This patent pertains to the design and manufacture of linear and rotary synchronous motors and generators. The invention has application to virtually all synchronous machines, particularly those that use permanent magnets for the field.
The design and manufacture of synchronous motors has been carried on for over 100 years, but the applications have been primarily for low power motors where synchronism is essential and for high power motors where efficiency and size advantages overcome other disadvantages.
Nicola Tesla invented the induction motor in 1888 and since then the induction motor, also called an asynchronous motor, has dominated the market for rotary motors. The induction motor has been the preferred choice for electric utility powered motors because they have been less expensive to build and to control, and they were not cost-effective for most variable speed applications.
The increased use of synchronous motors is due to the evolution of microprocessors designed specifically for motor control, the availability of more cost effective power electronics, better permanent magnets, and the increased recognition that variable speed operation allows performance advantages. For example, the permanent magnet rotary synchronous motor is receiving serious attention as a candidate for electric vehicle propulsion and for low speed, high torque applications where induction motor alternatives are heavy, inefficient and expensive. The linear version of this motor, called the Linear Synchronous Motor (LSM), is now used for applications that cannot be effectively addressed by the linear induction motor (LIM) and as a replacement for rotary motors driving wheels.
It should be recognized that that there is usually very little difference between the design of a motor and the design of a generator (or alternator). Hence, in all discussion herein, the term motor should be interpreted as implying both motors and generators and machines designed to perform both functions.
There are several problems that motor designers must address: reducing size and weight, increasing efficiency, decreasing cost, eliminating cogging or ripple force, and simplifing manufacturing. Many patents have been issued that attempt to show how to improve synchronous machines with respect to these factors: U.S. Pat. No. 6,081,058 (Motor Structure Having a Permanent Magnet Motor with Grooves to Reduce Torque Ripples); U.S. Pat. No. 5,990,592 (Magnets Containing-Type Alternating-Current Motor and Method of Designing the Same); U.S. Pat. No. 5,757,100 (Method & Apparatus for Reducing Cogging Torque in an Electric Motor); U.S. Pat. No. 5,723,917 (Flat Linear Motor); U.S. Pat. No. 5,523,637 (Permanent Magnet Electrical Machine with Low Reluctance Torque); U.S. Pat. No. 5,521,451 and U.S. Pat. No. 5,126,606 (Low-cost Stepping or Synchronous Motor and Electric Drive Motor, Especially for Control and Regulation); U.S. Pat. No. 5,519,266 (High Efficiency Linear Motor); U.S. Pat. No. 5,444,341 (Method and Apparatus for Torque Ripple Compensation); U.S. Pat. No. 5,214,323 and U.S. Pat. No. 5,032,746 (Linear Motor with Reduced Cogging and Linear Motor with Driving Device). In every one of these patents, the focus is on solving a single problem and the result is degradation in some other aspect of the motor performance and/or manufacturing cost.
The problems identified above are so important that they are dealt with in some detail, and without adequate resolution, in reference books on synchronous motor design. Examples include Gieras, Jacek and Piech, Zbigniew, Linear Synchronous Motors, Transportation and Automation Systems, CRC Press, 2000; Nassar, Linear Motors, Wiley, 1994; Hughes, Austin; Electric Motors and Drives: Fundamentals, Types and Applications, 2nd Edition; Butterworth-Heinemann, 1993
In view of the foregoing, an object of the invention is to provide improved synchronous machines, including synchronous motors, and methods for design and manufacture thereof, with improved performance and lower manufacturing cost.
The invention provides novel synchronous machines and methods of design and construction thereof, more particularly, for example, to increase performance and decrease cost based a variety of combinations of: (i) selection of magnet and winding-slot size to eliminate cogging forces, (ii) use a winding that consists of non-overlapping coils so as to simplify manufacture and allow deeper slots; (iii) omission of extensions on the pole tips so that prewound coils can be inserted over the pole tips and thereby reduce winding resistance and inductance; and (iv) reduction of the number of slots for windings
The invention has application, by way of non-limiting example, to propulsion of vehicles for material handling and transportation and to combined magnetic suspension and propulsion. The invention is also applicable to both rotary and linear synchronous machines and to machines with either a permanent magnet or electromagnetic fields.
