The present invention relates to power supplies utilizing synchronous rectification.
As shown in prior art
The secondary side 120 of the illustrative power supply 100 includes a power supply transformer secondary winding 124, with the primary 110 and the secondary 120 of the power supply 100 being separated by an isolation barrier 122 between the windings 114 and 124. The winding 124 is connected at a first end to a rectifier 230, which is referenced at its other terminal to a “cold-side” or isolated ground 128. The rectifier 230 comprises a synchronous rectifier 233 which comprises a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 234 connected in parallel with a rectifier diode 232. The rectifier diode 232 has its cathode connected to the MOSFET 234 drain and its anode connected to the ground 128. The MOSFET 234 includes a body diode 235, poled corresponding to the diode 232. A power supply output voltage 132 is developed at a second end of winding 124, where it is filtered by an electrolytic capacitor 130 and supplies an output load current 134 to a power supply load 295. Interposed between the power supply 100 and the load 295 is a load sensor 290. The load sensor 290 has as an output 202 a signal to disable synchronous rectification, selectively, in accordance with the load.
In many supplies, rectifier 230 may be placed with the opposite polarity on the second end of the winding 124 with the first end of winding 124 connected directly to the ground 128. An advantage of configuring the rectifier as shown in
In the type of rectifiers described in this exemplary switch-mode supply, the diode 232 is often a Schottly diode due to an often large source of inefficiency; the voltage drop across a conventional rectifier diode. In higher power power supplies, the inefficiency introduced by the voltage drop across the diode can be significant, thus requiring heat sinking and possibly active measures such as forced air cooling. In order to meet the ever-increasing demand for high speed and miniaturization of digital devices, microelectronic circuit voltage levels have been dropping. Although 5 Volt and 12 Volt power supplies are still predominant, 3.3 Volt, 2.5 Volt, 1.8 Volt, and 1.5 Volt and others are becoming increasingly common as the standard voltages in many electronic devices. Previous designs using conventional rectifier diodes to rectify secondary AC voltage to a DC voltage, allow the output current on the secondary side to “freewheel” during the time that the power switches on the primary side are off. As requirements to minimize power consumed by electronic devices become more stringent and as operating voltages used in modern devices become lower, the power loss incurred in the rectifier diodes becomes very large compared to the output power. For example, using 0.5 V Schottky diodes in a 1V output power supply results in a power loss of approximately 33% of the output power in the rectifier circuit.
In order to improve the rectifier efficiency, a transistor, usually a Field Effect Transistor (FET) or more specifically a MOSFET can be used as a low voltage-drop switch to replace a diode. This technique is referred to as synchronous rectification. Synchronous rectification requires control of the drive to the synchronous rectifier to turn the MOSFET on during the lowest portions of the voltage being rectified and to turn the MOSFET off during the highest portions of the voltage being rectified. Integrated circuit controllers such as the ST Microelectronics STS-R3 or Anachip AP436 as well as discrete circuit designs are used to control conduction of the synchronous rectifier.
Further, high-power density is crucial in applications where the space for the power supply relative to the power output is limited. Thus, there is an ongoing quest to develop power supplies with increased efficiency, in part to minimize the need for or size of heat sinks. In addition, due to Energy Star and European CoC requirements, new power supply designs must maintain a high efficiency even at low output power levels and must have greatly reduced input power when small or no load is present. A synchronous rectifier can improve the efficiency of a power supply at normal and high load levels by reducing the conduction losses typical of a standard diode rectifier. The advantage of the synchronous rectifier FET is the very low “on resistance” of current FETs. Although synchronous rectifiers are much more efficient than diode rectifiers at today's lower voltage levels, they are not without their drawbacks. There is a certain amount of power overhead, most notably the power required to operate the synchronous rectifier controller that exists in driving the synchronous rectifier that can affect the efficiency of the power supply when a low output power level exists.
In the arrangement of
A disclosed embodiment of the invention relates to a power supply, which includes a source of an alternating current input supply and a rectifier that is coupled to a load for rectifying the input supply. A rectified output supply current is produced, during both a run mode operation and a standby mode operation, in a current path that is coupled to the load. The rectifier provides synchronous rectification, during the run mode operation. A source of an on/off control signal is applied to the load for reducing the rectified output supply current and is also applied, in parallel, to the rectifier for selectively disabling the synchronous rectification in the rectifier.
