Syndesmosis fixation assembly

Information

  • Patent Grant
  • 12114850
  • Patent Number
    12,114,850
  • Date Filed
    Friday, June 23, 2023
    a year ago
  • Date Issued
    Tuesday, October 15, 2024
    a month ago
Abstract
Syndesmosis fixation assemblies, systems, and methods thereof. A syndesmosis fixation assembly includes a suture retaining portion having a plurality of suture openings formed therein and a suture securing portion rotatably connected to the suture retaining portion. The suture securing portion is movable between a first position wherein a suture is moveable within the suture retaining portion and a second position wherein the suture is frictionally secured within the suture retaining portion. A bone insertion portion has a distal bone insertion end adapted for insertion into a bone, a proximal bone insertion end connected to the suture retaining portion, and a central longitudinal axis extending between the distal bone insertion end and the proximal bone insertion end.
Description
BACKGROUND
Field

The present device relates to constructs that are used in the fixation of syndesmosis disruptions.


Description of the Related Art

A present method for syndesmotic ankle fixation requires screws or suture button systems. Both types of these fixation devices are inserted through the fibula and into the syndesmosis. The cross section of the fibula is relatively small, particularly at the syndesmosis, which can result in the clinician having a difficult time inserting the screw or suture button system through the fibula.


Accordingly, there exists a need for a syndesmosis fixation system that does not extend through the fibula.


SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.


According to one embodiment, a syndesmosis fixation assembly may include a plurality of implantable devices configured to aid in anatomic reduction.


In one embodiment, the syndesmosis fixation assembly may include a suture retaining portion having a plurality of suture openings formed therein and a suture securing portion rotatably connected to the suture retaining portion. The suture securing portion is movable between a first position wherein a suture is moveable within the suture retaining portion and a second position wherein the suture is frictionally secured within the suture retaining portion. A bone insertion portion has a distal bone insertion end adapted for insertion into a bone, a proximal bone insertion end connected to the suture retaining portion, and a central longitudinal axis extending between the distal bone insertion end and the proximal bone insertion end.


In an alternative embodiment, the syndesmosis fixation assembly includes a suture retaining portion having a plurality of suture openings formed therein and a suture extending through each of the plurality of suture openings. A suture securing portion is connected to the suture retaining portion. The suture securing portion is movable between a first position wherein the suture is moveable within the suture retaining portion and a second position wherein the suture is frictionally secured within the suture retaining portion. A bone insertion portion has a distal bone insertion end adapted for insertion into a bone and a proximal bone insertion end connected to the suture retaining portion.


In still another alternative embodiment, the syndesmosis fixation assembly comprises a suture retaining portion and a suture securing portion adapted to move from a first position wherein a suture in the suture retaining portion is moveable with respect to the suture retaining portion and a second position wherein the suture is fixed with respect to the suture retaining portion. A bone insertion portion has a distal portion adapted for insertion into a bone and a proximal portion connected to the suture retaining portion.





BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects, features, and advantages of the present device will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings in which like reference numerals identify similar or identical elements.



FIG. 1 is a sectional view showing an exemplary method of reducing a syndesmosis according to the exemplary embodiments;



FIG. 2 is an exploded view of a fixation assembly according to an exemplary embodiment;



FIG. 3 is a sectional view of the assembly of FIG. 2 in a suture release position;



FIG. 4 is a sectional view of the assembly of FIG. 2 in a suture restraining position;



FIG. 5 is a perspective view of a fixation assembly according to an alternative exemplary embodiment;



FIG. 6 is a sectional view of the assembly of FIG. 5 in a suture release position;



FIG. 7 is a sectional view of the assembly of FIG. 5 in a suture restraining position;



FIG. 8 is a side elevational view of a fixation assembly according to an alternative exemplary embodiment;



FIG. 9 is a sectional view of the assembly of FIG. 8 in a suture release position;



FIG. 10 is a sectional view of the assembly of FIG. 8 in a suture restraining position;



FIG. 11 is a side elevational view of a fixation assembly according to an alternative exemplary embodiment;



FIG. 12 is a side elevational view of the assembly of FIG. 11 with anchor legs in a deployed position;



FIG. 13 is a sectional view of the assembly of FIG. 11 with the anchor legs in the deployed position;



FIG. 14 is a perspective view of the anchor used with the assembly of FIG. 11;



FIG. 15 is a side elevational view of a fixation assembly according to an alternative exemplary embodiment;



FIG. 16 is a side elevational view of the assembly of FIG. 15 with anchor legs in a deployed position;