Synchronous machines according to the invention provide improved performance at reduced cost for any one or more of the following reasons:
i. The shape of the magnetic and ferromagnetic components eliminates cogging or ripple forces without the need to use skewed slots or other performance degrading means.
ii. The primary winding is constructed with non-overlapping coils so as to reduce end turn length;
iii. The primary ferromagnetic structure uses poles with no (or substantially no) pole extensions so that pre-wound coils can be inserted over the poles; and/or
iv. The number of slots for windings is significantly less than most contemporary designs.
The invention provides, inter alia, for use of these methodologies in a variety of combinations so as to achieve a superior ratio of performance to cost. Thus, according to one aspect of the invention, there are provided synchronous machines and motors with magnetic and ferromagnetic components shaped to eliminate cogging or ripple forces (without the need to use skewed slots or other performance degrading means) that, additionally, have a primary winding constructed with non-overlapping coils so as to reduce end turn length.
According to a related aspect of the invention, there are provided synchronous machines and motors with magnetic and ferromagnetic components shaped to eliminate cogging or ripple forces (without the need to use skewed slots or other performance degrading means) that, additionally, have a primary ferromagnetic structure with poles with no (or substantially no) pole extensions.
According to another related aspect of the invention, there are provided synchronous machines and motors with magnetic and ferromagnetic components shaped to eliminate cogging or ripple forces (without the need to use skewed slots or other performance degrading means) that, additionally, have a reduced number of slots for windings.
Still other aspects of the invention provide synchronous machines and motors with a primary winding constructed with non-overlapping coils so as to reduce end turn length and, additionally, with a primary ferromagnetic structure that has poles with no (or substantially no) pole extensions.
A related aspect of the invention provides synchronous machines and motors with a primary winding constructed with non-overlapping coils so as to reduce end turn length and, additionally, with a reduced number of slots for windings.
Yet still other aspects of the invention provide synchronous machines and motors with a primary ferromagnetic structure with no (or substantially no) pole extensions and, additionally, with a reduced number of slots for windings.
Still yet other aspects of the invention provide synchronous machines and motors with magnetic and ferromagnetic components shaped to eliminate cogging or ripple forces (without the need to use skewed slots or other performance degrading means), additionally, with a primary winding constructed with non-overlapping coils so as to reduce end turn length and, further, with a primary ferromagnetic structure with no (or substantially no) pole extensions.
Yet still other aspects of the invention provide synchronous machines and motors with magnetic and ferromagnetic components shaped to eliminate cogging or ripple forces (without the need to use skewed slots or other performance degrading means) and, additionally, with a primary winding constructed with non-overlapping coils so as to reduce end turn length and, further, with a reduced number of slots for windings.
Still yet other aspects of the invention provide synchronous machines and motors with a primary winding constructed with non-overlapping coils so as to reduce end turn length, a primary ferromagnetic structure with no (or substantially no) pole extensions so that pre-wound coils can be inserted over the poles, and with a reduced number of slots for windings.
Further aspects of the invention provide synchronous machine/motors with magnetic and ferromagnetic components shaped to eliminate cogging or ripple forces (without the need to use skewed slots or other performance degrading means), a primary winding constructed with non-overlapping coils so as to reduce end turn length, a primary ferromagnetic structure that has poles with no (or substantially no) pole extensions so that pre-wound coils can be inserted over the poles, and with a reduced number of slots for windings.
According to further aspects of the invention, there are provided vehicles propelled by synchronous linear motors according to the foregoing.
Another aspect of the invention provides a vehicle propelled by a linear motor of the type described above with a permanent magnet field on the vehicle. The combination of relatively fewer and deeper winding slots achieves high force per unit area without excessive heating. The magnet is sized to virtually eliminate cogging and to minimize magnet cost. The combination produces a lower than normal ratio of attractive force between the stator and vehicle for a given propulsive force on the vehicle.
