1. Field of the Invention
This invention relates to communication switching.
2. Related Art
In switching in communication networks, one important feature is speed. It is generally desirable for switches in such networks to operate as quickly and with as little latency as possible. One method by which switches are known to operate quickly is to synchronously switch individual cells of messages; thus, each cell to be switched is the same length and the switch operates at the start of each cell time to transfer cells from assigned input queues to assigned output queues.
One problem in the known art is that, for the switch to operate on parallel data, it will require a very large number of incoming and outgoing communication paths for individual message bits. However, if the switch is at all sizable, this makes connectivity with the switch, and the switch backplane itself, extremely unwieldy and expensive. For example, to support 16 input queues and 16 output queues each operating at 3.2 gigabits per second, each interface to the interconnect would require a 64 bit bus operating at 50 MHz, totaling 2048 connectors for data alone. Control signal connectors and power connectors would add to this total.
Alternatively, for the switch to operate on serial data, the receiving output queues must recover clock signals from the data signals and synchronize to the transmitted clock signals as they are received. Synchronization to transmitted clock signals can be performed with a phase-locked loop (PLL). However, if the switch is at all rapid, the time required to synchronize will be a substantial fraction of the cell time for switching, and thus substantially increase the time overhead for switching.
Accordingly, it would be desirable to provide a method and system for rapidly synchronously switching large amounts of data, particularly in a cell-based switch. This advantage is achieved in an embodiment of the invention in which the switch interconnect operates asynchronously and serially, but appears to operate synchronously, by using a single clock signal source which is uniform for the switch interconnect and its input and output queues and thus accrues no synchronization delay.
The invention provides a method and system for operating a switch, in which incoming data cells are converted from parallel to serial for synchronous input to a switch interconnect, converted from serial to parallel for parallel switching, converted from parallel to serial for synchronous output from the switch interconnect, and converted to from serial to parallel for output. The switch interconnect and its input and output interfaces are controlled by a single frequency source, so that all serial data communication paths into and out of the switch interconnect are phase synchronized to within one clock cycle.
In a preferred embodiment, a single frequency source for the switch system is coupled to the input interfaces, to the output interfaces, and to the switch interconnect. The input interfaces each include a PLL which synchronizes to the single frequency source once for all serial communication to the switch interconnect. The switch interconnect includes one PLL for each input interface which synchronizes to the serial input from that input interface, and one PLL for each output interface which synchronizes to the single frequency source once for all serial communication to the output interface. Similarly, the output interfaces each include a PLL which synchronizes to the serial output from the switch interconnect. The switch interconnect is coupled to the single frequency source and operates in phase therewith.
In the following description, a preferred embodiment of the invention is described with regard to preferred process steps and data structures. Those skilled in the art would recognize after perusal of this application that embodiments of the invention can be implemented using circuitry or other elements adapted to particular process steps and data structures, and that implementation of the process steps and data structures described herein would not require undue experimentation or further invention.
An interconnect system 100 includes a switch interconnect 110, a plurality of input ports 120, a plurality of input interfaces 130 each corresponding to at least one input port 120, a plurality of output ports 140, a plurality of output interfaces 150 each corresponding to at least one output port 140, and a single frequency source 160.
Incoming data is segmented into fixed size data cells and the system 100 provides the capability to switch those data cells by providing a connection for each input port 120 and to one (for unicast data cells) or more (for multicast data cells) selected output ports 140, for a single data cell duration. The switch interconnect 110, all input interfaces 130, and all output interfaces 150, are synchronized to the same data cell period using the single frequency source 160.
For example, in a preferred embodiment, the switch 100 provides the capability to switch ATM data cells having 53 bytes each according to the SONET OC-48 specification rate. The SONET OC-48 specification is known in the art of digital communication. There are sixteen input interfaces 120, each providing the capability to receive at least one data cell each 176 nanoseconds, each data cell having 53 words (5 words of header and 48 words of payload), each word having eight bits. Similarly, there are sixteen output interfaces 150, each providing the capability to transmit an identical data cell in the same time period. In a preferred embodiment, the switch 100 operates faster than the time taken by each of the input interfaces 120 to receive one 53-byte data cell, for example the switch 100 can have a switching time of about 128 nanoseconds per data cell.
