1. Field of the Invention
The present invention relates generally to electronic circuits, and more particularly, to a DC/DC synchronous rectifier drive circuit.
2. Description of the Related Art
As shown in
The primary objective of the present invention is to provide a synchronous rectifier drive circuit, which prevents negative drive voltage from occurrence to lessen the variation of pulse wave of the drive voltage.
The secondary objective of the present invention is to provide a synchronous rectifier drive circuit, which prevents the surge voltage from occurrence to protect the electronic elements.
The foregoing objectives of the present invention are attained by the synchronous rectifier drive circuit, which includes a primary side and a secondary side. The primary side includes a first coil winding, a first metal oxide semiconductor field-effect transistor (MOSFET), an auxiliary MOSFET, an auxiliary capacitor, and an input power source. The auxiliary MOSFET and the auxiliary capacitor are connected in series and then connected in parallel with the first coil winding. The first MOSFET and the input power source are connected in series and then connected in parallel with the first coil winding. The secondary side includes a second coil winding, a DC voltage source, a second MOSFET, a third MOSFET, a fourth MOSFET, a fifth MOSFET, and an inductor. Each of the MOSFETs is provided with a gate, a drain, and a source. The DC voltage source is connected with the gate of the fourth MOSFET and the gate of the fifth MOSFET. The drains of the fourth and fifth MOSFETs are connected with two ends of the second coil winding respectively. The gate of the second MOSFET is connected with the source of the fourth MOSFET. The gate of the third MOSFET is connected with the source of the fifth MOSFET. The drain of the third MOSFET is connected with the drain of the fourth MOSFET. The drain of the second MOSFET is connected with the drain of the fifth MOSFET. The source of the second MOSFET is connected with the source of the third MOSFET. The inductor has two ends, one of which is connected with the drain of the third MOSFET and the other as well as the source of the third MOSFET is connected with a load.
Referring to
The primary side 11 includes a first coil winding N1, a first MOSFET Q1, an auxiliary MOSFET QA, an auxiliary capacitor CA, and an input power source Vi. Each of the first MOSFET Q1 and the auxiliary MOSFET QA is provided with a gate, a drain, and a source. The auxiliary MOSFET QA and the auxiliary capacitor CA are connected in series and then connected in parallel with the first coil winding N1; specifically, the drain of auxiliary MOSFET QA is connected with one end of the auxiliary capacitor CA, and the other end of auxiliary capacitor CA and the source of auxiliary MOSFET QA are connected in parallel with the first coil winding N1. The first MOSFET Q1 and the input power source Vi are connected in series and then connected in parallel with first coil winding N1; specifically, the source of the first MOSFET Q1 is connected with an negative electrode of the input power source Vi, and a positive electrode of the input power source Vi and the drain of the first MOSFET Q1 are connected in parallel with first coil winding N1.
The secondary side 21 includes a second coil winding N2, a DC voltage source VDD, a second MOSFET Q2, a third MOSFET Q3, a fourth MOSFET Q4, a fifth MOSFET Q5, and an inductor L. Each of the second, third, fourth, and fifth MOSFETs Q2, Q3, Q4, and Q5 includes a gate, a drain, and a source. The DC voltage source VDD is connected with the gate of the fourth MOSFET Q4 and the gate of the fifth MOSFET Q5. The drain of the fourth MOSFET Q4 and the drain of the fifth MOSFET Q5 are connected with two ends of the second coil winding N2 respectively. The gate of the second MOSFET Q2 is connected with the source of the fourth MOSFET Q4. The gate of the third MOSFET Q3 is connected with the source of the fifth MOSFET Q5. The drain of the third MOSFET Q3 is connected with the drain of the fourth MOSFET Q4. The drain of the second MOSFET Q2 is connected with the drain of the fifth MOSFET Q5. The source of the second MOSFET Q2 is connected with the source of the third MOSFET Q3. The inductor L has two ends, one of which is connected with the drain of the third MOSFET Q3 and the other is connected with one end of a load RO. The source of the third MOSFET Q3 is connected with the other end of the load RO. An input capacitor CO is connected in parallel with the load RO.
The first and second coil windings N1 and N2 are located at two sides of a transformer T1; specifically, the first coil winding N1 is located at the primary side of the transformer T1 and the second coil winding N2 is located at the secondary side of the transformer T1.
