This application claims priority to and the benefit of Chinese Patent Application No. 201210144197.7, filed May 10, 2012, which is incorporated herein by reference in its entirety.
The present invention generally relates to electronic circuit, and more particularly but not exclusively relates to synchronous rectification circuit and associated zero-crossing detection method.
Synchronous rectification circuit is generally desired to operate in discontinuous current mode (DCM) under light load condition. If the synchronous rectification circuit is allowed to operate in continuous conduction mode (CCM) under light load condition, i.e. when an inductor current IL of the synchronous rectification circuit decreases to zero, a synchronous rectifier of the synchronous rectification circuit is still on, allowing the inductor current IL to continue decreasing, an output capacitor for providing an output voltage can be discharged through the synchronous rectifier. That is to say, if the synchronous rectification circuit is allowed to operate under CCM, the inductor current IL can flow in reverse after crossing zero, and the efficiency of the circuit is greatly reduced.
For solving this problem, the synchronous rectifier is set off when the inductor current IL is deceased to zero to prevent the inductor current from flowing in reverse, i.e. the synchronous rectification circuit operates in DCM. Therefore, a zero-crossing detection circuit is necessary for detecting the zero cross point of the inductor current IL so as to determine whether to turn on or turn off the synchronous rectifier. Usually, inductor current signal is converted to a voltage signal representing the inductor current IL using a conduction resistance RL of the synchronous rectifier, and the voltage signal is provided to a zero-crossing comparator for detecting whether the voltage signal crosses zero. For this method, the accuracy of zero-crossing detection is determined by an input offset voltage VOS of the zero-crossing comparator. Due to the input offset voltage VOS not being zero, the synchronous rectifier can't be turned off accurately at zero of the inductor current IL. In addition, if the conduction resistance RL of the synchronous rectifier is very small, the voltage signal representing the inductor current IL obtained through multiplying the inductor current IL by the conduction resistance RL can be quite small too. When the zero-crossing comparator detects the voltage signal crosses the input offset voltage VOS, the inductor current has actually already decreased far lower than zero. Thus, the accuracy of zero-crossing detection gets worse.
Accordingly, a method and a circuit for improving the accuracy of zero-crossing detection are desired.
One embodiment of the present invention discloses a zero-crossing detection method for a synchronous rectification circuit. The synchronous rectification circuit with a synchronous rectifier has a source, a drain, at least two gates; wherein the synchronous rectifier comprises N MOS cells connected in parallel, and N is an integer greater than or equal to 2. the zero-crossing detection method comprises: providing a voltage signal across the drain and the source of the synchronous rectifier indicating a current signal flowing through the drain and the source; comparing the voltage signal with a first threshold voltage signal to determine whether the voltage signal is equal to the first threshold voltage; turning a portion of N MOS cells off once the voltage signal is equal to the first threshold voltage; comparing the voltage signal with a second threshold voltage signal to determine whether the voltage signal is equal to the second threshold voltage; turning the left portion of N MOS cells off once the voltage signal is equal to the second threshold voltage.
Another embodiment of the present invention discloses a synchronous rectification circuit. The synchronous rectification circuit comprises: a switching circuit, at least comprising a power switch and a synchronous rectifier connected in series, wherein the synchronous rectifier has a source, a drain, and at least two gates, and wherein the synchronous rectifier comprises N MOS cells, and N is an integer greater than or equal to 2; a feedback circuit, coupled to the switching circuit and configured to provide a feedback signal; a zero-crossing detection circuit, coupled to a common connection of the power switch and the synchronous rectifier to receive a voltage signal indicating a current flowing through the drain and the source of the synchronous rectifier, and configured to provide a first comparing signal and a second comparing signal based at least in part on the voltage signal; a control circuit, configured to receive the feedback signal and the first and the second comparing signals, and to provide a control signal for the gate of the power switch, and at least two control signals for the at least two gates of the synchronous rectifier.
Non-limiting and non-exhaustive embodiments are described with reference to the following drawings. The drawings are only for illustration purpose. Usually, the drawings only show part of the system or circuit of the embodiment, and the same reference label in different drawings have the same, similar or corresponding features or functions.
While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On contrary, the embodiments of the present invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the embodiments of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the present invention. However, it will be obvious to one of ordinary skill in the art that without these specific details the present invention may be practiced. In other instance, well-know circuits, materials, and methods have not been described in detail so as not to unnecessarily obscure aspect of the embodiments of the present invention.
The preferred embodiments of the present invention are described with drawings in next.