In alternative embodiments, the system 100 may provide the capability to switch data cells according to other or further specifications, such as at the SONET OC-3 specification rate, in which ATM data cells having 53 bytes each are switched at least once each 2.8 microseconds, at the SONET OC-12 specification rate, in which ATM data cells having 53 bytes each are switched at least once each 704 nanoseconds, or other specifications which use data cells of other specified fixed sizes, such as other ATM or frame-based specifications which may have different cell sizes and data rates. The SONET OC-3 specification and the SONET OC-12 specification are each known in the art of digital communication.
In further alternative embodiments, the system 100 may provide the capability to switch variable-length data, such as data packets which are repackaged as data cells (such as by splitting each data packet into one or more data cells). In such alternative embodiments, the system 100 may provide switching on only some, rather than all, data cell boundaries. PLL synchronization time is saved even when the system 100 switches variable-length data.
The switch interconnect 110 includes an input queued switch, in which each input interface 130 is matched at the beginning of each data cell time period with a set of output interfaces 150, corresponding to either a single output port 140 (for unicast data cells) or a to plurality of output ports 140 (for multicast data cells). Matching is performed under control of a switch control element (not shown). When an input interface 130 is matched with one or more output interfaces 150, data cells are transmitted from all the matched input interfaces 130 through the switch interconnect 110 and to all the matched output interfaces 150. Input queued switches are known in the art.
Incoming data cells are received from each input port 120 by each corresponding input interface 130 and converted from a parallel data format to a serial data format. The data cells are transmitted in the serial data format from each input interface 130 to the switch interconnect 110, where they are coupled to the selected one or more output interfaces 150 in the serial data format. Outgoing data cells are converted from the serial data format to the parallel data format and transmitted from each output interface 150 to one or more corresponding output ports 140.
In a preferred embodiment, the switch interconnect 110 receives the data cells from the input interfaces 130 in the serial data format, converts them to the parallel data format, switches them in the parallel data format using a cross-bar switch, and converts them back from the parallel data format to the serial data format for transmission to the output interfaces 150.
One of the input interfaces 130 is coupled to one of its corresponding input ports 120 using a parallel data path 201. The parallel data path 201 is ten bits wide and includes eight bits of payload data encoded using an 8B/10B code. The 8B/10B code is known in the art of serial transmission of data.
The parallel data path 201 is coupled to a parallel-serial converter 200, including a shift register 202, which is itself coupled to a serial data path 203. The shift register 202 converts the data from the 10-bit wide, 1 clock cycle long (for each data word) parallel data format used on the parallel data path 201 to a 1-bit wide, 10 clock cycles long (for each data word) serial data format used on the serial data path 203.
The shift register 202 is clocked at a parallel input by a first clock signal 204 (clock A) from the single frequency source 160, for receiving parallel data from the parallel data path 201, and is clocked at a serial output by a second clock signal 206 (clock 10xA) from a PLL 205 for transmitting serial data to the serial data path 203. The second clock signal 206 (clock 10xA) is ten times the frequency as the first clock signal 204 (clock A), as might be expected for converting 10-bit wide parallel data to 1-bit wide serial data.
The PLL 205 is synchronized to the single frequency source 160. When the system 100 is powered-on, the single frequency source 160 generates its clock signal (clock A) and the PLL 205 for each input interface 130 synchronizes to that clock signal (clock A) exactly once. After the PLL 205 synchronizes to the clock signal (clock A) from the single frequency source 160, it remains synchronized and there is no need thereafter for the PLL 205 to resynchronize.
The serial data path 203 is coupled to the switch interconnect 110, which receives the data cell in the serial data format and couples it to a serial-parallel converter 210, including a PLL 211 and a serial-input parallel-output shift register 212. The PLL 211 generates a first clock signal 213 (clock B) in response to the data words in the serial data format, and clocks the shift register 212 using the first clock signal 213 (clock B). Generating clock signals in response to data in a serial data format is known in the art of digital communication.
The PLL 211 also generates a second clock signal 214 (clock B/10) in response to the data words in the serial data format. The second clock signal 214 (clock B/10) is one-tenth the frequency as the first clock signal 213 (clock B), as might be expected for converting 1-bit wide serial data to 10-bit wide parallel data.
The PLL 211 is synchronized to the serial data path 203 and therefore also synchronized to the single frequency source 160. When the system 100 is powered-on, the single frequency source 160 generates its clock signal (clock A), the serial data path 203 is synchronized to that clock signal (clock A), and the PLL 211 for the switch interconnect 110 synchronizes to that serial data path 203 exactly once. After the PLL 211 synchronizes to the serial data path 203, and therefore to the clock signal (clock A) from the single frequency source 160, it remains synchronized and there is no need thereafter for the PLL 211 to resynchronize.
