Synchronous pipelined switch using serial transmission

Information

  • Patent Grant
  • 7286525
  • Patent Number
    7,286,525
  • Date Filed
    Friday, June 21, 2002
    22 years ago
  • Date Issued
    Tuesday, October 23, 2007
    17 years ago
Abstract
The invention provides a method and system for operating a switch, in which incoming data cells are converted from parallel to serial for synchronous input to a switch interconnect, converted from serial to parallel for parallel switching, converted from parallel to serial for synchronous output from the switch interconnect, and converted from serial to parallel for output. The switch interconnect and its input and output interfaces are controlled by a single frequency source, so that all serial data communication paths into and out of the switch interconnect are phase synchronized to within one clock cycle. A single frequency source for the switch system is coupled to the input interfaces, to output interfaces, and to the switch interconnect. The input interfaces each include a PLL which synchronizes to the single frequency source once for all serial communication to the switch interconnect. The switch interconnect includes one PLL for each input interface which synchronizes to the serial input from that input interface, and one PLL for each output interface which synchronizes to the single frequency source once for all serial communication to the output interface. Similarly, the output interfaces each include a PLL which synchronizes to the serial output from the switch interconnect. The switch interconnect is coupled to the single frequency source and operates in phase therewith.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to communication switching.


2. Related Art


In switching in communication networks, one important feature is speed. It is generally desirable for switches in such networks to operate as quickly and with as little latency as possible. One method by which switches are known to operate quickly is to synchronously switch individual cells of messages; thus, each cell to be switched is the same length and the switch operates at the start of each cell time to transfer cells from assigned input queues to assigned output queues.


One problem in the known art is that, for the switch to operate on parallel data, it will require a very large number of incoming and outgoing communication paths for individual message bits. However, if the switch is at all sizable, this makes connectivity with the switch, and the switch backplane itself, extremely unwieldy and expensive. For example, to support 16 input queues and 16 output queues each operating at 3.2 gigabits per second, each interface to the interconnect would require a 64 bit bus operating at 50 MHz, totaling 2048 connectors for data alone. Control signal connectors and power connectors would add to this total.


Alternatively, for the switch to operate on serial data, the receiving output queues must recover clock signals from the data signals and synchronize to the transmitted clock signals as they are received. Synchronization to transmitted clock signals can be performed with a phase-locked loop (PLL). However, if the switch is at all rapid, the time required to synchronize will be a substantial fraction of the cell time for switching, and thus substantially increase the time overhead for switching.


Accordingly, it would be desirable to provide a method and system for rapidly synchronously switching large amounts of data, particularly in a cell-based switch. This advantage is achieved in an embodiment of the invention in which the switch interconnect operates asynchronously and serially, but appears to operate synchronously, by using a single clock signal source which is uniform for the switch interconnect and its input and output queues and thus accrues no synchronization delay.


SUMMARY OF THE INVENTION

The invention provides a method and system for operating a switch, in which incoming data cells are converted from parallel to serial for synchronous input to a switch interconnect, converted from serial to parallel for parallel switching, converted from parallel to serial for synchronous output from the switch interconnect, and converted to from serial to parallel for output. The switch interconnect and its input and output interfaces are controlled by a single frequency source, so that all serial data communication paths into and out of the switch interconnect are phase synchronized to within one clock cycle.


In a preferred embodiment, a single frequency source for the switch system is coupled to the input interfaces, to the output interfaces, and to the switch interconnect. The input interfaces each include a PLL which synchronizes to the single frequency source once for all serial communication to the switch interconnect. The switch interconnect includes one PLL for each input interface which synchronizes to the serial input from that input interface, and one PLL for each output interface which synchronizes to the single frequency source once for all serial communication to the output interface. Similarly, the output interfaces each include a PLL which synchronizes to the serial output from the switch interconnect. The switch interconnect is coupled to the single frequency source and operates in phase therewith.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a block diagram of an interconnect system.



FIG. 2 shows a circuit diagram of an interconnect system having a single system frequency source.



FIG. 3 shows a timing diagram of signals in an interconnect system having a single system frequency source.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following description, a preferred embodiment of the invention is described with regard to preferred process steps and data structures. Those skilled in the art would recognize after perusal of this application that embodiments of the invention can be implemented using circuitry or other elements adapted to particular process steps and data structures, and that implementation of the process steps and data structures described herein would not require undue experimentation or further invention.



FIG. 1 shows a block diagram of an interconnect system.


An interconnect system 100 includes a switch interconnect 110, a plurality of input ports 120, a plurality of input interfaces 130 each corresponding to at least one input port 120, a plurality of output ports 140, a plurality of output interfaces 150 each corresponding to at least one output port 140, and a single frequency source 160.


