The present specification generally relates to syncing apparatuses, process dollies, conveyor assemblies, and, more specifically, to syncing apparatuses, process dollies, and conveyor assemblies having synchronizing apparatuses for synchronizing process dollies to conveyors.
Process dollies are used in manufacturing processes to carry parts, tools, and the like for use along an assembly line. In particular, in the vehicle manufacturing industry, process dollies are configured to move at the same rate as a vehicle or vehicle component along an assembly line. For a process dolly to move at the same rate as a particular vehicle component, it must be synchronized to a portion of the conveyor assembly where the particular part is located. Conventionally, to sync a process dolly to a particular portion of the conveyor a block is coupled to the conveyor and the process dolly includes a urethane scraper that is positioned to contact the block. The contact between the urethane scraper and the block causes the process dolly to move along with the movement of the conveyor. However, such scrapers may wear out and become unreliable.
Accordingly, a need exists for alternative syncing apparatuses for synchronizing a process dolly to a motion of a conveyor.
In one embodiment, a syncing apparatus for synchronizing a process dolly to a conveyor includes a mounting frame and a sync arm. The mounting frame is configured to be mounted to a frame of the process dolly. The sync arm is coupled to the mounting frame and includes a wheel and a biasing member coupled to the wheel and configured to bias the wheel to an extended position. The wheel is configured to contact a contact feature of the conveyor to synchronize the process dolly to a movement of the conveyor when biased to the extended position. Compression of the biasing member moves the wheel to a retracted position wherein the wheel is configured to traverse the contact feature of the conveyor and the process dolly is unsynchronized from the movement of the conveyor.
In another embodiment, a process dolly includes a frame and a syncing apparatus coupled to the frame and configured to synchronize the process dolly to a movement of a conveyor. The syncing apparatus includes a sync arm that includes a wheel and a biasing member coupled to the wheel. The biasing member biases the wheel to an extended position. The wheel is configured to contact a contact feature of the conveyor to synchronize the process dolly to the movement of the conveyor when biased to the extended position. Compression of the biasing member moves the wheel to a retracted position wherein the wheel is configured to traverse the contact feature of the conveyor and the process dolly is unsynchronized from the movement of the conveyor.
In yet another embodiment, a conveyor assembly includes a conveyor having a contact feature and a process dolly configured to be synchronized to a movement of the conveyor. The process dolly includes a frame and a syncing apparatus coupled to the frame and configured to synchronize the process dolly to the movement of the conveyor. The syncing apparatus includes a sync arm that includes a wheel and a biasing member coupled to the wheel. The biasing member biases the wheel to an extended position. The wheel is configured to contact the contact feature of the conveyor to synchronize the process dolly to the movement of the conveyor when biased to the extended position. Compression of the biasing member moves the wheel to a retracted position wherein the wheel is configured to traverse the contact feature of the conveyor and the process dolly is unsynchronized from the movement of the conveyor.
These and additional features provided by the embodiments described herein will be more fully understood in view of the following detailed description, in conjunction with the drawings.
The embodiments set forth in the drawings are illustrative and exemplary in nature and not intended to limit the subject matter defined by the claims. The following detailed description of the illustrative embodiments can be understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
The figures generally depict a syncing apparatus for synchronizing a process dolly to a movement of a conveyor. In particular, syncing apparatuses according to the present disclosure generally include a wheel and a biasing member coupled to the wheel and configured to bias the wheel to an extended position. The conveyor may include a contact feature. The wheel may contact the contact feature such that the process dolly, to which the syncing apparatus is attached, moves with the contact feature of the conveyor. Then, the process dolly may move in synchronization with the conveyor due to contact between the syncing apparatus and the contact feature of the conveyor. When synchronization is no longer needed, force can be applied to the process dolly in a direction opposite the direction of movement of the conveyor. The contact feature may be positioned at such a height relative to the wheel that the force causes the wheel to roll over the contours of the contact feature while the biasing element allows the wheel of move to a retracted state such that the wheel remains in contact with the contact feature until it traverses completely past the contact feature. Accordingly, due to the rolling of the wheel over the contact feature, the syncing apparatus experiences much less wear than previous methods that used resilient urethane scrapers to contact conveyor contact features. Various embodiments of the syncing apparatus will be described in more detail herein.