FIG. 17 is a sectional view of the assembly of FIG. 15 with the anchor legs in the deployed position;



FIG. 18 is a perspective view of the assembly of FIG. 15 with the anchors deployed;



FIG. 19 is a perspective view of a fixation device according to an alternative exemplary embodiment;



FIG. 20 is a perspective view of a fixation device according to another alternative exemplary embodiment;



FIG. 21 is a sectional view of the device of FIG. 20;



FIG. 22 is a perspective view of a pair of fixation assemblies according to an alternative exemplary embodiment embedded in a tibia and used to reduce a syndesmosis;



FIG. 23 is a perspective view of a washer with a buckle used with the assembly of FIG. 22;



FIG. 24 is a sectional view of the assembly of FIG. 22;



FIG. 25 is a perspective view of a fixation device according to an alternative embodiment;



FIG. 26 is a side elevational view, in section, of a washer with a cam operated buckle in a release position according to an alternative exemplary embodiment;



FIG. 27 is a side elevational view, in section, of the washer with am operated buckle of FIG. 26 in a locking position;



FIG. 28 is a sectional view showing an exemplary method of reducing a syndesmosis according to an alternative exemplary embodiment;



FIG. 29 is a sectional view of the embodiment of FIG. 28 with a clamp connecting two sutures;



FIG. 30 is a perspective view of an exemplary clamping tool used to clamp the clamp of FIG. 29;



FIG. 31 is a top plan view of a staple inserted into the clamp of FIG. 30;



FIG. 32 is a top plan view of the clamp and staple of FIG. 31 having clamped down on the staple; and



FIG. 33 is a schematic view of a fixation assembly according to an alternative exemplary embodiment.





DETAILED DESCRIPTION

In the drawings, like numerals indicate like elements throughout. Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present device. The terminology includes the words specifically mentioned, derivatives thereof and words of similar import. As used herein, the term “proximal” is intended to mean a direction closer to a clinician implanting the inventive devices and the term “distal” is intended to mean a direction farther from the clinician.


The embodiments illustrated below are not intended to be exhaustive or to limit the device to the precise form disclosed. These embodiments are chosen and described to best explain the principle of the device and its application and practical use and to enable others skilled in the art to best utilize the device.


Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the device. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments necessarily mutually exclusive of other embodiments. The same applies to the term “implementation.”


As used in this application, the word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion.


Additionally, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.


Unless explicitly stated otherwise, each numerical value and range should be interpreted as being approximate as if the word “about” or “approximately” preceded the value of the value or range.


The use of figure numbers and/or figure reference labels in the claims is intended to identify one or more possible embodiments of the claimed subject matter in order to facilitate the interpretation of the claims. Such use is not to be construed as necessarily limiting the scope of those claims to the embodiments shown in the corresponding figures.


It should be understood that the steps of the exemplary methods set forth herein are not necessarily required to be performed in the order described, and the order of the steps of such methods should be understood to be merely exemplary. Likewise, additional steps may be included in such methods, and certain steps may be omitted or combined, in methods consistent with various embodiments of the present device.


Although the elements in the following method claims, if any, are recited in a particular sequence with corresponding labeling, unless the claim recitations otherwise imply a particular sequence for implementing some or all of those elements, those elements are not necessarily intended to be limited to being implemented in that particular sequence.


Also for purposes of this description, the terms “couple,” “coupling,” “coupled,” “connect,” “connecting,” or “connected” refer to any manner known in the art or later developed of joining or connecting two or more elements directly or indirectly to one another, and the interposition of one or more additional elements is contemplated, although not required. Conversely, the terms “directly coupled,” “directly connected,” etc., imply the absence of such additional elements.


The present disclosure provides embodiments of fixation device assemblies that can be used in syndesmosis fixation. The devices and assemblies described herein can be attached to a tibia 40 in two locations, with a suture 50 or suture tape connected to each device and wrapped around a fibula 42 to stabilize the syndesmosis. A simplified illustration of fixation device assemblies described herein is shown in FIG. 1, using generic screws 30 implanted into a tibia 40 on either side of a fibula 42, with a suture 50 or suture tape 52 connected to screws 30 and wrapped over fibula 42 to draw fibula 42 closer to tibia 40 and reduce the syndesmosis.


Referring to FIGS. 2-4, a syndesmosis fixation assembly 100 (“assembly 100”) according to a first exemplary embodiment is shown. Assembly 100 includes a suture retaining portion 110, a suture securing portion 140, and a bone insertion portion 180. Assembly 100 is cannulated along a central longitudinal axis 102 to allow for the optional use of a guide wire through assembly 100 to assist in inserting assembly 100 into bone.