Incoming data is segmented into fixed size data cells and the system 100 provides the capability to switch those data cells by providing a connection for each input port 120 and to one (for unicast data cells) or more (for multicast data cells) selected output ports 140, for a single data cell duration. The switch interconnect 110, all input interfaces 130, and all output interfaces 150, are synchronized to the same data cell period using the single frequency source 160.


For example, in a preferred embodiment, the switch 100 provides the capability to switch ATM data cells having 53 bytes each according to the SONET OC-48 specification rate. The SONET OC-48 specification is known in the art of digital communication. There are sixteen input interfaces 120, each providing the capability to receive at least one data cell each 176 nanoseconds, each data cell having 53 words (5 words of header and 48 words of payload), each word having eight bits. Similarly, there are sixteen output interfaces 150, each providing the capability to transmit an identical data cell in the same time period. In a preferred embodiment, the switch 100 operates faster than the time taken by each of the input interfaces 120 to receive one 53-byte data cell, for example the switch 100 can have a switching time of about 128 nanoseconds per data cell.


In alternative embodiments, the system 100 may provide the capability to switch data cells according to other or further specifications, such as at the SONET OC-3 specification rate, in which ATM data cells having 53 bytes each are switched at least once each 2.8 microseconds, at the SONET OC-12 specification rate, in which ATM data cells having 53 bytes each are switched at least once each 704 nanoseconds, or other specifications which use data cells of other specified fixed sizes, such as other ATM or frame-based specifications which may have different cell sizes and data rates. The SONET OC-3 specification and the SONET OC-12 specification are each known in the art of digital communication.


In further alternative embodiments, the system 100 may provide the capability to switch variable-length data, such as data packets which are repackaged as data cells (such as by splitting each data packet into one or more data cells). In such alternative embodiments, the system 100 may provide switching on only some, rather than all, data cell boundaries. PLL synchronization time is saved even when the system 100 switches variable-length data.


The switch interconnect 110 includes an input queued switch, in which each input interface 130 is matched at the beginning of each data cell time period with a set of output interfaces 150, corresponding to either a single output port 140 (for unicast data cells) or a to plurality of output ports 140 (for multicast data cells). Matching is performed under control of a switch control element (not shown). When an input interface 130 is matched with one or more output interfaces 150, data cells are transmitted from all the matched input interfaces 130 through the switch interconnect 110 and to all the matched output interfaces 150. Input queued switches are known in the art.


Incoming data cells are received from each input port 120 by each corresponding input interface 130 and converted from a parallel data format to a serial data format. The data cells are transmitted in the serial data format from each input interface 130 to the switch interconnect 110, where they are coupled to the selected one or more output interfaces 150 in the serial data format. Outgoing data cells are converted from the serial data format to the parallel data format and transmitted from each output interface 150 to one or more corresponding output ports 140.


In a preferred embodiment, the switch interconnect 110 receives the data cells from the input interfaces 130 in the serial data format, converts them to the parallel data format, switches them in the parallel data format using a cross-bar switch, and converts them back from the parallel data format to the serial data format for transmission to the output interfaces 150.



FIG. 2 shows a circuit diagram of an interconnect system having a single system frequency source.


One of the input interfaces 130 is coupled to one of its corresponding input ports 120 using a parallel data path 201. The parallel data path 201 is ten bits wide and includes eight bits of payload data encoded using an 8B/10B code. The 8B/10B code is known in the art of serial transmission of data.


The parallel data path 201 is coupled to a parallel-serial converter 200, including a shift register 202, which is itself coupled to a serial data path 203. The shift register 202 converts the data from the 10-bit wide, 1 clock cycle long (for each data word) parallel data format used on the parallel data path 201 to a 1-bit wide, 10 clock cycles long (for each data word) serial data format used on the serial data path 203.


The shift register 202 is clocked at a parallel input by a first clock signal 204 (clock A) from the single frequency source 160, for receiving parallel data from the parallel data path 201, and is clocked at a serial output by a second clock signal 206 (clock 10xA) from a PLL 205 for transmitting serial data to the serial data path 203. The second clock signal 206 (clock 10xA) is ten times the frequency as the first clock signal 204 (clock A), as might be expected for converting 10-bit wide parallel data to 1-bit wide serial data.


The PLL 205 is synchronized to the single frequency source 160. When the system 100 is powered-on, the single frequency source 160 generates its clock signal (clock A) and the PLL 205 for each input interface 130 synchronizes to that clock signal (clock A) exactly once. After the PLL 205 synchronizes to the clock signal (clock A) from the single frequency source 160, it remains synchronized and there is no need thereafter for the PLL 205 to resynchronize.


The serial data path 203 is coupled to the switch interconnect 110, which receives the data cell in the serial data format and couples it to a serial-parallel converter 210, including a PLL 211 and a serial-input parallel-output shift register 212. The PLL 211 generates a first clock signal 213 (clock B) in response to the data words in the serial data format, and clocks the shift register 212 using the first clock signal 213 (clock B). Generating clock signals in response to data in a serial data format is known in the art of digital communication.