The parallel output of the shift register 212 is coupled to a register (or latch) 215, which is clocked by the second clock signal 214 (clock B/10).
An output of the register 215 is coupled to a cross-bar switch 220. The cross-bar switch 220 includes an input register (or latch) 221, which is clocked by a first clock signal 222 from the single frequency source 160. The input register 221 is coupled to a combinatorial cross-bar 223. An output of the combinatorial cross-bar 223 is coupled to an output register (or latch) 224, which is also clocked by the first clock signal 222 from the single frequency source 160.
An output of the output register 224 is coupled via a parallel data path 225 to a parallel-serial converter 230, including a shift register 232, which is itself coupled to a serial data path 233. The shift register 232 converts data from the 10-bit wide, 1 clock cycle long (for each data word) parallel data format used on the parallel data path 225 to a 1-bit wide, 10 clock cycles long (for each data word) serial data format used on the serial data path 233.
The shift register 232 is clocked at a parallel input by the first clock signal 222 (clock C) from the single frequency source 160, for receiving parallel data from the parallel data path 225, and is clocked at a serial output by a second clock signal 236 (clock 10xC) from a PLL 235 for transmitting serial data to the serial data path 233. The second clock signal 236 (clock 10xC) is ten times the frequency as the first clock signal 222 (clock C), as might be expected for converting 10-bit wide parallel data to 1-bit wide serial data.
The PLL 235 is synchronized to the single frequency source 160. When the system 100 is powered-on, the single frequency source 160 generates its clock signal (clock C) and the PLL 235 for the switch interconnect 110 synchronizes to that clock signal (clock C) exactly once. After the PLL 235 synchronizes to the clock signal (clock C) from the single frequency source 160, it remains synchronized and there is no need thereafter for the PLL 235 to resynchronize.
The serial data path 233 is coupled from the switch interconnect 110 to the output interface 150, which receives the data cell in the serial data format and couples it to a serial-parallel converter 240, including a PLL 241 and a serial-input parallel-output shift register 242. The PLL 241 generates a first clock signal 243 (clock D) in response to the data words in the serial data format, and clocks the shift register 242 using the first clock signal 243 (clock D).
The PLL 241 also generates a second clock signal 244 (clock D/10) in response to the data words in the serial data format. The second clock signal 244 (clock D/10) is one-tenth the frequency as the first clock signal 243 (clock D), as might be expected for converting 1-bit wide serial data to 10-bit wide parallel data.
The PLL 241 is synchronized to the serial data path 233 and therefore also synchronized to the single frequency source 160. When the system 100 is powered-on, the single frequency source 160 generates its clock signal (clock C), the serial data path 233 is synchronized to that clock signal (clock C), and the PLL 241 for the output interface 150 synchronizes to that serial data path 233 exactly once. After the PLL 241 synchronizes to the serial data path 233, and therefore to the clock signal (clock C) from the single frequency source 160, it remains synchronized and there is no need thereafter for the PLL 241 to resynchronize.
The parallel output of the shift register 242 is coupled to a register (or latch) 245, which is clocked by the second clock signal 244 (clock D/10).
An output of the register 245 is coupled to an output port register (or latch) 246, which is clocked by a clock signal (clock AÕÕ) 247 from the single frequency source 160. An output of the output port register 246 is coupled to one or more corresponding output ports 248.
A clock signal 301 (clock A) is provided by the single frequency source 160, appears at the node 204, and has a period Tf 302, which is the inverse of its frequency.
A clock signal 303 (clock 10xA) appears at the node 206, and has a frequency ten times the frequency of the clock signal 301 (clock A). It is offset from the clock signal 301 (clock A) by a time period Ta 304, which is a time period from when data from the parallel data stream 201 is received at an input of the shift register 202 to when a first serial data bit is provided at an output of the shift register 202.
A clock signal 305 (clock B) appears at the node 213, and has a frequency equal to the clock signal 303 (clock 10xA). It is offset from the clock signal 303 (clock 10xA) by a time period Tb 306, which is a time period needed to transmit serial data in the serial data format from the input interface 130 to the switch interconnect 110 plus a phase delay introduced by the PLL 211.
A clock signal 307 (clock B/10) appears at the node 214, and has a frequency equal to the clock signal 301 (clock A). It is offset from the clock signal 305 (clock B) by a time period Tc 308, which is a displacement introduced by the PLL 211. Those skilled in the art will notice, after perusal of this application, that the time period Tc 308 might be either a positive or a negative time offset.