Suture retaining portion 110 includes a generally hollow body 112 having a proximal portion 114, a distal portion 116, and an intermediate portion 118, between the proximal portion 114 and the distal portion 116. Proximal portion 114 includes a cavity 119 having internal threads 120 that are sized to mate with external threads 142 on suture securing portion 140.


Distal portion 116 includes a plurality of distally extending fingers 122 that are separated from adjacent fingers 122 by a longitudinal gap 124. Fingers 122 form an internal space 125 in distal portion 116. In an exemplary embodiment, four fingers 122 are provided, although those skilled in the art will recognize that more or less than four fingers 122 can be provided. A distal end of each finger 122 includes an internal lip 126 that is used to engage bone insertion portion 180. Internal space 125 has an internally extending radial lip 128 that narrows internal space 125 in a proximal direction.


Intermediate portion 118 includes a plurality of suture openings 130 formed therein. In an exemplary embodiment, suture openings 130 include a first suture opening 130a and a second suture opening 130b that are diametrically opposed from each other.


Suture securing portion 140 comprises a set screw that is insertable into cavity 119 and is movable between a first position, shown in FIG. 2, wherein a suture 50 is moveable within the suture retaining portion and a second position, shown in FIG. 3, wherein the suture 50 is frictionally secured within suture retaining portion 110.


Bone insertion portion 180 includes a distal bone insertion end 182 that is adapted for insertion into a bone. Distal bone insertion end 182 includes a threaded portion 184 for gripping the bone.


Bone insertion portion 180 also includes a proximal bone insertion end 186 connected to suture retaining portion 110. Proximal bone insertion end 186 includes a radially extending lip 188 that is used to retain suture retaining portion 110. A hex head 190 is located proximally of lip 188 and is used to insert bone insertion portion 180 into a bone.


To insert assembly 100, bone insertion portion 180 is threaded sub-flush into bone, either using a guide wire (not shown) or, alternatively, without a guide wire. A suture 50 is inserted into first suture opening 130a through suture retaining portion 110 and out second suture opening 130b.


Suture retaining portion 110 is secured onto proximal bone insertion end 186 such that lip 126 on suture retaining portion 110 is forced over lip 188 on bone insertion portion 180 to rotatably secure suture retaining portion 110 onto bone insertion portion 180. Suture 50 can be tensioned by pulling on a free end 58.


Suture securing portion 140 can be screwed down into cavity 119 to frictionally secure suture 50 within suture retaining portion 110.


Referring to FIGS. 5-7, a syndesmosis fixation assembly 200 (“assembly 200”) according to an alternative exemplary embodiment is shown. Assembly 200 includes a suture retaining portion 210, a suture securing portion 240, and a bone insertion portion 280.


Suture retaining portion 210 includes a generally hollow body 212 having a proximal portion 214 and a distal portion 216. Proximal portion 214 includes a cavity 219 having internal threads 220 that are sized to mate with external threads 242 on suture securing portion 240. Proximal portion 214 also includes a plurality of suture openings 218 extending therethrough. Proximal portion 214 also includes a cap 215.


Distal portion 216 includes a head 222 having a circular outer perimeter 223 and a threaded body 224 having a narrower cross section than head 222. Head 222 has a cavity 225 adapted to receive an insertion tool 206 to rotate head 222. In an exemplary embodiment, cavity 225 accepts a hex head driver. Head 222 is sized to fit within cap 215 so that head 222 rotatably engages cap 215. Threaded body 224 is sized to internally thread into a proximal threaded cavity 285 in a proximal bone insertion end 283 of bone insertion portion 280.


Suture securing portion 240 comprises a set screw 242 that is insertable into cavity 219 and is movable between a first position, shown in FIG. 6, wherein a suture is moveable within suture retaining portion 210 and a second position, shown in FIG. 7, wherein the suture can be frictionally secured within suture retaining portion 110. Set screw 242 is generally hollow with an internal hex face 244 and a distal end 248.


Bone insertion portion 280 includes a distal bone insertion end 282 that is adapted for insertion into a bone. Distal bone insertion end 282 includes a threaded portion 284 for gripping the bone. A central longitudinal axis 292 extends between distal bone insertion end 282 and proximal bone insertion end 283.