The PLL 211 also generates a second clock signal 214 (clock B/10) in response to the data words in the serial data format. The second clock signal 214 (clock B/10) is one-tenth the frequency as the first clock signal 213 (clock B), as might be expected for converting 1-bit wide serial data to 10-bit wide parallel data.


The PLL 211 is synchronized to the serial data path 203 and therefore also synchronized to the single frequency source 160. When the system 100 is powered-on, the single frequency source 160 generates its clock signal (clock A), the serial data path 203 is synchronized to that clock signal (clock A), and the PLL 211 for the switch interconnect 110 synchronizes to that serial data path 203 exactly once. After the PLL 211 synchronizes to the serial data path 203, and therefore to the clock signal (clock A) from the single frequency source 160, it remains synchronized and there is no need thereafter for the PLL 211 to resynchronize.


The parallel output of the shift register 212 is coupled to a register (or latch) 215, which is clocked by the second clock signal 214 (clock B/10).


An output of the register 215 is coupled to a cross-bar switch 220. The cross-bar switch 220 includes an input register (or latch) 221, which is clocked by a first clock signal 222 from the single frequency source 160. The input register 221 is coupled to a combinatorial cross-bar 223. An output of the combinatorial cross-bar 223 is coupled to an output register (or latch) 224, which is also clocked by the first clock signal 222 from the single frequency source 160.


An output of the output register 224 is coupled via a parallel data path 225 to a parallel-serial converter 230, including a shift register 232, which is itself coupled to a serial data path 233. The shift register 232 converts data from the 10-bit wide, 1 clock cycle long (for each data word) parallel data format used on the parallel data path 225 to a 1-bit wide, 10 clock cycles long (for each data word) serial data format used on the serial data path 233.


The shift register 232 is clocked at a parallel input by the first clock signal 222 (clock C) from the single frequency source 160, for receiving parallel data from the parallel data path 225, and is clocked at a serial output by a second clock signal 236 (clock 10xC) from a PLL 235 for transmitting serial data to the serial data path 233. The second clock signal 236 (clock 10xC) is ten times the frequency as the first clock signal 222 (clock C), as might be expected for converting 10-bit wide parallel data to 1-bit wide serial data.


The PLL 235 is synchronized to the single frequency source 160. When the system 100 is powered-on, the single frequency source 160 generates its clock signal (clock C) and the PLL 235 for the switch interconnect 110 synchronizes to that clock signal (clock C) exactly once. After the PLL 235 synchronizes to the clock signal (clock C) from the single frequency source 160, it remains synchronized and there is no need thereafter for the PLL 235 to resynchronize.


The serial data path 233 is coupled from the switch interconnect 110 to the output interface 150, which receives the data cell in the serial data format and couples it to a serial-parallel converter 240, including a PLL 241 and a serial-input parallel-output shift register 242. The PLL 241 generates a first clock signal 243 (clock D) in response to the data words in the serial data format, and clocks the shift register 242 using the first clock signal 243 (clock D).


The PLL 241 also generates a second clock signal 244 (clock D/10) in response to the data words in the serial data format. The second clock signal 244 (clock D/10) is one-tenth the frequency as the first clock signal 243 (clock D), as might be expected for converting 1-bit wide serial data to 10-bit wide parallel data.


The PLL 241 is synchronized to the serial data path 233 and therefore also synchronized to the single frequency source 160. When the system 100 is powered-on, the single frequency source 160 generates its clock signal (clock C), the serial data path 233 is synchronized to that clock signal (clock C), and the PLL 241 for the output interface 150 synchronizes to that serial data path 233 exactly once. After the PLL 241 synchronizes to the serial data path 233, and therefore to the clock signal (clock C) from the single frequency source 160, it remains synchronized and there is no need thereafter for the PLL 241 to resynchronize.


The parallel output of the shift register 242 is coupled to a register (or latch) 245, which is clocked by the second clock signal 244 (clock D/10).


An output of the register 245 is coupled to an output port register (or latch) 246, which is clocked by a clock signal (clock AÕÕ) 247 from the single frequency source 160. An output of the output port register 246 is coupled to one or more corresponding output ports 248.



FIG. 3 shows a timing diagram of signals in an interconnect system having a single system frequency source.


A clock signal 301 (clock A) is provided by the single frequency source 160, appears at the node 204, and has a period Tf 302, which is the inverse of its frequency.


A clock signal 303 (clock 10xA) appears at the node 206, and has a frequency ten times the frequency of the clock signal 301 (clock A). It is offset from the clock signal 301 (clock A) by a time period Ta 304, which is a time period from when data from the parallel data stream 201 is received at an input of the shift register 202 to when a first serial data bit is provided at an output of the shift register 202.