Referring now to
The conveyor 14 may include a work part conveyor portion 18 and a person conveyor portion 16. The work part conveyor portion 18 and the person conveyor portion 16 may move parallel to one another at the same rate. Stated another way, the work part conveyor portion 18 and the person conveyor portion 16 move together in synchronization. The person conveyor portion 16 may allow a person to stand on the conveyor 14 at a desired location and move in synchronization with a work part 30 (e.g., a vehicle chassis) being carried along the work part conveyor portion 18. In some embodiments there may be a person conveyor portion 16 on either side of the work part conveyor portion 18, such as illustrated in
Between the work part conveyor portion 18 and the person conveyor portion 16 may be a stationary track 24. A second stationary track 22 may be positioned at an outside edge of the person conveyor portion 16, such that stationary tracks 22, 24 are positioned parallel to and on both sides of the person conveyor portion 16 of the conveyor 14. As will be described with reference to the process dolly 40, the stationary tracks 22, 24 allow for the process dolly 40 to remain stationary relative to motion of the conveyor 14 prior to synchronization with a contact feature of the conveyor 14.
The process dolly 40 in both
The mounting frame 104 may be any structure that is capable of mounting the sync arm 110 to the process dolly 40. For example, referring also to
The mounting frame 104 may be mountable to the frame 42 of the process dolly 40 through fasteners or the like. For example, one or more of the mounting grooves 106 may facilitate coupling of the mounting frame 104 to the process dolly 40. In some embodiments, and as noted above, multiple mounting frames may be used. Referring again to
Referring again to
The bracket support arm 114 is configured to interface with a mounting surface 105 of the mounting frame 104. The bracket support arm 114 may be configured to allow a fastener to pass therethrough and into a mounting groove 106 of the mounting frame 104. In some embodiments, multiple fasteners can extend from the bracket support arm 114 into multiple mounting grooves 106 of the mounting frame 104. The position of the support bracket 112 along the mounting grooves 106 of the mounting frame 104 can be adjusted, which adjusts the position of the bracket support arm 114 relative to the mounting frame 104. The fasteners can then be tightened at a desired location to prevent unwanted movement of the support bracket 112 relative to the mounting frame 104.
The sync arm 110 generally includes a wheel 120 and a biasing member 130 operatively coupled to the wheel 120 and configured to bias the wheel 120 to an extended position. As will be described in greater detail, the wheel 120 is configured to contact the contact feature of the conveyor 14 to synchronize the process dolly 40 to the movement of the conveyor 14 when the wheel 120 is biased to the extended position. Compression of the biasing member 130 moves the wheel 120 to a retracted position wherein the wheel 120 is configured to traverse the contours of the contact feature and lose contact with the contact feature such that the dolly is unsynchronized from the movement of the conveyor 14.
The wheel 120 may be a caster wheel that includes a wheel support frame 122. The wheel support frame 122 may rigidly align the wheel 120 in a rolling direction such that contact with the wheel 120 does not cause the wheel 120 swivel.
To support motion of the wheel 120 from an extended position to a retracted position, the biasing member 130 may include a linear bearing 140, an alignment rod 134, and a helical spring 132. The linear bearing 140 may be fixed relative to the mounting frame 104. For example, and as illustrated in
The alignment rod 134 may be coupled to the wheel support frame 122 of the wheel 120 at one end and, as described above, extend through the linear bearing 140 to a free end 136, wherein the alignment rod 134 is translatable relative to the linear bearing 140. In particular, the alignment rod 134 extends through the bearing passage of the linear bearing 140. In some embodiments, the sync support arm 116 may define an aperture therethrough that is aligned with the bearing passage of the linear bearing 140. Accordingly, the alignment rod 134 may pass through both the bearing passage of the linear bearing 140 and the aperture of the sync support arm 116 and be translatable therethrough. Both
In some embodiments, a stopper 150 may be coupled to the free end 136 of the alignment rod 134 at a position beyond the outer surface 117 of the sync support arm 116. In some embodiments, the stopper 150 may be adjustably mounted on to the free end 136 of the alignment rod 134. For example, the stopper 150 may be positioned along the alignment rod 134 to adjust the effective length of the alignment rod 134 capable of moving through the linear bearing 140. In other embodiments, it is contemplated that the stopper 150 may be tightly or otherwise immovably coupled to the free end 136 of the alignment rod 134. To limit linear motion of the alignment rod 134 through the linear bearing 140, the stopper 150 may have a dimension greater than a diameter of the aperture of the sync support arm 116, such that when the sync arm 110 is biased to the extended position, the stopper 150 contacts an outer surface 117 of the sync support arm 116 of the support bracket 112 and prevents further movement of the alignment rod 134 through the sync support arm 116 and the linear bearing 140.