Suture securing portion 240 is threadingly disposed in cavity 219 and movable between a first position wherein the suture is moveable within suture retaining portion 210 and a second position wherein the suture is frictionally secured within suture retaining portion 210. The first position is a distal position relative to bone insertion portion 280 and the second position is a proximal position relative to the bone insertion portion 280.


To insert assembly 200, head 222 is inserted through cap 215 such that threaded body 224 extends distally from cap 215. A suture (not shown) in inserted into one suture opening 218 and out another suture opening 218. A retaining tool 202 is inserted over suture retaining portion so that nubs 204 on distal ends of retaining tool 202 are inserted into diametrically opposing suture openings 218 and help to prevent rotation of cap 215 and the suture as assembly 200 is driven into the bone.


Next, threaded body 215 is inserted into threaded cavity 285 in proximal bone insertion end 283 of bone insertion portion 280 and bone insertion portion 280 is driven into a bone using a driver 206 inserted into head 222. Then, an outer driver 208 is used to rotate set screw 242 distally from the position shown in FIG. 6 to the position shown in FIG. 7 until distal end 248 of set screw 242 engages the top of head 222, thereby securing the suture between set screw 242 and head 222.


Referring to FIGS. 8-10, a syndesmosis fixation assembly 300 (“assembly 300”) according to an alternative exemplary embodiment is shown. Assembly 300 includes a suture retaining portion 310, a suture securing portion 340, and a bone insertion portion 380.


Suture retaining portion 310 includes a generally hollow body 312 having a proximal portion 314 and a distal portion 316. Proximal portion 314 includes internal threads 317 that accepts an insertion tool 302. Proximal portion 314 also includes a plurality of suture openings 318 extending therethrough. The plurality of suture openings 318 comprises a first opening 318a and a second opening 318b, proximal of first opening 318a.


Distal portion 316 includes a cap 322 that is sized to receive suture securing portion 340 to frictionally engage a suture 50 that extends from suture openings 318a, 318b. A lip 324 extends radially inwardly from cap 322.


Suture securing portion 340 comprises a head 342 adapted to receive an insertion tool 304 to rotate head 342. In an exemplary embodiment, head 342 accepts a hex head driver. Head 342 ends in an annular shoulder 344 that engages insertion tool 304. Head 342 includes a bulbous body 348 extending distal of shoulder 344, with a circumferential groove 350 formed therein. A passage 351 is provided between body 348 and suture retaining portion 310 from first suture slot 318a to second suture slot 318b so that suture 50 can be slid along passage 351.


A distal end 352 of suture securing portion 340 includes a threaded body 360 that is sized to internally thread into a proximal threaded cavity 385 in a proximal bone insertion end 383 of bone insertion portion 380. A lip 388 extends around distal end 352 between threaded body 360 and head 342.


Bone insertion portion 380 includes a distal bone insertion end 382 that is adapted for insertion into a bone. Distal bone insertion end 382 includes a threaded portion 384 for gripping the bone. A central longitudinal axis 392 extends between distal bone insertion end 382 and proximal bone insertion end 383.


Suture securing portion 340 is disposed in suture retaining portion 310 such that and movable between a first position wherein suture 50 is moveable within suture retaining portion 310 and a second position wherein suture 50 is frictionally secured suture retaining portion 310 and suture securing portion 340. The first position is a distal position relative to bone insertion portion 380 and the second position is a proximal position relative to the bone insertion portion 380.


Referring to FIGS. 9 and 10, to insert assembly 300, threaded body 360 of suture securing portion 340 is inserted through cap 322 such that threaded body 360 extends distally from cap 322 so that lip 324 is distal of lip 388. A suture 50 in inserted into one suture opening 218a and out another suture opening 218b.


A first retaining tool 302 is threaded onto internal threads 317 of proximal portion 314 to prevent rotation of suture retaining portion 310. A second retaining tool 304 is inserted into first retaining tool 302 and over head 342 until second training tool engages shoulder 344.


Next, threaded body 360 is inserted into threaded cavity 385 in proximal bone insertion end 383 of bone insertion portion 380 and bone insertion portion 380 is driven into a bone using a driver 304 inserted over head 342 until bone insertion portion is sub-flush with bone. Both drivers 302, 304 can then be removed.


To frictionally secure suture 50, cap 322 is pulled proximally in the direction of arrow “A” in FIG. 9 so that lip 324 snaps over lip 388 and remains proximally over lip 388. Suture retaining portion 310 engages head 342 so that passage 351 is reduced, thereby frictionally securing suture 50 between body 348 of head 342 and suture retaining portion 310.


