1. Field of the Invention
The present invention relates to a material feeding mechanism and, more particularly, to a synchronous fine tunable material feeding mechanism.
2. Description of the Related Art
Taiwan Patent Publication No. 284190 entitled “Roller type metal plate feeder adjusting assembly” comprises a platform 10, an adjusting member 20, a link axle 30, an eccentric cam 40 and a rotary axle 50. An adjusting member 20 is disposed separately on both sides of the platform 10. The adjusting member 20 has a long hole 21 for allowing a screw 212 to adjust the height of the platform 10. The link axle 30 has two adjusting members 20 disposed separately on both sides of the link axle 30. The eccentric cam 40 is coupled at one end of the link axle 30 and has a handle 41 for pivotally rotating the link axle 30 and the adjusting member 20 when the handle 41 is pulled. Such arrangement changes the height of the adjusting member 20 and the rotary axle 50. The screw 212 is used to pass through the long hole 21 of the adjusting member 20 to secure the adjusting member 20 in position. Then a spring (not numbered in the publication) disposed at the internal side of the handle 41 is used to achieve the purpose of synchronously adjusting a gap.
However, the prior art structure still has many drawbacks. Specifically it is necessary to adjust the spring (not numbered in the publication) at the inner side of the handle 41 when the force for clamping the two rollers is adjusted, such that the downward force can be exerted evenly on the metal panel. Since it is difficult for the spring to control the adjustment due to a wrong number of turns or due to the operation by an inexperienced operator, the force exerted on both ends of the rollers will be uneven and the metal panel may be tilted or twisted, and thus resulting in an unsmooth operation of the material feeding process and causing troubles to the application. The aforementioned problems demand immediate attention and improvements.
In view of the foregoing shortcomings of the prior art, the present invention is intended to overcome the technical issues of requiring an adjustment of a spring at the inner side of the handle when the force for clamping the two rollers is adjusted, so that a downward force can be exerted evenly on the metal panel. Since it is difficult for the spring to control the adjustment due to a wrong number of turns or due to the operation by an inexperienced operator, the force exerted on both ends of the rollers will be uneven and the metal panel may be tilted or twisted, and thus resulting in an unsmooth operation of the material feeding process and causing troubles to the application.
Therefore, it is the primary objective of the present invention to provide a synchronous fine tunable material feeding mechanism, which comprises a platform, a control member and a link device. A side panel is installed separately on both sides of the platform, and a top panel is installed on the side panels A fixed roller and a movable roller are disposed between the two side panels. Two control members are disposed at the top panel and elastically push against the movable roller. The link device is disposed between the two control members and is capable of simultaneously driving another control member according to the movement of a control member and elastically pushing the movable roller synchronously to produce a downward force with a constant pressure. As a result, an even force is exerted on the work piece clamped between the movable roller and the fixed roller, which is a novel improved design.
The above objectives, features and advantages of the present invention will become apparent from the following detailed description taken with the accompanying drawings. However, these drawings are provided for reference and illustration and not intended to act as a limitation to the present invention.
Referring to
The platform 10 comprises a side panel 11 disposed separately on both sides of the platform 10. A fixed roller 12 and a pivotal axle 13 are disposed between the two side panels 11. A movable stand 14 is installed onto the pivotal axle 13, and the movable stand 14 uses the pivotal axle 13 as the center of rotation and produces a swinging relation with respect to the side panels 11. The movable stand 14 comprises the movable roller 15 being pivotally disposed therein and parallel to the fixed roller 12, such that the movable roller 15 can generate a change to a gap between the swing of the movable roller 15 and the fixed roller 12. The movable stand 14 has a spring 141 installed separately on both ends of the top of the movable stand 14. The two side panels 11 also install a top panel 16, and an accommodating space 161 is disposed on one side of the top panel 16. A through hole 162 is disposed on each of both sides of the accommodating space 161, and the through hole 162 has a thread therein.