In the drawings:
A second major current conduction terminal of the rectifier 230 is connected to the “cold” or isolated ground 128. A small value capacitor 245 is connected in parallel across the rectifier 230 to eliminate line conducted radiation caused by switching transients from the rectifier 230. The rectifier 230 also comprises a control terminal for determining conduction in a component, the synchronous rectifier 233, such as an STF6ON55F3 from ST Electronics, of the rectifier 230. The rectifier 230 also comprises the diode 232, in the embodiment of
In the embodiment of
The microprocessor 400 is used to control the operations of the set top box 300. Through a microprocessor user interface 420 and often with the convenience of a remote control 430, the microprocessor 400 directs the operation of the signal processor 500 to, for example, select channels, play/record and turn on/off. In modern set top boxes, the command to turn off, signals the processor 500 to stop processing viewable activities and to enter a low power or “standby mode”. This partially powered state of less than 100 mA accommodates routine software downloads and also keeps the microprocessor user interface and the remote control interface active to receive and process a subsequent on command. For many reasons, it is important that the power consumed when a device is in such a standby state be kept as low as possible. When the microprocessor 400 signals the processor 500 to enter a standby or low current mode by a standby signal 203, the microprocessor, in parallel, sets the synchronous rectifier disable signal 202 to a low voltage state to turn the controller 236 off. When the disable signal 202 is in a low voltage state, the transistor 252 is turned off, which in response turns the transistor 244 off. When the transistor 244 is in its off mode, the waveform 304 is interrupted from the synchronous rectifier gate, thus turning off operation of the MOSFET 234. When the MOSFET 234 is made inoperative, the diode 232 of rectifier 230 provides rectification of the output voltage 132, thus still providing output voltage +VOUT. The diode 232 may have a slightly larger voltage drop when it is conducting than the MOSFET 234 does when it is conducting, at low power output from the power supply 200. However, the reduction in efficiency of the power supply is minimal. With supply current to the controller 236 interrupted by the disable signal 202, the power supply 200 efficiency is significantly improved. It is possible that the diode 232 can be eliminated from the rectifier 230, with standby mode rectification being provided by the MOSFET body diode 235.
Although the disable signal 202 and the standby signal 203 are shown in
A capacitor 266 is connected from the junction of the resistor 262, the diode 260 and the capacitor 264 to a base of a PNP transistor 274 part number MMBT589LT1G by On Semi. Also connected to the base terminal of transistor 274 is a resistor 272, which is connected between the base and emitter of transistor 274. A 4.7 Volt zener diode 268 BZT52C4V7 manufactured by Diodes, Inc. and a conventional diode 270 are connected in series with each other and also from the base to emitter of transistor 274. A cathode of Zener diode 268 is connected to the base of transistor 274 and a cathode of diode 270 is connected to the transistor 274 emitter, with the anodes of the two diodes connected together. The emitter of transistor 274 is returned to the VDD 242 of the controller 236. The capacitor 266 and the resistor 272 form a differentiator to apply differentiated pulses to the base emitter junction of transistor 274. When the signal 302 goes in a negative direction, a moderately broad pulse from the differentiator causes the transistor 274 to conduct current from the VDD 242 to the ground 128 through a load resistance formed by a resistor 276 in series with the resistor 240. The positive going voltage thus developed across the resistor 240 produces a positive portion of signal 304 applied to the gate of the MOSFET 234.
When the voltage 302 goes in a positive direction, the voltage developed across the capacitor 264 goes positive rapidly, which, in turn, is differentiated by the capacitor 266 and the resistor 272 to quickly render the transistor 274 non-conductive. When the transistor 274 ceases conduction, the voltage developed at the gate of the MOSFET 234 drops below a threshold of conduction of the MOSFET. A clipper formed by the diodes 268 and 270 allow a positive excursion of approximately 5.4 volts (Zener voltage plus one forward diode drop) of the base emitter voltage of the transistor 274 to assure that the base emitter of transistor 274 does not exceed its reverse breakdown voltage. The resistor 276 is placed in series between the transistor 274 collector and the MOSFET 234 gate to form, with a capacitor 258, a low pass filter to reduce radio frequency interference due to switching of the MOSFET 234. The waveforms in
In the present invention, the power supply is made more efficient under all conditions by avoiding the use of a supply current load sensor. Additionally, advantageously, under standby conditions the current supply to the controller 236 is interrupted. In addition the power supply can be smaller and more cost effective than those previous applications by elimination of the components and space required for a load sensor.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/06718 | 12/28/2009 | WO | 00 | 6/25/2012 |