According to another aspect of the invention, there is provided a rotary motor built according to the foregoing with a high ratio of torque to motor mass. This is accomplished by using relatively small permanent magnets on larger-than-normal rotor diameter but without the need to use narrow slots to reduce cogging.
These and still other aspects of the invention are evident in the drawings and in the description that follows.
A more complete understanding of the invention may be attained by reference to the description below, taken together with drawings, in which:
Theory of Operation
Applicant's invention employs combinations of design techniques to achieve high performance and reduced manufacturing cost for a variety of types of synchronous machines. The initial discussion and figures refer to a linear machine with permanent magnet field, but the teachings are applicable to a wide class of rotary and linear machines with either permanent magnet or electromagnet fields and including machines using superconductors.
a is an example of a prior art LSM and
In
b has only three slots per wavelength and non-overlapping windings. It has half as many windings per wavelength and is obviously much simpler to wind. Designers have avoided this approach for what turn out to be unjustifiable reasons. The inventors have discovered that the embodiment illustrated in
Conventional wisdom suggests that one needs to have partially closed slots for the winding in order to minimize the magnet volume required, but the inventors have discovered that if the permanent magnets have nearly unity permeability or the air gap is relatively large, then the magnetic field lines 17 can almost as easily enter the armature teeth through the sides of the slots. By not using partially closed slots there is more room for the winding, the winding inductance is lower, and it is easier to wind the armature with minimum-length turns of wire.
Conventional wisdom also suggests that the design of
Finally, conventional wisdom suggests that using non-overlapping windings will lead to inefficient operation because of the reduced pitch of the winding. However, by using fewer slots per wavelength with no overlaps in the winding it is possible to use deeper slots for the winding, and the end turn resistance of the windings is substantially reduced. With shorter end turns and open slots the winding inductance is lower it is possible to use a shorter pole pitch with resulting higher frequency excitation. This reduces the mass of back iron required and leads to a lighter motor, especially in the case where the field is provided by permanent magnets.
An advantage of the illustrated embodiment is that there is less attractive force between the field and armature for a given propulsive force. This is due to the fact that some of the magnetic field lines enter the armature teeth from the side instead of from the top so they do not create an attractive force. In the case of linear motors this can be a significant advantage, particularly when very large attractive forces create added cost for wheels and support structure.
Reducing Cogging Force
The illustrated embodiment reduces cogging force by proper choice of dimensions, particularly, for example, when there are relatively few slots and teeth for each wavelength of motor. Conventional wisdom teaches against using only three teeth per wavelength because there can be strong cogging forces, particularly when there are no tips on the teeth. The cogging problem is due to the interaction of the field magnets with the teeth and is independent of the winding.
Typical Field Designs
In
Other types of magnet arrays can be used to advantage. For example, by tailoring the field it is possible to reduce both cogging forces and reluctance forces.
Analysis of Forces in a Synchronous Machine
There are three categories of force in any synchronous machine: forces due to the interaction of the winding current with the field and proportional to the product of armature current and field strength; forces due to variable reluctance of the winding and proportional to the square of the armature current; and cogging forces due to the interaction of the field with the ferromagnetic structure of the armature and proportional to the square of the strength of the field magnets. Although there are cases where reluctance forces or cogging forces may be desirable, the illustrated embodiment suppresses most of the force due to the interaction of the armature ferromagnetic structure 13b, 15b with the field magnets 12b.
In the following discussion we make certain assumptions concerning the motor structure:
These assumptions allow the use of Fourier methods to analyze the forces. Because of the assumed linearity of the model it is possible to relate each of the three categories of force to particular harmonics in a Fourier analysis of the forces. One way to show the nature of these forces is to put a current in the windings that corresponds to a particular point in time and then move the field relative to the armature. Ideally the force would vary sinusoidally with position.