Referring to FIGS. 11-14, a syndesmosis fixation assembly 400 (“assembly 400”) according to an alternative exemplary embodiment is shown. Assembly 400 includes a suture retaining portion 410, a suture securing portion 420, and a bone insertion portion 440.


Suture retaining portion 410 includes a plurality of distally extending fingers 412 that are separated from adjacent fingers 412 by a longitudinal gap 414. Fingers 412 form an internal space 415 in suture retaining portion 410. In an exemplary embodiment, four fingers 412 are provided, although those skilled in the art will recognize that more or less than four fingers 412 can be provided.


Internal space 415 has an internal thread 416 to threadingly accept and engage suture securing portion 420. Internal space 415 bottoms out on a landing 417. Suture retaining portion 410 also includes external ribbing 418 that allows assembly 400 to be inserted into a pre-drilled hole (not shown) but resists being pulled out.


Suture securing portion 420 includes a deformable spring anchor 422 that serves as both suture securing portion 420 as well as an anchor to secure assembly 400 in bone. Spring anchor 422 includes a body portion 424 with a plurality of anchor legs 426 extending outwardly therefrom. The number of anchor legs 426 is the same number as the number of longitudinal gaps 414 such that each anchor leg 424 extends into a respective gap 414, while body portion 424 can slide within internal space 415.


Suture securing portion 420 further includes a set screw 428 that is insertable into internal space 415. Set screw 428 has a blunt distal tip 430 and a proximal head 432 that is configured to accept a driver (not shown) for rotating set screw 428 distally into internal space 415. Set screw 428 has an external thread 434 that mates with internal thread 416 to advance set screw 428 distally.


Bone insertion portion 440 extends distally from suture retaining portion 410 and includes a blunt distal tip 442 and external ribbing 444 that is an extension of the external ribbing 418 on suture retaining portion 410.


In an insertion condition, anchor legs 426 are stored within the perimeter of fingers 412, as shown in FIG. 11. A suture (not shown) can be inserted into suture retaining portion 410 such that each end of the suture extends outwardly of one of gaps 414. Bone securing portion 440 is inserted into the bone and set screw 428 is advanced distally into internal space 415, driving anchor 422 distally until anchor 422 frictionally engages the suture between anchor body portion 424 and landing 417 of internal space 415.


As set screw 428 is further advanced distally, anchor legs 426 are deformed to splay outwardly from the stored position, as shown in FIG. 11, to a deployed position, as shown in FIGS. 12 and 13.


Referring to FIGS. 15-18, a syndesmosis fixation assembly 450 (“assembly 450”) according to an alternative exemplary embodiment is shown. Assembly 450 includes a suture retaining portion 460, a suture securing portion 470, and a bone insertion portion 490.


Suture retaining portion 460 includes a plurality of distally extending generally semi-circular leg portions 462 that are separated from each other by a pair of diametrically opposed longitudinal gaps 464. Leg portions 462 form an internal space 465 in suture retaining portion 460. In an exemplary embodiment, two diametrically opposed leg portions 462 are provided, although those skilled in the art will recognize that more or less than two leg portions 462 can be provided.


Internal space 465 has an internal thread 466 to threadingly accept and engage suture securing portion 470. Internal space 465 bottoms out on a landing 467. A pair of diametrically opposed suture slots 468 extend from internal space 465 through each leg portion 462. Suture slots 468 are generally rectangular in cross section and are sized to allow a suture (not shown) to extend therethrough. Suture retaining portion 460 also includes external ribbing 469 that allows assembly 450 to be inserted into a pre-drilled hole (not shown) but resists being pulled out.


Suture securing portion 470 includes a pair of diametrically opposed cam-operated blades 476 that form an anchor to secure assembly 450 in bone. Blades 476 are movable between a stored position in which blades 476 are stored wholly within gaps 464, as shown in FIG. 15, and a deployed position in which blades 476 extend outwardly of leg portions 462, as shown in FIGS. 16-18.


Each blade 476 includes a sloped cam face 478 that, in a stored position, extends obliquely relative to a longitudinal axis 480 of suture retaining portion 460. A distal end 482 of each blade 476 is pivotally attached to bone insertion portion 490 at a pivot 484, located distal of landing 467.


Suture securing portion 470 includes a set screw 479 that is insertable into internal space 465. Set screw 479 has a blunt distal tip 480 and a proximal head 482 that is configured to accept a driver (not shown) for rotating set screw 479 distally into internal space 465. Set screw 479 has an external thread 484 that mate with internal thread 466 to advance set screw 479 distally.