A clock signal 309 (clock C) appears at the node 222, and has a frequency equal to the clock signal 301 (clock A). It is offset from the clock signal 301 (clock A) by a time period Td 310, which is a displacement introduced by distribution of clock signals from the single frequency source 160.
A time Tsu 311 must be greater than or equal to the set-up time required for registers in the system 100. The difference (Tf−Tsu), which is equal to the sum of offsets (Ta+Th+Tc+Td), must therefore be greater or equal to the set-up time required for registers in the system 100, in order to move data between the shift register 202 and the input register 221 at the rising edge of each system clock (such as clock A and clock C). The actual set-up time required is responsive to the frequency at which the data is to be moved.
In a preferred embodiment, the time period Ta 304 is about 2 nano-seconds to about 3 nanoseconds, the time period Tb 306 is about 1.5 nanoseconds, the time period Tc 308 is about plus or minus 0.1 nanoseconds to 0.2 nanoseconds, the time period Td 310 is about 2 nanoseconds, and the time period Tsu is about 1 nanosecond to about 2 nanoseconds.
A time Th 312 must be greater than or equal to the hold time required for registers in the system 100, in order to move data as described herein.
In a preferred embodiment, the time period Th 312 need not be greater than about 0.1 nanoseconds.
Although preferred embodiments are disclosed herein, many variations are possible which remain within the concept, scope, and spirit of the invention, and these variations would become clear to those skilled in the art after perusal of this application.
This application is a continuation of U.S. patent application Ser. No. 09/001,270 filed Dec. 31, 1997, entitled “SYNCHRONOUS PIELINED SWITCH USING SERIAL TRANSMISSION” now U.S. Pat. No. 6,424,649. The entirety of said U.S. Pat. No. 6,424,649 is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4064360 | Koenig | Dec 1977 | A |
4131767 | Weinstein | Dec 1978 | A |
4161719 | Parikh et al. | Jul 1979 | A |
4316284 | Howson | Feb 1982 | A |
4397020 | Howson | Aug 1983 | A |
4419728 | Larson | Dec 1983 | A |
4424565 | Larson | Jan 1984 | A |
4437087 | Petr | Mar 1984 | A |
4438511 | Baran | Mar 1984 | A |
4439763 | Limb | Mar 1984 | A |
4445213 | Baugh et al. | Apr 1984 | A |
4446555 | Devault et al. | May 1984 | A |
4456957 | Schieltz | Jun 1984 | A |
4464658 | Thelen | Aug 1984 | A |
4499576 | Fraser | Feb 1985 | A |
4506358 | Montgomery | Mar 1985 | A |
4507760 | Fraser | Mar 1985 | A |
4532626 | Flores et al. | Jul 1985 | A |
4644532 | George et al. | Feb 1987 | A |
4646287 | Larson et al. | Feb 1987 | A |
4677423 | Benvenuto et al. | Jun 1987 | A |
4679189 | Olson et al. | Jul 1987 | A |
4679227 | Hughes-Hartogs | Jul 1987 | A |
4723267 | Jones et al. | Feb 1988 | A |
4731816 | Hughes-Hartogs | Mar 1988 | A |
4750136 | Arpin et al. | Jun 1988 | A |
4757495 | Decker et al. | Jul 1988 | A |
4763191 | Gordon et al. | Aug 1988 | A |
4769810 | Eckberg, Jr. et al. | Sep 1988 | A |
4769811 | Eckberg, Jr. et al. | Sep 1988 | A |
4771425 | Baran et al. | Sep 1988 | A |
4819228 | Baran et al. | Apr 1989 | A |
4827411 | Arrowood et al. | May 1989 | A |
4833706 | Hughes-Hartogs | May 1989 | A |
4835737 | Herrig et al. | May 1989 | A |
4879551 | Georgiou et al. | Nov 1989 | A |