As an example, assume that the permeability of the permanent magnets is the same as for free space so there are no reluctance forces. A Fourier analysis of the force shows that the only harmonics present are 1, 5, 6, 7, 11, 12, 13, . . . We can divide these forces into two categories: multiples of 6 and all the rest. A further analysis shows that the multiples of 6 forces are proportional to the square of the strength of the field magnet while the other forces are proportional to the armature current times the field strength. If the permeability of the magnets is not that of free space then additional frequencies are present due to reluctance forces. Table 1 gives the harmonics for each category of force and for different number of phases. In this Table parameter p is the number winding slots, which is assumed to be the same as the number of phases, and m is the least common multiple of p and two (because there are two symmetric poles in the field). It does not matter how the armature is wound as long as the winding is excited with p phases so that if the field moves 1/p times the wavelength the field will be the same, just shifted in time by 1/p of a cycle.
In many practical cases the only significant cogging force is the lowest harmonic, i.e. the 6th harmonic when there are three phases, so a key idea is to choose magnet dimensions that eliminate this component.
Note that if all dimensions are scaled by a factor then the optimum magnet length will be scaled by the same factor. Moreover, the inventors have discovered that the optimum magnet dimensions are not very sensitive to the air gap dimensions or to the depth of the slot. Therefore the relative dimensions for no 6th harmonic cogging for the structures of
One practical use of the foregoing is in 3-phase systems with three teeth per wavelength, but the use of a different number of teeth or phases may be desirable if there is a need for extremely low cogging forces. For example, the use of 5-phase excitation with 5 teeth per wavelength will give exceptionally low cogging force.
It might appear that the reluctance forces will not be present with the modified Halbach field structure. However, in most cases the field is constructed with high energy magnets that have a different permeability in the direction of magnetization from that for a direction normal to the direction of magnetization. For example, for high energy NdFeB magnets the relative permeability in the direction of magnetization is typically 1.06 while for any perpendicular direction it is about 1.2. Both of these values are sufficiently close to unity that in practice the reluctance forces are quite small.
The windings can be non-overlapping, as described previously, or can be wound with each winding enclosing two or more teeth. The nature of the winding will not affect the proper choice of magnet dimensions provided the phases satisfy the assumptions given.
Minimizing End Effects in Linear Motors or Segmented Rotary Motors
For most rotary motors the field and armature wrap around the entire periphery of the motor so both structures exhibit perfect periodicity. For linear motors and segmented rotary motors at least one of the structure has ends that destroy the periodicity and if no steps are taken to address end effects the motor may function less adequately. For purpose of the following discussion it is assumed that the magnet array is finite but the armature behaves as though it were infinitely long. A similar analysis is applicable if the reverse is true.
There are two distinct problems that can be addressed when designing the end magnets for an array: terminating flux from the neighboring periodic magnet array and reducing or eliminating cogging associated with the end magnets. Using half-length magnets at each ends of the otherwise periodic arrays partially solves both of these problems. In particular, it leaves a cogging force that has its main frequency component at half the frequency of the cogging force from the periodic array. For example, with three slots per wavelength for a periodic array, the cogging frequency is six times the fundamental force frequency and the dominant term from the end magnets is three times the fundamental frequency. A preferred approach eliminates the third harmonic term without increasing the sixth harmonic term.
In order to further eliminate the major cogging terms it is desirable to adjust the size and location of the end magnets. The recommended design procedure is as follows:
In most cases this can only be done by adjusting both the height and the length of the end magnets and the spacing between these magnets and their neighbors.
These dimensions are based on a 2D analysis and some adjustment must be made to deal with 3D effects since these depend on the ratio of the width of the magnet to the magnetic gap.
Machines with an Electromagnet Field
The embodiments described above have used permanent magnet fields but the invention is also applicable to motors with electromagnetic fields. This is particularly important for very large motors and for motors where it is desirable to control the field intensity.