Synchronous rectification circuit 100 may be a Buck circuit in
In one embodiment, zero-crossing detection circuit 210 may comprise a zero-crossing comparator 211 having a first input terminal, a second input terminal and an output terminal. Because the input offset voltage signal VOS is a key factor affecting the accuracy of the zero-crossing comparator 211 and unequal to zero, thus the input offset voltage VOS is illustrated as a voltage source 212.
The first input terminal of zero-crossing comparator 211 is coupled to a common connection of the power switch SW and synchronous rectifier 110 to receive the voltage signal VDS with the input offset voltage signal VOS added, and the second input terminal of zero-crossing comparator 211 is configured to receive a reference voltage signal valued zero, and the output terminal of zero-crossing comparator 211 is configured to output a comparing signal CV. The synchronous rectifier 110 will be turned off once the voltage signal VDS is equal to the input offset voltage signal VOS.
In another embodiment, the first input terminal of zero-crossing comparator 211 is configured to receive the voltage signal VDS, the second input terminal of zero-crossing comparator 211 has the input offset voltage signal VOS, and the output terminal of zero-crossing comparator 211 is configured to output the comparing signal CV. The synchronous rectifier 110 will be turned off once the voltage signal VDS is equal to the input offset voltage VOS.
The voltage signal VOS=−RL×IL, if the conduction resistance RL is too small, the voltage signal VDS is also very small which could greatly affects the accuracy of zero-crossing detection. For example, if the input offset voltage signal VOS is 3 mV, and the conduction resistance RL is 3 mΩ, the synchronous rectifier 110 will be turned off when the inductor current reaches 1A which is much larger than the desired value zero.
In the embodiments described above, though the N MOS cells of the synchronous rectifier 302 has N gates G1, G2 . . . GN, or N MOS cells of the synchronous rectifier 303 are divided into two parts 310, 320 configured to have two gates GA, GB, it should be understood to the one of ordinary skills in the art, the synchronous rectifier 110 may comprise other dividing methods in others embodiments.
In order to improve the accuracy of the zero-crossing detection, the conduction resistance RL of the synchronous rectifier may be increased when the drain-source voltage VDS is close to the offset voltage VOS, e.g. VOS+Δv, wherein the value Δv is larger than zero. As shown in
Back to the
And back to
The switching circuit may comprise a power switch SW, a synchronous rectifier 530, an inductor L, a capacitor C and a load. The power switch SW and the synchronous rectifier 530 are connected in series between an input terminal for receiving the supply voltage VIN and the reference ground GND. A first terminal of inductor L is connected to a common connection of the power switch SW and the synchronous rectifier 530, and a second terminal of the inductor L is connected to a first terminal of the capacitor C and to a first terminal of the load. A second terminal of the capacitor C and a second terminal of the load are connected to reference ground GND. The synchronous rectifier 530 is a synchronous rectifier with N gates exported according to an embodiment of the present invention, e.g. the synchronous rectifier 302, the synchronous rectifier 303, and other similar synchronous rectifiers within the spirit and scope of the invention.
The feedback circuit 120 is coupled to an output terminal of the synchronous rectification circuit 500 to receive the output voltage signal VO and provides a feedback signal VFB representing the output voltage signal VO.
The zero-crossing detection circuit 510 further comprises a zero-crossing comparator 511 having a first input terminal, a second input terminal and an output terminal; a zero-crossing comparator 512 having a first input terminal, a second input terminal and an output terminal, Wherein each of the zero-crossing comparator 511 and the zero-crossing comparator 512 has a input offset voltage signal VOS illustrated as a voltage source 513. The input offset voltage signal VOS of the zero-crossing comparator 511 and the input offset voltage signal VOS of the zero-crossing comparator 512 are substantially equal, the difference value between this two input offset voltage signal can be ignored within a certain range.
The first input terminal of zero-crossing comparator 511 is coupled to a common connection of the power switch SW and synchronous rectifier 530 to receive the voltage signal VDS with the input offset voltage signal VOS added, and the second input terminal of zero-crossing comparator 511 receives a reference voltage signal valued zero, and the output terminal of zero-crossing comparator 511 outputs the first comparing signal CV1. The remaining N-MMOS cells of synchronous rectifier 530 will be turned off once the voltage signal VDS is equal to the input offset voltage signal VOS, wherein the input offset voltage signal VOS functions as a first threshold voltage.