The control member 20 passes into the through hole 162 of the top panel 16 and also couples to the spring 141 of the movable stand 14. The control members 20 are pressed by the spring 141 to move the movable stand 14 downward, so that the movable roller 15 pivotally coupled in the movable stand 14 presses on the fixed roller 12. The control members 20 pass through the two through holes 162 of the top panel 16 according to this embodiment. The control member 20 comprises an adjusting end 21 and a threaded end 22. The adjusting end 21 according to this embodiment is a hexagonal adjusting end 21 having a penetrating hole 211 disposed on one side for allowing users to pull the adjusting end 21 by a tool. When the threaded end 22 passes through the through hole 162 of the top panel 16, a spiral movement is produced according to the thread inside the through hole 162. A groove 221 is disposed at the external periphery of the threaded end 22 and is parallel to the axis. The threaded end 22 forms a hollow sink hole 222 therein. The sink hole 222 can accommodate the spring 141 in contact with the movable stand 14. When the control member 20 is rotated, the threaded end 22 of the control member 20 performs a spiral movement to produce a slight axial gain and presses the spring 141 to push the movable stand 14 in order to achieve the purpose of fine tuning the movable roller 15 to press the fixed roller 12 downward.
The link device 30 is installed in the accommodating space 161 of the top panel 16 and coupled between the two control members 20. The link device 30 comprises two active components 31, a passive component 32 and two bases 33. The two active components 31 are coupled to the threaded ends 22 of the two control members 20, respectively. The active component 31 has a through hole 311, and a key slot 312 is disposed above the through hole 311. A key 313 is installed between the key slot 312 and a groove 221 of the threaded end 22 for driving each other. The active component 31 according to this embodiment is a gear, and the passive component 32 according to this embodiment is a synchronous belt installed between the two gears. The passive component 32 can effectively drive the active components 31 to rotate. The two bases 33 are secured, respectively, to both ends of the accommodating space 161 of the top panel 16 for fixing both active components 31 at appropriate positions. The base 33 comprises a through hole 331 having a thread therein for passage of the threaded end 22 of the control member 20. When the link device 30 is driven to rotate one control member 20, the other control member 20 is linked to achieve the synchronization effect.
The strain device 40 is installed in the accommodating space 161 of the top panel 16 and is in contact with the passive component 32 of the link device 30. The strain device 40 comprises a first roller 41 and a second roller 42. The first roller 41 is installed onto the internal side of the foregoing synchronous belt and the second roller 42 is installed onto the external side of the synchronous belt. When the strain device 40 is in use, the synchronous belt is pressed against the gear effectively without any error produced by the gap between the gears to assure the synchronous rotation of the two control members 20.
Referring to
The link device 30 according to the present invention is installed onto the internal side of the top panel 16. The link device 30 can produce a synchronous movement for both ends of the movable roller 15. When one control member 20 is adjusted, the other control member 20 is linked as well. The control members 20 utilize the spiral movement of the threaded end 22 for fine tuning a slight axial gain in order to achieve the function of synchronously fine tuning the movable roller 15 to press down.
Referring to
Referring to
Please refer to
Please refer to
In summation of the above description, the present invention herein enhances the performance over that of the conventional structure.
While the invention has been described by way of examples and in terms of preferred embodiments, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Name | Date | Kind |
---|---|---|---|
1825957 | Lane | Oct 1931 | A |
2684001 | Wilson | Jul 1954 | A |
3277856 | Ricci | Oct 1966 | A |
3493159 | Edwards et al. | Feb 1970 | A |
4470284 | Noe et al. | Sep 1984 | A |
4759485 | Braun et al. | Jul 1988 | A |
4819507 | Pescher | Apr 1989 | A |
5040429 | Del Castillo | Aug 1991 | A |
5072872 | Casset et al. | Dec 1991 | A |
5425530 | Daurte | Jun 1995 | A |
5772095 | Nordlof | Jun 1998 | A |
5967512 | Irsik | Oct 1999 | A |
6533154 | Kitai et al. | Mar 2003 | B2 |
Number | Date | Country |
---|---|---|
284190 | Aug 1996 | TW |