Described above are synchronous motors and machines meeting the desired objects, among others. Those skilled in the art will, of course, appreciate that the illustrated embodiments are merely examples of the invention and that other embodiments, incorporating modifications thereto, fall within the scope of the invention, of which we claim:
This application is a divisional application of U.S. patent application Ser. No. 10/262,541, filed Oct. 1, 2002, entitled “Synchronous Machine Design and Manufacturing,” which claims the benefit of priority of U.S. Ser. No. 60/326,278, filed Oct. 1, 2001, entitled “Synchronous Machine Design and Manufacturing,” the teachings of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3029893 | Mountjoy | Apr 1962 | A |
3440600 | Frech et al. | Apr 1969 | A |
3532934 | Ballman | Oct 1970 | A |
3609676 | Jauquet et al. | Sep 1971 | A |
3617890 | Kurauchi et al. | Nov 1971 | A |
3628462 | Holt | Dec 1971 | A |
3636508 | Ogilvy et al. | Jan 1972 | A |
3679874 | Fickenscher | Jul 1972 | A |
3768417 | Thornton et al. | Oct 1973 | A |
3772640 | Auer, Jr. et al. | Nov 1973 | A |
3786411 | Kurauchi et al. | Jan 1974 | A |
3845720 | Bohn et al. | Nov 1974 | A |
3858521 | Atherton | Jan 1975 | A |
3860843 | Kawasaki et al. | Jan 1975 | A |
3874299 | Silva et al. | Apr 1975 | A |
3906436 | Kurauchi et al. | Sep 1975 | A |
3912992 | Lamb | Oct 1975 | A |
3927735 | Miericke et al. | Dec 1975 | A |
3979091 | Gagnon et al. | Sep 1976 | A |
4023753 | Dobler | May 1977 | A |
4061089 | Sawyer | Dec 1977 | A |
4065706 | Gosling et al. | Dec 1977 | A |
4132175 | Miller et al. | Jan 1979 | A |
4292465 | Wilson et al. | Sep 1981 | A |
4361202 | Minovitch | Nov 1982 | A |
4424463 | Musil | Jan 1984 | A |
4441604 | Schlig et al. | Apr 1984 | A |
4522128 | Anderson | Jun 1985 | A |
4633108 | von der Heide | Dec 1986 | A |
4638192 | von der Heide | Jan 1987 | A |
4665829 | Anderson | May 1987 | A |
4665830 | Anderson et al. | May 1987 | A |
4671185 | Anderson et al. | Jun 1987 | A |
4726299 | Anderson | Feb 1988 | A |
4776464 | Miller et al. | Oct 1988 | A |
4794865 | Lindberg | Jan 1989 | A |
4800328 | Bolger et al. | Jan 1989 | A |
4836344 | Bolger | Jun 1989 | A |
4847526 | Takehara et al. | Jul 1989 | A |
4914539 | Turner et al. | Apr 1990 | A |
4972779 | Morishita et al. | Nov 1990 | A |
5032746 | Ueda et al. | Jul 1991 | A |
5032747 | Sakamoto | Jul 1991 | A |
5108052 | Malewicki et al. | Apr 1992 | A |
5126606 | Hofmann | Jun 1992 | A |
5152227 | Kato | Oct 1992 | A |
5161758 | Shuto | Nov 1992 | A |
5178037 | Mihirogi | Jan 1993 | A |
5180041 | Shuto | Jan 1993 | A |
5193767 | Mihirogi | Mar 1993 | A |
5214323 | Ueda et al. | May 1993 | A |
5214981 | Weinberger et al. | Jun 1993 | A |
5242136 | Cribbens et al. | Sep 1993 | A |
5247890 | Mihirogi | Sep 1993 | A |
5251563 | Staehs et al. | Oct 1993 | A |
5263670 | Colbaugh et al. | Nov 1993 | A |
5267514 | Staehs et al. | Dec 1993 | A |
5277124 | DiFonso et al. | Jan 1994 | A |