The first input terminal of zero-crossing comparator 512 is coupled to a common connection of the power switch SW and synchronous rectifier 530 to receive the voltage signal VDS with the input offset voltage signal VOS added, and the second input terminal of zero-crossing comparator 512 receives a reference voltage signal valued Δv, and the output terminal of zero-crossing comparator 512 outputs the second comparing signal CV2. M MOS cells of the synchronous rectifier 530 will be turned off once the voltage signal VDS is equal to the input offset voltage signal VOS with a voltage signal Δv added, wherein the signal VOS with a voltage signal Δv added functions as a second threshold voltage.
In another embodiment, The first input terminal of zero-crossing comparator 511 is configured to receive the voltage signal VDS, and the second input terminal of zero-crossing comparator 511 having the input offset voltage signal VOS, and the output terminal of zero-crossing comparator 511 is configured to output the first comparing signal CV1. The remaining N-M MOS cells of synchronous rectifier 530 will be turned off once the voltage signal VDS is equal to the input offset voltage signal VOS.
The first input terminal of zero-crossing comparator 512 is coupled to a common connection of the power switch SW and synchronous rectifier 530 to receive the voltage signal VDS, and the second input terminal of zero-crossing comparator 512 is configured to receive the input offset voltage signal VOS with a voltage signal Δv added, and the output terminal of zero-crossing comparator 512 is configured to output the second comparing signal CV2. MMOS cells of the synchronous rectifier 530 will be turned off once the voltage signal VDS is equal to the input offset voltage signal VOS with a voltage signal Δv added.
The control circuit 520 is configured to receive the feedback signal VFB, a first comparing signal CV1 and a second comparing signal CV2, and to provide a control signal QH to the power switch SW for controlling the on and off switching of the power switch SW. In one embodiment, the control circuit 520 is configured to provide N control signals Q1, Q2 . . . QN respectively to each of the corresponding N gates of the synchronous rectifier 530, to program M of the N control signals to turn the M MOS cells off once the voltage signal is equal to the first threshold voltage; and to program the remaining N-M control signals to turn the remaining N-M MOS cells off once the voltage signal is equal to the second threshold voltage. In another embodiment, the control circuit 520 is configured to provide a first control signal to M gates of the N gates of the rectifier for turning the M MOS cells off once the voltage signal is equal to the first threshold voltage, and to provide a second control signal to the remaining N-M gates of the N gates of the rectifier for turning the remaining N-M MOS cells off once the voltage signal is equal to the second threshold voltage. Wherein the plurality of signals QH, Q1, Q2 . . . QN are PWM signals.
In step 610, providing a voltage signal VDS across the drain and the source of the synchronous rectifier indicating an inductor current signal flowing through the drain and the source according to an embodiment of the present invention. The voltage signal VDS may be obtained by sensing a drain-source voltage across the drain and the source of the synchronous rectifier. The synchronous rectifier comprises a conduction resistance between the drain and the source of the synchronous rectifier, wherein providing the voltage signal comprises converting the inductor current signal into the voltage signal VDS by the conduction resistance.
In step 620, comparing the voltage signal VDS with a first threshold voltage signal to determine whether the voltage signal VDS is equal to the first threshold voltage signal. Once the voltage signal VDS is equal to the first threshold voltage, turns to step 630 or else returns to step 610. In this step, a first zero-crossing comparator having a first input terminal, a second input terminal and an output terminal is provided, and wherein the first input terminal receives the voltage signal, the second input terminal receives the first threshold voltage signal.
In step 630, turning M MOS cells of a synchronous rectification off once the voltage signal is equal to the first threshold voltage, wherein the synchronous rectification comprises the synchronous rectification 302, 303, and 530 described above or any variant of them comprise N MOS cells.
In step 640, comparing the voltage signal with a second threshold voltage signal to determine whether the voltage signal is equal to the second threshold voltage. Turns to step 650 once the voltage signal VDS is equal to the first threshold voltage, or returns to step 630. A second zero-crossing comparator having a first input terminal, a second input terminal and an output terminal is needed, and wherein the first input terminal receives the voltage signal, the second input terminal receives a second threshold voltage signal.
In step 650, turning the remaining N-M MOS cells of a synchronous rectification off once the voltage signal is equal to the second threshold voltage.
In the zero-crossing detection method 600 descript above, the first threshold voltage signal is larger than the second threshold voltage signal. And usually, the second threshold voltage signal may comprise an input offset voltage since both the first zero-crossing comparator and the second zero-crossing comparator comprise an input offset voltage signal.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a present embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
201210144197.7 | May 2012 | CN | national |