Bone insertion portion 490 extends distally from suture retaining portion 460 and includes a blunt distal tip 492 and external ribbing 494 that is an extension of the external ribbing 468 on suture retaining portion 460.


In an insertion condition, blades 476 are stored within the perimeter of leg portions 462. A suture (not shown) can be inserted into suture retaining portion 460 such that each end of the suture extends outwardly of one of suture slots 468. Bone insertion portion 490 is inserted into the bone and set screw 479 is advanced distally into internal space 465, engaging cam face 478 of each blade 476 and pushing blades 476 outwardly through their respective gap 464 to secure assembly 450 into bone. As set screw 479 is further advanced distally, set screw 479 engages the suture and frictionally secures the suture between distal tip 480 and landing 467.


Alternatively, as shown in FIG. 19, an anchor 830 includes a distal tip 832 with a transverse passage 834 passing through. Anchor 830 also has a proximal end 836 configured to accept a driver (not shown). A body 838 having uni-directional ribbing 840 extends from proximal end 836 to distal tip 832.


To insert anchor 830, suture 50 or suture tape 52 (not shown) is passed through transverse passage 834 and anchor is tapped into a pre-drilled hole on tibia 40 (not shown). Suture 50 or suture tape 52 is wedged between anchor 830 and the wall of hole.


In an alternative embodiment shown in FIGS. 20 and 21, an anchor 880 includes a cannulated body 882 having an external thread 884. A distal tip 886 includes a transverse, first passage 888 and an oblique, second passage 890 proximal of first passage 888. Second passage 890 includes a first portion 891 that extends obliquely upwardly into an internal cannula 892 and a second portion 894, diametrically opposite from first portion 891, that also extends obliquely upwardly into internal cannula 892. Internal cannula 892 extends from first passage 888 to a proximal end 896 that can include a hex head 898 to accommodate a driver (not shown). The driver can be cannulated to allow a suture to extend therethrough.


Suture 50 or suture tape 52 is looped through either first passage 888 or second passage 890 and passes through cannula 892 to proximal end 896.


An alternative embodiment of an assembly 900 is shown in FIGS. 22-24. Assembly 900 includes a washer 910 and a buckle 920 extending outwardly from washer 910. A suture tape 52 is secured to buckle 920.


Washer 910 includes a generally annular body 912 having a flat top surface 914 and a tapered inner diameter 916. A circular opening 918 is formed within inner diameter 916 and is sized to allow a fixation screw to be inserted therethrough.


Buckle 920 extends at an upward oblique angle from top surface 914 and includes parallel side walls 922, 924, a top connecting member 926, and a central connecting member 928 that each span and connect sides 922, 924 to each other. A first, lower gap 930 is formed between central connecting member 928 and body 912, while a second, upper gap 934 is formed between central connecting member 928 and top member 926.


Referring to FIGS. 22 and 24, to use assembly 900, two screws 70 with washers 910 are inserted into tibia 40 so that suture tape 52 can be wrapped around fibula 42. A first end 54 of suture tape 52 is secured to a first buckle 920. A second end 56 of suture tape 52 stretched over fibula 42 and is inserted through lower gap 930 distal from washer 910 toward washer 910. Second end 56 is then extended upwardly and over top connecting member 926 and then inserted through upper gap 934 distal from washer 910 toward washer 910. Second end 56 is then inserted through lower gap 932, proximate to washer 910 away from washer 910. Second end 56 is then pulled upwardly, tightening suture tape 52 against fibula 42.


Alternatively, second end 56 can be inserted through gaps 932, 934 prior to securing washer 910 to tibia 40, then securing washer 910 to tibia 40, and then tightening suture tape 52 around fibula.


An alternative embodiment includes a screw 1000 shown in FIG. 25. Screw 1000 has a distal tip 1002 and a proximal end 1004. A threaded body 1010 can extend between tip 1002 and proximal end 1004. Body 1010 can have varying outer diameters along the length of body, such as a narrow body portion 1012 toward distal tip 1002 and a wider body portion 1014 toward proximal end 1004.


Proximal end 1004 includes a buckle 1030 similar to buckle 920 described above with respect to assembly 900. This washerless embodiment allows buckle 1030 to be driven sub-flush of the bone cortex. The tensioning method for suture tape 52 is the same as for assembly 900 described above.


An alternative embodiment of an assembly 1100 is shown in FIGS. 26 and 27. Assembly 1100 includes a washer 1110 with a buckle 1120 that incorporates a cam 1130.