A clock signal 305 (clock B) appears at the node 213, and has a frequency equal to the clock signal 303 (clock 10xA). It is offset from the clock signal 303 (clock 10xA) by a time period Tb 306, which is a time period needed to transmit serial data in the serial data format from the input interface 130 to the switch interconnect 110 plus a phase delay introduced by the PLL 211.


A clock signal 307 (clock B/10) appears at the node 214, and has a frequency equal to the clock signal 301 (clock A). It is offset from the clock signal 305 (clock B) by a time period Tc 308, which is a displacement introduced by the PLL 211. Those skilled in the art will notice, after perusal of this application, that the time period Tc 308 might be either a positive or a negative time offset.


A clock signal 309 (clock C) appears at the node 222, and has a frequency equal to the clock signal 301 (clock A). It is offset from the clock signal 301 (clock A) by a time period Td 310, which is a displacement introduced by distribution of clock signals from the single frequency source 160.


A time Tsu 311 must be greater than or equal to the set-up time required for registers in the system 100. The difference (Tf−Tsu), which is equal to the sum of offsets (Ta+Th+Tc+Td), must therefore be greater or equal to the set-up time required for registers in the system 100, in order to move data between the shift register 202 and the input register 221 at the rising edge of each system clock (such as clock A and clock C). The actual set-up time required is responsive to the frequency at which the data is to be moved.


In a preferred embodiment, the time period Ta 304 is about 2 nano-seconds to about 3 nanoseconds, the time period Tb 306 is about 1.5 nanoseconds, the time period Tc 308 is about plus or minus 0.1 nanoseconds to 0.2 nanoseconds, the time period Td 310 is about 2 nanoseconds, and the time period Tsu is about 1 nanosecond to about 2 nanoseconds.


A time Th 312 must be greater than or equal to the hold time required for registers in the system 100, in order to move data as described herein.


In a preferred embodiment, the time period Th 312 need not be greater than about 0.1 nanoseconds.


ALTERNATIVE EMBODIMENTS

Although preferred embodiments are disclosed herein, many variations are possible which remain within the concept, scope, and spirit of the invention, and these variations would become clear to those skilled in the art after perusal of this application.