5277125 | DiFonso et al. | Jan 1994 | A |
5293308 | Boys et al. | Mar 1994 | A |
5325974 | Staehs | Jul 1994 | A |
5409095 | Hoshi et al. | Apr 1995 | A |
5435429 | Van Den Goor | Jul 1995 | A |
5444341 | Kneifel, II et al. | Aug 1995 | A |
5450305 | Boys et al. | Sep 1995 | A |
5452663 | Berdut | Sep 1995 | A |
5467718 | Shibata et al. | Nov 1995 | A |
5517924 | He et al. | May 1996 | A |
5519266 | Chitayat | May 1996 | A |
5521451 | Oudet et al. | May 1996 | A |
5523637 | Miller | Jun 1996 | A |
5528113 | Boys et al. | Jun 1996 | A |
5551350 | Yamada et al. | Sep 1996 | A |
5573090 | Ross | Nov 1996 | A |
5590604 | Lund | Jan 1997 | A |
5590995 | Berkers et al. | Jan 1997 | A |
5592158 | Riffaud | Jan 1997 | A |
5595121 | Elliott et al. | Jan 1997 | A |
5619078 | Boys et al. | Apr 1997 | A |
5642013 | Wavre | Jun 1997 | A |
5708427 | Bush | Jan 1998 | A |
5709291 | Nishino et al. | Jan 1998 | A |
5720454 | Bachetti et al. | Feb 1998 | A |
5723917 | Chitayat | Mar 1998 | A |
5757100 | Burgbacher | May 1998 | A |
5757288 | Dixon et al. | May 1998 | A |
5821638 | Boys et al. | Oct 1998 | A |
5839554 | Clark | Nov 1998 | A |
5898579 | Boys et al. | Apr 1999 | A |
5900728 | Moser et al. | May 1999 | A |
5906647 | Zyburt et al. | May 1999 | A |
5910691 | Wavre | Jun 1999 | A |
5927657 | Takasan et al. | Jul 1999 | A |
5952743 | Sidey | Sep 1999 | A |
5990592 | Miura et al. | Nov 1999 | A |
6005511 | Young et al. | Dec 1999 | A |
6008552 | Yagoto et al. | Dec 1999 | A |
6011508 | Perreault et al. | Jan 2000 | A |
6025659 | Nashiki | Feb 2000 | A |
6032110 | Ishihara et al. | Feb 2000 | A |
6034499 | Tranovich | Mar 2000 | A |
6064301 | Takahashi et al. | May 2000 | A |
6081058 | Suzuki et al. | Jun 2000 | A |
6087742 | Maestre | Jul 2000 | A |
6089512 | Ansorge et al. | Jul 2000 | A |
6100821 | Tanji et al. | Aug 2000 | A |
6101952 | Thornton et al. | Aug 2000 | A |
6104117 | Nakamura et al. | Aug 2000 | A |
6137424 | Cohen et al. | Oct 2000 | A |
6225919 | Lumbis et al. | May 2001 | B1 |
6242822 | Strothmann et al. | Jun 2001 | B1 |
6286434 | Fischperer | Sep 2001 | B1 |
6376957 | Haydock et al. | Apr 2002 | B1 |
6418857 | Okano et al. | Jul 2002 | B1 |
6495941 | Nishimura | Dec 2002 | B1 |
6499701 | Thornton et al. | Dec 2002 | B1 |
6534894 | Flowerday | Mar 2003 | B1 |
6684794 | Fiske et al. | Feb 2004 | B2 |
Number | Date | Country |
---|---|---|
235 786 | May 1986 | DE |
195 35 856 | Mar 1997 | DE |
0 229 669 | Jul 1987 | EP |
0 482 424 | Oct 1996 | EP |
740 405 | Oct 1996 | EP |
1 283 586 | Dec 2003 | EP |
63-310357 | Dec 1988 | JP |
8-129336 | May 1996 | JP |
8-205514 | Aug 1996 | JP |
11-341785 | May 1998 | JP |
91-4927 | Mar 1991 | KR |
1140212 | Feb 1985 | SU |
WO 9521405 | Aug 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20050242675 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60326278 | Oct 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10262541 | Oct 2002 | US |
Child | 11172006 | US |