Washer 1110 includes a generally annular body 1112 having a flat top surface 1114 and a tapered inner diameter 1116. A circular opening 1118 is formed within inner diameter 1116 and is sized to allow a fixation screw to be inserted therethrough.


Buckle 1120 extends at an upward oblique angle from top surface 1114 and includes parallel side walls 1122, 1124 and a top connecting member 1126 that spans and connects sides 1122, 1124 to each other. Side walls 1122, 1124 each include a transverse slot 1128. Connecting member 1126 includes a concave inner face 1129.


Each side of cam 1130 includes a pivot portion 1132 that is inserted into transverse slot 1128 to that cam 1130 can pivot about transverse slot 1128. Cam 1130 also includes a lobe 1134 positioned over that is used to bias suture tape 52 against top surface 1112 of washer 1110 and a slot 1136 through which suture tape 52 is inserted.


First end 54 of suture tape 52 can be fixed to another securing device, not shown. Second end 56 of suture tape 52 can be inserted into gap 1127 distal from washer 110 toward washer 1110 and under lobe 1134. Second end 56 is then inserted through slot 1136 in cam 1130. To secure suture tape 52, cam 1130 is pivoted along concave inner face 1129 from the position shown in FIG. 26 to the position shown in FIG. 27. Lobe 1134 is rotated to pinch suture tape 52 down on top surface 114, securing suture tape 52 to assembly 1110.


While assembly 1100 is shown using washer 1110, those skilled in the art will recognize that buckle 1120 with cam 1130 can be used on other securing devices, such as, for example, on screw 1000.


An alternative embodiment of an assembly 1200 is shown in FIGS. 28-32. Assembly 1200 includes screws 70 that are implanted into tibia 40 on either side of fibula 42. A suture 50 is attached to each screw 70 so that each suture 50 has a free end 58. Free ends 58 are drawn over fibula 42 and clamped together, such as by staple 1202. Staple 1202 can be clamped around free ends 58 by a clamping instrument 1210.


Clamping instrument 1210 includes a pair of arms 1212, 1214 that are pivotally attached to each other at a pivot 1216. Instrument 1210 includes a staple receiver 1215 on an opposing side of pivot 1216. Clamping teeth 1218, 1220 are attached to distal ends of arms 1212, 1214, respectively on the opposing side of pivot 1216 and on either side of receiver 1215.


As shown in FIG. 31, staple 1202 is inserted into receiver 1215. Free ends 58 of sutures 50 are inserted into staple 1202 and arms 1214, 1216 are compressed toward each other as shown in FIG. 32 so that clamping teeth 1218, 1220 close down on staple arms 1204 to clamp free ends 58 of suture 50 within staple.


An alternative embodiment of an assembly 1300 is shown in FIG. 33. Assembly 1300 includes a band 1302 that connects two separate sutures 50 to each other. Sutures 50 can be secured to a bone (not shown) via any of the anchors disclosed herein, such that free ends 58 of sutures extend away from the anchors. Band 1302 includes clamps 1304 are either end thereof to secure free ends 58 of sutures 50.


Each clamp 1304 includes a body 1306 having a closure 1308 pivotally attached thereto. Free end 58 of suture 50 can be inserted through clamp 1304 between body 1306 and closure 1308. Closure 1308 can be pivoted to body 1306 to secure suture 50 between body 1306 and closure 1308.


An advantage to using band 1302 is that band 1302 can be slid along either suture 50 to a select location prior to securing suture 50 to band 1302 in order to avoid engaging any anatomically challenging areas.


The anchors and assemblies disclosed herein can be constructed from biocompatible materials, such as stainless steel, titanium, or other suitable materials or combinations thereof.


It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this device may be made by those skilled in the art without departing from the scope of the device as expressed in the following claims.