Claims
  • 1. A method of operating an apparatus having at least one input port and at least one output port, comprising: generating a clock signal;transmitting serial data from said at least one input port in synchrony with said clock signal to a serial to parallel converter;transferring said serial data as parallel data by said serial to parallel converter to a switch;switching said parallel data at said switch in synchrony with said clock signal;receiving said parallel data from said switch by a parallel to serial converter;transmitting said parallel data serially from said parallel to serial converter in synchrony with said clock signal to said at least one output port; andreceiving at said at least one output port said serially transmitted data from said parallel to serial converter.
  • 2. A method as in claim 1 further comprising: self-synchronizing said serial to parallel converter to said transmitted serial data received at said serial to parallel converter.
  • 3. A method as in claim 1 further comprising: self-synchronizing a second serial to parallel converter in said at least one output port to said received serially transmitted data at said at least one output port.
  • 4. A method as in claim 1 further comprising: converting data from parallel to serial at said input port at a second parallel to serial converter.
  • 5. A method as in claim 4 further comprising: transmitting serial data from said second parallel to serial converter at a rate equal to said clock signal times the ratio of parallel inputs to serial outputs of said second parallel to serial converter.
  • 6. A method as in claim 5 further comprising: transmitting serial data from said second parallel to serial converter at a rate equal to 10 times said clock signal.
  • 7. A method as in claim 1 further comprising: converting data from serial to parallel at said output port at a second serial to parallel converter.
  • 8. A method as in claim 7 further comprising: transmitting parallel data from said second serial to parallel converter at a rate equal to a recovered clock signal generated in response to the receive rate of serial data into said second serial to parallel converter times the ratio of serial inputs to parallel outputs of said second serial to parallel converter.
  • 9. A method as in claim 8 further comprising: transmitting parallel data from said second serial to parallel converter at a rate equal to 1/10 of a recovered clock signal generated in response to the receive rate of serial data into said second serial to parallel converter.
  • 10. A method as in claim 1 further comprising: transmitting said data from said output port through an output register synchronized to said clock signal.
  • 11. A method as in claim 1 further comprising: transmitting serial data from said parallel to serial converter at a rate equal to said clock signal times the ratio of parallel inputs to serial outputs of said parallel to serial converter.
  • 12. A method as in claim 11 further comprising: transmitting serial data from said parallel to serial converter at a rate equal to 10 times said clock signal.
  • 13. A method as in claim 1 further comprising: transmitting parallel data from said serial to parallel converter at a rate equal to a recovered clock signal generated in response to the receive rate of serial data into said serial to parallel converter times the ratio of serial inputs to parallel outputs of said serial to parallel converter.
  • 14. A method as in claim 13 further comprising: transmitting parallel data from said serial to parallel converter at a rate equal to 1/10 of a recovered clock signal generated in response to the receive rate of serial data into said serial to parallel converter.
  • 15. A method as in claim 1 further comprising: synchronizing a phase-locked loop at said at least one input port to said clock source for serial communication from said at least one input port.
  • 16. A method as in claim 1 further comprising: synchronizing a phase-locked loop at said parallel to serial converter to said clock source for serial communication from said parallel to serial converter.
  • 17. A method as in claim 15 or 16 further comprising: synchronizing said phase-locked loop once for all serial communication.
  • 18. A method as in claim 15 or 16 further comprising: transmitting serial data at a rate equal to said clock signal times the ratio of parallel inputs to serial outputs.
  • 19. A method as in claim 15 or 16 further comprising: transmitting serial data at a rate equal to 10 times said clock signal.
  • 20. A method as in claim 1 further comprising: synchronizing a phase-locked loop at said serial to parallel converter to said transmitted serial data received at said serial to parallel converter for parallel communication from said serial to parallel converter.
  • 21. A method as in claim 1 further comprising: synchronizing a phase-locked loop at said at least one output port to said received serially transmitted data for parallel communication from said at least one output port.
  • 22. A method as in claim 20 or 21 further comprising: synchronizing said phase-locked loop once for all parallel communication.
  • 23. A method as in claim 20 or 21 further comprising: transmitting parallel data at a rate equal to a recovered clock signal generated in response to the receive rate of serial data times the ratio of serial inputs to parallel outputs.
  • 24. A method as in claim 20 or 21 further comprising: transmitting parallel data at a rate equal to 1/10 of a recovered clock signal generated in response to the receive rate of serial data.
  • 25. A method as in claim 1 further comprising: switching said parallel data at said switch at a rate faster than the time taken by said at least one input port to receive a data cell.
  • 26. A method as in claim 1 further comprising: switching said parallel data at said switch on selected data cell boundaries, thereby providing the capability to switch variable-length data.
  • 27. A method as in claim 1 further comprising: switching said parallel data at a synchronous switching mechanism at said switch in synchrony with said clock signal.
  • 28. A method as in claim 1 further comprising: switching said parallel data at a cross bar switch at said parallel switch in synchrony with said clock signal.
  • 29. An apparatus, comprising: a system frequency source generating a system clock signal;at least one input interface receiving data and transmitting said data serially in synchrony with said system clock signal;a serial to parallel converter receiving said serial data from said at least one input interface and transmitting said serial data in parallel;a switch synchronized to said system clock signal, said switch receiving said parallel data from said serial to parallel converter and transmitting switched parallel data;a parallel to serial converter synchronized to said system clock signal, said parallel to serial converter receiving said switched parallel data from said switch and transmitting said parallel data serially; andat least one output interface receiving said serial data from said parallel to serial converter.
  • 30. An apparatus as in claim 29 further comprising: a phase-locked loop in said serial to parallel converter self-synchronized to arriving serially transmitted data; anda register to transmit said arriving serially transmitted data in parallel in synchrony with said phase-locked loop.
  • 31. An apparatus as in claim 29 further comprising: a phase-locked loop in said at least on output interface self-synchronized to arriving serially transmitted data.
  • 32. An apparatus as in claim 29 further comprising: a second parallel to serial converter at said at least one input interface.
