization between OGC release timing from OCC torque capacity level is reduced. As a result, any detrimental effects of mild gear-set tie-up, such as a deeper and wider torque hole, are eliminated or reduced by maintaining transmission input torque at a desired level though a closed loop engine torque control based on measured input torque.
While embodiments of the present invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the present invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the present invention. For example, engine torque reserve may be readily supplemented by an auxiliary electric motor.
Number | Name | Date | Kind |
---|---|---|---|
4576265 | Kumura et al. | Mar 1986 | A |
4653621 | Oshiage | Mar 1987 | A |
4724723 | Lockhart et al. | Feb 1988 | A |
6243637 | Minowa et al. | Jun 2001 | B1 |
6364811 | Hubbard et al. | Apr 2002 | B1 |
6487925 | Fischer et al. | Dec 2002 | B2 |
6909955 | Vukovich et al. | Jun 2005 | B2 |
6991584 | Cowan | Jan 2006 | B2 |
7125364 | Cring | Oct 2006 | B2 |
7351183 | Fujii et al. | Apr 2008 | B2 |
7445581 | Cring | Nov 2008 | B2 |
8296024 | Stoller et al. | Oct 2012 | B2 |
20030163235 | Tokura et al. | Aug 2003 | A1 |
20060135316 | Fujii et al. | Jun 2006 | A1 |
20080139362 | Fujii et al. | Jun 2008 | A1 |
20090013803 | Lohr et al. | Jan 2009 | A1 |
20090112416 | Heap et al. | Apr 2009 | A1 |
20090118931 | Kaminsky et al. | May 2009 | A1 |
20100262344 | Fujii et al. | Oct 2010 | A1 |
20100318269 | Yanakiev et al. | Dec 2010 | A1 |
20110184613 | Fujii et al. | Jul 2011 | A1 |
20110264342 | Baur et al. | Oct 2011 | A1 |
20130085647 | Lister et al. | Apr 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20120130608 A1 | May 2012 | US |