4893306 | Chao et al. | Jan 1990 | A |
4903261 | Baran et al. | Feb 1990 | A |
4922486 | Lidinsky et al. | May 1990 | A |
4933937 | Konishi | Jun 1990 | A |
4960310 | Chushing | Oct 1990 | A |
4962497 | Ferenc et al. | Oct 1990 | A |
4962532 | Kasirai et al. | Oct 1990 | A |
4965772 | Daniel et al. | Oct 1990 | A |
4970678 | Sladowski et al. | Nov 1990 | A |
4979118 | Kheradpir | Dec 1990 | A |
4980897 | Decker et al. | Dec 1990 | A |
4991169 | Davis et al. | Feb 1991 | A |
5003595 | Collins et al. | Mar 1991 | A |
5014265 | Hahne et al. | May 1991 | A |
5020058 | Holden et al. | May 1991 | A |
5033076 | Jones et al. | Jul 1991 | A |
5054034 | Hughes-Hartogs | Oct 1991 | A |
5059925 | Weisbloom | Oct 1991 | A |
5072449 | Enns et al. | Dec 1991 | A |
5088032 | Bosack | Feb 1992 | A |
5095480 | Fenner | Mar 1992 | A |
RE33900 | Howson | Apr 1992 | E |
5115431 | Williams et al. | May 1992 | A |
5128945 | Enns et al. | Jul 1992 | A |
5136580 | Videlock et al. | Aug 1992 | A |
5166930 | Braff et al. | Nov 1992 | A |
5199049 | Wilson | Mar 1993 | A |
5206886 | Bingham | Apr 1993 | A |
5208811 | Kashio et al. | May 1993 | A |
5212686 | Joy et al. | May 1993 | A |
5224099 | Corbalis et al. | Jun 1993 | A |
5226120 | Brown et al. | Jul 1993 | A |
5228062 | Bingham | Jul 1993 | A |
5229994 | Balzano et al. | Jul 1993 | A |
5237564 | Lespagnol et al. | Aug 1993 | A |
5241682 | Bryant et al. | Aug 1993 | A |
5243342 | Kattemalalavadi et al. | Sep 1993 | A |
5243596 | Port et al. | Sep 1993 | A |
5247516 | Bernstein et al. | Sep 1993 | A |
5249178 | Kurano et al. | Sep 1993 | A |
5253251 | Aramaki | Oct 1993 | A |
5255291 | Holden et al. | Oct 1993 | A |
5260933 | Rouse | Nov 1993 | A |
5260978 | Fleischer et al. | Nov 1993 | A |
5268592 | Bellamy et al. | Dec 1993 | A |
5268900 | Hluchyj et al. | Dec 1993 | A |
5271004 | Proctor et al. | Dec 1993 | A |
5274631 | Bhardwaj | Dec 1993 | A |
5274635 | Rahman et al. | Dec 1993 | A |
5274643 | Fisk | Dec 1993 | A |
5280470 | Buhrke et al. | Jan 1994 | A |
5280480 | Pitt et al. | Jan 1994 | A |
5280500 | Mazzola et al. | Jan 1994 | A |
5283783 | Nguyen et al. | Feb 1994 | A |
5287103 | Kasprzyk et al. | Feb 1994 | A |
5287453 | Roberts | Feb 1994 | A |
5291482 | McHarg et al. | Mar 1994 | A |
5305311 | Lyles | Apr 1994 | A |
5307343 | Bostica et al. | Apr 1994 | A |
5309437 | Perlman et al. | May 1994 | A |
5311509 | Heddes et al. | May 1994 | A |
5313454 | Bustini et al. | May 1994 | A |
5313582 | Hendel et al. | May 1994 | A |
5317562 | Nardin et al. | May 1994 | A |
5319644 | Liang | Jun 1994 | A |
5327421 | Hiller et al. | Jul 1994 | A |
5331637 | Francis et al. | Jul 1994 | A |
5345445 | Hiller et al. | Sep 1994 | A |
5345446 | Hiller et al. | Sep 1994 | A |
5359592 | Corbalis et al. | Oct 1994 | A |
5361250 | Nguyen et al. | Nov 1994 | A |
5361256 | Doeringer et al. | Nov 1994 | A |
5361259 | Hunt et al. | Nov 1994 | A |
5365524 | Hiller et al. | Nov 1994 | A |
5367517 | Cidon et al. | Nov 1994 | A |
5371852 | Attanasio et al. | Dec 1994 | A |
5377181 | Rogers | Dec 1994 | A |
5386567 | Lien et al. | Jan 1995 | A |
5390170 | Sawant et al. | Feb 1995 | A |
5390175 | Hiller et al. | Feb 1995 | A |
5394394 | Crowther et al. | Feb 1995 | A |
5394402 | Ross | Feb 1995 | A |
5400325 | Chatwani et al. | Mar 1995 | A |