  • 33. An apparatus as in claim 29 further comprising: a second serial to parallel converter at said at least one output interface.
  • 34. An apparatus as in claim 29 further comprising: an output register at said at least one output interface synchronized to said system clock signal for transmitting said data.
  • 35. An apparatus as in claim 29 further comprising: a phase-locked loop to synchronize said at least one input interface to said system clock signal for serial communications from said at least one input interface.
  • 36. An apparatus as in claim 29 further comprising: a phase-locked loop to synchronize said parallel to serial converter to said system clock signal for serial communications from said parallel to serial converter.
  • 37. An apparatus as in claim 35 or 36 further comprising: a clock signal from said phase-locked loop, said clock signal synchronized once for all serial communication.
  • 38. An apparatus as in claim 35 or 36 further comprising: a clock signal from said phase-locked loop for transmitting serial data at a rate equal to said system clock signal times the ratio of parallel inputs to serial outputs.
  • 39. An apparatus as in claim 35 or 36 further comprising: a clock signal from said phase-locked loop for transmitting serial data at a rate equal to 10 times said system clock signal.
  • 40. An apparatus as in claim 29 further comprising: a phase-locked loop to synchronize said serial to parallel converter to said received serially transmitted data for parallel communications from said serial to parallel converter.
  • 41. An apparatus as in claim 29 further comprising: a phase-locked loop to synchronize said at least one output interface to said received serially transmitted data for parallel communications from said at least one output interface.
  • 42. An apparatus as in claim 40 or 41 further comprising: a clock signal from said phase-locked loop, said clock signal synchronized once for all parallel communication.
  • 43. An apparatus as in claim 40 or 41 further comprising: a clock signal from said phase-locked loop for transmitting parallel data at a rate equal to a recovered clock signal generated in response to the receive rate of serial data times the ratio of serial inputs to parallel outputs.
  • 44. An apparatus as in claim 40 or 41 further comprising: a clock signal from said phase-locked loop for transmitting parallel data at a rate equal to 1/10 of a recovered clock signal generated in response to the receive rate of serial data.
  • 45. An apparatus as in claim 29 further comprising: a synchronous switching mechanism as said switch.
  • 46. An apparatus as in claim 29 further comprising: a synchronous switching mechanism as said switch adapted to switch data at a rate faster than the time taken by said at least one input interface to receive a data cell.
  • 47. An apparatus as in claim 29 further comprising: a synchronous switching mechanism as said switch adapted to switch on selected data cell boundaries, thereby providing the capability to switch variable-length data.
  • 48. An apparatus as in claim 29 further comprising: a cross bar switch as said switch.
  • 49. An apparatus, comprising: a clock signal source for generating a clock signal;means for transmitting serial data from said at least one input port in synchrony with said clock signal to a serial to parallel converter;means for transferring said serial data as parallel data by said serial to parallel converter to a switch;means for switching said parallel data at said switch in synchrony with said clock signal;means for receiving said parallel data from said switch by a parallel to serial converter;means for transmitting said parallel data serially from said parallel to serial converter in synchrony with said clock signal to said at least one output port; andmeans for receiving at said at least one output port said serially transmitted data from said parallel to serial converter.
  • 50. An apparatus as in claim 49 further comprising: means for self-synchronizing said serial to parallel converter to said received serially transmitted data at said serial to parallel converter.
  • 51. An apparatus as in claim 49 further comprising: means for self-synchronizing said at least one output port to said received serially transmitted data at said at least one output port.
  • 52. A apparatus comprising: a clock signal source for generating a first clock signal;at least one input interface element, said at least one input interface element having a parallel input port for receiving data cells and a serial transmitter coupled to said input port by a first parallel to serial converter, and transmitting said data cells by serial transmission, said first parallel to serial converter synchronized to said first clock signal and data cells transmitted from said at least one input interface element synchronized to said first clock signal;a cross connect receiving serial data from said at least one input interface element at a first serial to parallel converter, said first serial to parallel converter synchronized to the received serial data transmitted from said at least one input interface element and thereby synchronized to said first clock signal, said cross connect having a switch receiving parallel data from the first serial to parallel converter, and said cross connect having a second parallel to serial converter receiving parallel data from the switch and transmitting the data from the cross connect by serial transmission, said second parallel to serial converter synchronized to said first clock signal and data cells transmitted from said cross connect synchronized to said first clock signal; andat least one output interface element receiving serial data transmitted from said cross connect at a second serial to parallel converter, said second serial to parallel converter synchronized to the received serial data transmitted from said cross connect and thereby synchronized to said first clock signal, and an output port receiving parallel data from said second serial to parallel converter and transmitting parallel data.
  • 53. A method of operating a switch, comprising: generating a first clock signal;receiving data cells as parallel data at an input port, coupling the parallel data to a first parallel to serial converter, transmitting said data cells by serial transmission to a cross connect, and synchronizing said first parallel to serial converter and said data cells transmitted from said input port to said first clock signal;receiving by said cross connect said data cells transmitted from the input port as serial data, coupling said serial data to a first serial to parallel converter, synchronizing said first serial to parallel converter to the received serial data thereby synchronizing it to said first clock signal, coupling parallel data from said first serial to parallel converter to a synchronous switch, coupling parallel data from said switch to a second parallel to serial converter, transmitting the data by serial transmission to at least one output interface, and synchronizing said second parallel to serial converter and said data cells transmitted from said cross connect to said first clock signal; andreceiving serial data by said at least one output interface, said serial data coupled to a second serial to parallel converter located in said output interface, synchronizing said second serial to parallel converter to the serial data received by said at least one output interface thereby synchronizing it to said first clock signal, and delivering parallel data by said second serial to parallel converter to an output port of said output interface.
RELATED CASES