As shown in
V
ds(sat)
=V
gs
−V
th (1)
Referring to
1. Time Section [t0-t1]:
When the time is equal to, the first MOSFET Q1 is turned on and the auxiliary MOSFET QA is cut off. It is presumed that the first coil winding Q1 has an exciting inductance LM and an exciting current iM. In the meantime, the exciting inductance LM stands for the status of energy storage, and the span voltage between two ends of VN1 is denoted by the following equation (2):
vN1=Vi (2)
Because the polarity of VN2 is identical to that of VN1, we get the following equation (3):
As known from the equation (1), the fifth MOSFET Q5 is operated in the triode region under the condition denoted by the following equation (4):
V
ds5
<V
ds5(sat)
=V
gs5
−V
th(Q5) (4)
In the equation (4), Vgs5 is denoted by the following equation (5):
V
gs5
=V
DD
−V
gs3 (5)
Substituting the equation (5) into the equation (4), we get the following equation (6):
V
ds5
+V
gs3
=V
ds2
<V
DD
−V
th(Q5) (6)
As shown in
Vds3=VN2 (7)
The fourth MOSFET Q4 is originally operated at the triode region, so vgs2 rises as vds3 rises and the second MOSFET Q2 is turned on. When vds3 is greater than (VDD−Vth(Q4)), the operation of the fourth MOSFET Q4 is changed from the triode region to the saturation region; meanwhile, vds4 rises gradually and the voltage level of vgs2 is maintained at (VDD−Vth(Q4)), so vds4 is denoted by the following equation (8):
2. Time Section [t1-t2]:
In this time section, the first MOSFET Q1 is cut off and the exciting inductance LM is at the exoergic status. Because the auxiliary MOSFET QA keeps being cut off, the exciting current iM is turned on via the parasitic diode of the auxiliary MOSFET QA to charge the auxiliary capacitor CA. The span voltage vds1 and the current iCA are denoted respectively by the following equations (9) and (10):
v
ds1
=V
i
+V
CA (9)
iCA=iM (10)
In the meantime, the span voltage VN1 is denoted by the following equation (11):
VN1−VCA (11)
Because VN2 has the same polarity as VN1 does, VN2 can be denoted by the following equation (12):
Because vds3 is dropped to zero at the moment, the fourth MOSFET Q4 enters the triode region, vgs2 is dropped to zero as well and the second MOSFET Q2 is cut off. The voltage vds2 rises, vgs3 rises together with vds2, the third MOSFET Q3 is turned on, and the fifth MOSFET Q5 is operated from the triode region to the saturation region. At the moment, the span voltage vds2 is denoted by the following equation (13):
Therefore, vds5 can be denoted by the following equation (14):
In the meantime, the indictor L starts to shift to the discharging status.
3. Time Section [t2-t3]:
In this time section, the auxiliary MOSFET QA is turned on and the auxiliary capacitor CA keeps being charged and then be fully charged until the time point t3; meanwhile, both of iM and iCA are dropped to zero. The secondary side of the transformer T1 has the same status in this time section as in the previous time section [t1-t2].
4. Time Section [t3-t4]:
The auxiliary MOSFET QA keeps being turned on and the auxiliary capacitor CA starts to reversely magnetize the exciting inductor LM to produce reverse exciting current, and then the curve B-H of the transformer T1 falls in the third quadrant. The secondary side of the transformer T1 has the same status in this time section as in the previous time section [t2-t3] does.
5. Time Section [t4-t5]:
The auxiliary MOSFET QA is cut off, the auxiliary capacitor CA stops discharging, and both of iM and iCA are dropped to zero; meanwhile, the span voltage VN2 is zero and the third MOSFET Q3 is cut off because the drive voltage is dropped to zero. The current of the inductor L is turned on via the parasitic diode of the third MOSFET Q3 and keeps discharging until the next time point. That is, the whole operation repeats from the time point to recursively.
In conclusion, the present invention can lessen the variation of pulse wave of the drive voltage and to restrain the surge voltage, thus protecting the electronic elements.
Although the present invention has been described with respect to a specific preferred embodiment thereof, it is no way limited to the details of the illustrated structures but changes and modifications may be made within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
96219877 | Nov 2007 | TW | national |