5408469 | Opher et al. | Apr 1995 | A |
5416842 | Aziz | May 1995 | A |
5422880 | Heitkamp et al. | Jun 1995 | A |
5422882 | Hiller et al. | Jun 1995 | A |
5423002 | Hart | Jun 1995 | A |
5426636 | Hiller et al. | Jun 1995 | A |
5428607 | Hiller et al. | Jun 1995 | A |
5430715 | Corbalis et al. | Jul 1995 | A |
5430729 | Rahnema | Jul 1995 | A |
5440550 | Follett | Aug 1995 | A |
5442457 | Najafi | Aug 1995 | A |
5442630 | Gagliardi et al. | Aug 1995 | A |
5452297 | Hiller et al. | Sep 1995 | A |
5473599 | Li et al. | Dec 1995 | A |
5473607 | Hausman et al. | Dec 1995 | A |
5477541 | White et al. | Dec 1995 | A |
5485455 | Dobbins et al. | Jan 1996 | A |
5490140 | Abensour et al. | Feb 1996 | A |
5490258 | Fenner | Feb 1996 | A |
5491687 | Christensen et al. | Feb 1996 | A |
5491804 | Heath et al. | Feb 1996 | A |
5497368 | Reijnierse et al. | Mar 1996 | A |
5504747 | Sweasey | Apr 1996 | A |
5509006 | Wilford et al. | Apr 1996 | A |
5517494 | Green | May 1996 | A |
5519704 | Farinacci et al. | May 1996 | A |
5519858 | Walton et al. | May 1996 | A |
5526489 | Nilakantan et al. | Jun 1996 | A |
5530963 | Moore et al. | Jun 1996 | A |
5535195 | Lee | Jul 1996 | A |
5539734 | Burwell et al. | Jul 1996 | A |
5541911 | Nilakantan et al. | Jul 1996 | A |
5546370 | Ishikawa | Aug 1996 | A |
5555244 | Gupta et al. | Sep 1996 | A |
5561669 | Lenney et al. | Oct 1996 | A |
5583862 | Callon | Dec 1996 | A |
5592470 | Rudrapatna et al. | Jan 1997 | A |
5598581 | Daines et al. | Jan 1997 | A |
5600798 | Cherukuri et al. | Feb 1997 | A |
5604868 | Komine et al. | Feb 1997 | A |
5608726 | Virgile | Mar 1997 | A |
5617417 | Sathe et al. | Apr 1997 | A |
5617421 | Chin et al. | Apr 1997 | A |
5617547 | Feeney et al. | Apr 1997 | A |
5630125 | Zellweger | May 1997 | A |
5631908 | Saxe | May 1997 | A |
5632021 | Jennings et al. | May 1997 | A |
5634010 | Ciscon et al. | May 1997 | A |
5638359 | Peltola et al. | Jun 1997 | A |
5644718 | Belove et al. | Jul 1997 | A |
5659684 | Giovannoni et al. | Aug 1997 | A |
5666353 | Klausmeier et al. | Sep 1997 | A |
5673265 | Gupta et al. | Sep 1997 | A |
5678006 | Valizadeh et al. | Oct 1997 | A |
5680116 | Hashimoto et al. | Oct 1997 | A |
5684797 | Azner et al. | Nov 1997 | A |
5687324 | Green et al. | Nov 1997 | A |
5689506 | Chiussi et al. | Nov 1997 | A |
5694390 | Yamato et al. | Dec 1997 | A |
5724351 | Chao et al. | Mar 1998 | A |
5748186 | Raman | May 1998 | A |
5748617 | McLain, Jr. | May 1998 | A |
5754547 | Nakazawa | May 1998 | A |
5774698 | Olnowich | Jun 1998 | A |
5802054 | Bellenger | Sep 1998 | A |
5835710 | Nagami et al. | Nov 1998 | A |
5854903 | Morrison et al. | Dec 1998 | A |
5856981 | Voelker | Jan 1999 | A |
5892924 | Lyon et al. | Apr 1999 | A |
5898686 | Virgile | Apr 1999 | A |
5903559 | Acharya et al. | May 1999 | A |
6208667 | Caldara et al. | Mar 2001 | B1 |
6269096 | Hann et al. | Jul 2001 | B1 |
6366583 | Rowett et al. | Apr 2002 | B2 |
6385203 | McHale et al. | May 2002 | B2 |
6424649 | Laor et al. | Jul 2002 | B1 |
Number | Date | Country |
---|---|---|
0 384 758 | Aug 1990 | EP |
0 431 751 | Jun 1991 | EP |
0 567 217 | Oct 1993 | EP |
WO9307569 | Apr 1993 | WO |
WO9307692 | Apr 1993 | WO |
WO9401828 | Jan 1994 | WO |
WO9520850 | Aug 1995 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 09001270 | Dec 1997 | US |
Child | 10176819 | US |