This application is a continuation of U.S. patent application Ser. No. 09/001,270 filed Dec. 31, 1997, entitled “SYNCHRONOUS PIELINED SWITCH USING SERIAL TRANSMISSION” now U.S. Pat. No. 6,424,649. The entirety of said U.S. Pat. No. 6,424,649 is hereby incorporated by reference.

US Referenced Citations (195)
Number Name Date Kind
4064360 Koenig Dec 1977 A
4131767 Weinstein Dec 1978 A
4161719 Parikh et al. Jul 1979 A
4316284 Howson Feb 1982 A
4397020 Howson Aug 1983 A
4419728 Larson Dec 1983 A
4424565 Larson Jan 1984 A
4437087 Petr Mar 1984 A
4438511 Baran Mar 1984 A
4439763 Limb Mar 1984 A
4445213 Baugh et al. Apr 1984 A
4446555 Devault et al. May 1984 A
4456957 Schieltz Jun 1984 A
4464658 Thelen Aug 1984 A
4499576 Fraser Feb 1985 A
4506358 Montgomery Mar 1985 A
4507760 Fraser Mar 1985 A
4532626 Flores et al. Jul 1985 A
4644532 George et al. Feb 1987 A
4646287 Larson et al. Feb 1987 A
4677423 Benvenuto et al. Jun 1987 A
4679189 Olson et al. Jul 1987 A
4679227 Hughes-Hartogs Jul 1987 A
4723267 Jones et al. Feb 1988 A
4731816 Hughes-Hartogs Mar 1988 A
4750136 Arpin et al. Jun 1988 A
4757495 Decker et al. Jul 1988 A
4763191 Gordon et al. Aug 1988 A
4769810 Eckberg, Jr. et al. Sep 1988 A
4769811 Eckberg, Jr. et al. Sep 1988 A
4771425 Baran et al. Sep 1988 A
4819228 Baran et al. Apr 1989 A
4827411 Arrowood et al. May 1989 A
4833706 Hughes-Hartogs May 1989 A
4835737 Herrig et al. May 1989 A
4879551 Georgiou et al. Nov 1989 A
4893306 Chao et al. Jan 1990 A
4903261 Baran et al. Feb 1990 A
4922486 Lidinsky et al. May 1990 A
4933937 Konishi Jun 1990 A
4960310 Chushing Oct 1990 A
4962497 Ferenc et al. Oct 1990 A
4962532 Kasirai et al. Oct 1990 A
4965772 Daniel et al. Oct 1990 A
4970678 Sladowski et al. Nov 1990 A
4979118 Kheradpir Dec 1990 A
4980897 Decker et al. Dec 1990 A
4991169 Davis et al. Feb 1991 A
5003595 Collins et al. Mar 1991 A
5014265 Hahne et al. May 1991 A
5020058 Holden et al. May 1991 A
5033076 Jones et al. Jul 1991 A
5054034 Hughes-Hartogs Oct 1991 A
5059925 Weisbloom Oct 1991 A
5072449 Enns et al. Dec 1991 A
5088032 Bosack Feb 1992 A
5095480 Fenner Mar 1992 A
RE33900 Howson Apr 1992 E
5115431 Williams et al. May 1992 A
5128945 Enns et al. Jul 1992 A
5136580 Videlock et al. Aug 1992 A
5166930 Braff et al. Nov 1992 A
5199049 Wilson Mar 1993 A
5206886 Bingham Apr 1993 A
5208811 Kashio et al. May 1993 A
5212686 Joy et al. May 1993 A
5224099 Corbalis et al. Jun 1993 A
5226120 Brown et al. Jul 1993 A
5228062 Bingham Jul 1993 A
5229994 Balzano et al. Jul 1993 A
5237564 Lespagnol et al. Aug 1993 A
5241682 Bryant et al. Aug 1993 A
5243342 Kattemalalavadi et al. Sep 1993 A
5243596 Port et al. Sep 1993 A
5247516 Bernstein et al. Sep 1993 A
5249178 Kurano et al. Sep 1993 A
5253251 Aramaki Oct 1993 A
5255291 Holden et al. Oct 1993 A
5260933 Rouse Nov 1993 A
5260978 Fleischer et al. Nov 1993 A
5268592 Bellamy et al. Dec 1993 A
5268900 Hluchyj et al. Dec 1993 A
5271004 Proctor et al. Dec 1993 A
5274631 Bhardwaj Dec 1993 A
5274635 Rahman et al. Dec 1993 A
5274643 Fisk Dec 1993 A
5280470 Buhrke et al. Jan 1994 A
5280480 Pitt et al. Jan 1994 A
5280500 Mazzola et al. Jan 1994 A
5283783 Nguyen et al. Feb 1994 A
5287103 Kasprzyk et al. Feb 1994 A
5287453 Roberts Feb 1994 A
5291482 McHarg et al. Mar 1994 A
5305311 Lyles Apr 1994 A
5307343 Bostica et al. Apr 1994 A
5309437 Perlman et al. May 1994 A
5311509 Heddes et al. May 1994 A
5313454 Bustini et al. May 1994 A