In some embodiments, to prevent rotation of the wheel 120 about an axis defined by the alignment rod 134, a rotation stop 123 may be provided. The rotation stop 123 may be any object capable of preventing rotation of the wheel 120 about the alignment rod 134. In some embodiments, the rotation stop 123 may be a dedicated object coupled to the wheel 120, the wheel support frame 122, or the alignment rod 134, for example. In other embodiments, the wheel support frame 122 may be the rotation stop 123. For example, in the present embodiment the wheel support frame 122 includes a contact edge 126 positioned proximate to the mounting surface 105 of the mounting frame 104. In some embodiments, the contact edge 126 may be positioned in contact with the mounting surface 105 of the mounting frame 104. Accordingly, the interface between the contact edge 126 of the wheel support frame 122 and the mounting surface 105 of the mounting frame 104 may substantially prevent axial rotation of the wheel 120 about the axis defined by the alignment rod 134.
The helical spring 132 of the biasing member 130 may circumscribe the alignment rod 134 between the wheel support frame 122 and the linear bearing 140 so as to be compressed between the wheel support frame 122 and the linear bearing 140. The helical spring 132 may accordingly exert a force on the wheel support frame 122 and the linear bearing 140 to bias the wheel 120 to the extended position. The force applied by the spring 132 may be adjusted by moving the stopper 150 closer to or farther from the free end 136 of the alignment rod 134. For example, moving the stopper 150 farther down the alignment rod 134 would effectively shorten the length of the alignment rod 134 that the spring 132 extends along, which may cause greater compression in the spring 132. However, moving the stopper 150 farther up the alignment rod 134 toward the free end 136 would effectively lengthen the length of the alignment rod 134 that the spring 132 extends along, which may reduce the compression experienced by the spring 132.
Referring again to
It should now be understood that embodiments described herein are directed to a syncing apparatus for synchronizing a process dolly to a movement of the conveyor. In particular, syncing apparatuses according to the present disclosure generally include a wheel and a biasing member coupled to the wheel and configured to bias the wheel to an extended position. When biased to the extended position, the wheel may contact a contact feature of the conveyor such that the process dolly, to which the syncing apparatus is attached, moves with the contact feature of the conveyor. When synchronization is no longer needed, force can be applied to the process dolly in a direction opposite the direction of movement of the conveyor. The contact feature may be positioned at such a height relative to the wheel that the force causes the wheel to roll over the contours of the contact feature while the biasing element allows the wheel of move to a retracted state such that the wheel remains in contact with the contact feature until it traverses completely past the contact feature. Accordingly, due to the rolling of the wheel over the contact feature, the syncing apparatus experiences much less wear than previous methods that used resilient urethane scrapers to contact a conveyor contact feature.
It is noted that the terms “substantially” and “about” may be utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. These terms are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
While particular embodiments have been illustrated and described herein, it should be understood that various other changes and modifications may be made without departing from the spirit and scope of the claimed subject matter. Moreover, although various aspects of the claimed subject matter have been described herein, such aspects need not be utilized in combination. It is therefore intended that the appended claims cover all such changes and modifications that are within the scope of the claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
5134940 | Fujita et al. | Aug 1992 | A |
5513428 | Shiramizu et al. | May 1996 | A |
6164430 | Nishimura | Dec 2000 | A |
7484616 | Nakamura | Feb 2009 | B2 |
8011491 | Nakagawa et al. | Sep 2011 | B2 |
8162302 | Turner et al. | Apr 2012 | B2 |
8534446 | Stadler et al. | Sep 2013 | B2 |
8627942 | Terazawa et al. | Jan 2014 | B2 |
8708131 | Fukano | Apr 2014 | B2 |
Number | Date | Country |
---|---|---|
2008122381 | Feb 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20190358804 A1 | Nov 2019 | US |