5313582 Hendel et al. May 1994 A
5317562 Nardin et al. May 1994 A
5319644 Liang Jun 1994 A
5327421 Hiller et al. Jul 1994 A
5331637 Francis et al. Jul 1994 A
5345445 Hiller et al. Sep 1994 A
5345446 Hiller et al. Sep 1994 A
5359592 Corbalis et al. Oct 1994 A
5361250 Nguyen et al. Nov 1994 A
5361256 Doeringer et al. Nov 1994 A
5361259 Hunt et al. Nov 1994 A
5365524 Hiller et al. Nov 1994 A
5367517 Cidon et al. Nov 1994 A
5371852 Attanasio et al. Dec 1994 A
5377181 Rogers Dec 1994 A
5386567 Lien et al. Jan 1995 A
5390170 Sawant et al. Feb 1995 A
5390175 Hiller et al. Feb 1995 A
5394394 Crowther et al. Feb 1995 A
5394402 Ross Feb 1995 A
5400325 Chatwani et al. Mar 1995 A
5408469 Opher et al. Apr 1995 A
5416842 Aziz May 1995 A
5422880 Heitkamp et al. Jun 1995 A
5422882 Hiller et al. Jun 1995 A
5423002 Hart Jun 1995 A
5426636 Hiller et al. Jun 1995 A
5428607 Hiller et al. Jun 1995 A
5430715 Corbalis et al. Jul 1995 A
5430729 Rahnema Jul 1995 A
5440550 Follett Aug 1995 A
5442457 Najafi Aug 1995 A
5442630 Gagliardi et al. Aug 1995 A
5452297 Hiller et al. Sep 1995 A
5473599 Li et al. Dec 1995 A
5473607 Hausman et al. Dec 1995 A
5477541 White et al. Dec 1995 A
5485455 Dobbins et al. Jan 1996 A
5490140 Abensour et al. Feb 1996 A
5490258 Fenner Feb 1996 A
5491687 Christensen et al. Feb 1996 A
5491804 Heath et al. Feb 1996 A
5497368 Reijnierse et al. Mar 1996 A
5504747 Sweasey Apr 1996 A
5509006 Wilford et al. Apr 1996 A
5517494 Green May 1996 A
5519704 Farinacci et al. May 1996 A
5519858 Walton et al. May 1996 A
5526489 Nilakantan et al. Jun 1996 A
5530963 Moore et al. Jun 1996 A
5535195 Lee Jul 1996 A
5539734 Burwell et al. Jul 1996 A
5541911 Nilakantan et al. Jul 1996 A
5546370 Ishikawa Aug 1996 A
5555244 Gupta et al. Sep 1996 A
5561669 Lenney et al. Oct 1996 A
5583862 Callon Dec 1996 A
5592470 Rudrapatna et al. Jan 1997 A
5598581 Daines et al. Jan 1997 A
5600798 Cherukuri et al. Feb 1997 A
5604868 Komine et al. Feb 1997 A
5608726 Virgile Mar 1997 A
5617417 Sathe et al. Apr 1997 A
5617421 Chin et al. Apr 1997 A
5617547 Feeney et al. Apr 1997 A
5630125 Zellweger May 1997 A
5631908 Saxe May 1997 A
5632021 Jennings et al. May 1997 A
5634010 Ciscon et al. May 1997 A
5638359 Peltola et al. Jun 1997 A
5644718 Belove et al. Jul 1997 A
5659684 Giovannoni et al. Aug 1997 A
5666353 Klausmeier et al. Sep 1997 A
5673265 Gupta et al. Sep 1997 A
5678006 Valizadeh et al. Oct 1997 A
5680116 Hashimoto et al. Oct 1997 A
5684797 Azner et al. Nov 1997 A
5687324 Green et al. Nov 1997 A
5689506 Chiussi et al. Nov 1997 A
5694390 Yamato et al. Dec 1997 A
5724351 Chao et al. Mar 1998 A
5748186 Raman May 1998 A
5748617 McLain, Jr. May 1998 A
5754547 Nakazawa May 1998 A
5774698 Olnowich Jun 1998 A
5802054 Bellenger Sep 1998 A
5835710 Nagami et al. Nov 1998 A
5854903 Morrison et al. Dec 1998 A
5856981 Voelker Jan 1999 A
5892924 Lyon et al. Apr 1999 A
5898686 Virgile Apr 1999 A
5903559 Acharya et al. May 1999 A
6208667 Caldara et al. Mar 2001 B1
6269096 Hann et al. Jul 2001 B1
6366583 Rowett et al. Apr 2002 B2
6385203 McHale et al. May 2002 B2
6424649 Laor et al. Jul 2002 B1
Foreign Referenced Citations (7)
Number Date Country
0 384 758 Aug 1990 EP
0 431 751 Jun 1991 EP
0 567 217 Oct 1993 EP
WO9307569 Apr 1993 WO
WO9307692 Apr 1993 WO
WO9401828 Jan 1994 WO
WO9520850 Aug 1995 WO
Continuations (1)
Number Date Country
Parent 09001270 Dec 1997 US
Child 10176819 US