Claims
  • 1. A syndesmosis fixation assembly comprising: a suture retaining portion having a plurality of fingers, each finger separated by a longitudinal gap;a suture securing portion configured to be received in the suture retaining portion, wherein the suture securing portion has an anchor with anchor legs, each anchor leg configured to extend into one of the longitudinal gaps; anda bone insertion portion having: a distal bone insertion end adapted for insertion into a bone;a proximal bone insertion end extending distally from the suture retaining portion; anda central longitudinal axis extending between the distal bone insertion end and the proximal bone insertion end.
  • 2. The syndesmosis fixation assembly according to claim 1, wherein a suture is configured to be inserted into suture retaining portion such that each end of the suture extends outwardly from one of the longitudinal gaps.
  • 3. The syndesmosis fixation assembly according to claim 2, wherein the suture retaining portion further includes a set screw configured to be received into the suture securing portion.
  • 4. The syndesmosis fixation assembly according to claim 3, wherein the set screw has a blunt distal tip.
  • 5. The syndesmosis fixation assembly according to claim 4, wherein the distal bone insertion end is blunt.
  • 6. The syndesmosis fixation assembly according to claim 3, wherein the set screw has threads that mate with threads an internal thread in suture retaining portion.
  • 7. The syndesmosis fixation assembly according to claim 2, wherein the set screw is configured to advance into suture retaining portion to cause the anchor to frictionally engage the suture.
  • 8. The syndesmosis fixation assembly according to claim 7, wherein the set screw is configured to splay each anchor leg out of one of the longitudinal gaps as set screw is advanced into the suture retaining portion.
  • 9. The syndesmosis fixation assembly according to claim 1, wherein the suture retaining portion and the bone insertion portion contain external ribbing.
  • 10. The syndesmosis fixation assembly according to claim 1, wherein the anchor is a spring anchor with a body portion and the anchor legs extend outwardly from the body portion.
CROSS-REFERENCE TO RELATED APPLICATION(S)

The present application is a continuation of U.S. patent application Ser. No. 16/717,589, filed on Dec. 17, 2019 (published as U.S. Pat. Pub. No. 2021-0177394), the entire contents of which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (340)
Number Name Date Kind
254473 Gates Mar 1882 A
1105105 Sherman Jul 1914 A
2486303 Longfellow Oct 1949 A
2907978 Bergan Oct 1959 A
3463148 Treace Aug 1969 A
3695259 Yost Oct 1972 A
3716050 Johnston Feb 1973 A
4219015 Steinemann Aug 1980 A
4493317 Klaue Jan 1985 A
4524765 de Zbikowski Jun 1985 A
4651724 Berentey et al. Mar 1987 A
4683878 Carter Aug 1987 A
4781183 Casey et al. Nov 1988 A
4867144 Karas et al. Sep 1989 A
4923471 Morgan May 1990 A
4966599 Pollock Oct 1990 A
5002544 Klaue et al. Mar 1991 A
5041114 Chapman et al. Aug 1991 A
5151103 Tepic et al. Sep 1992 A
5259398 Vrespa Nov 1993 A
5364399 Lowery et al. Nov 1994 A
5372598 Luhr et al. Dec 1994 A
5423826 Coates et al. Jun 1995 A
5468242 Reisberg Nov 1995 A
D365634 Morgan Dec 1995 S
5489305 Morgan Feb 1996 A
5527311 Procter et al. Jun 1996 A
5578036 Stone et al. Nov 1996 A
5601553 Trebing et al. Feb 1997 A
5676667 Hausman Oct 1997 A
5690631 Duncan et al. Nov 1997 A
5709686 Talos et al. Jan 1998 A
5709687 Pennig Jan 1998 A
5718704 Medoff Feb 1998 A
5718705 Sammarco Feb 1998 A
5746742 Runciman et al. May 1998 A
5766175 Martinotti Jun 1998 A
5766176 Duncan Jun 1998 A
5779706 Tschakaloff Jul 1998 A
5785712 Runciman et al. Jul 1998 A
5797914 Leibinger Aug 1998 A
5814048 Morgan Sep 1998 A
5925048 Ahmad et al. Jul 1999 A
5938664 Winquist et al. Aug 1999 A
5957953 DiPoto Sep 1999 A
5961519 Bruce et al. Oct 1999 A
5980540 Bruce Nov 1999 A
6001099 Huebner Dec 1999 A
6071291 Forst et al. Jun 2000 A
6093201 Cooper et al. Jul 2000 A
6096040 Esser Aug 2000 A
6107718 Schustek et al. Aug 2000 A
6152927 Farris et al. Nov 2000 A
6206881 Frigg et al. Mar 2001 B1
6283969 Grusin et al. Sep 2001 B1
6309393 Tepic et al. Oct 2001 B1
6322562 Wolter Nov 2001 B1
6364882 Orbay Apr 2002 B1
D458683 Bryant et al. Jun 2002 S
D458684 Bryant et al. Jun 2002 S
6533786 Needham et al. Mar 2003 B1
D479331 Pike et al. Sep 2003 S
6623486 Weaver et al. Sep 2003 B1
6669700 Farris et al. Dec 2003 B1
6669701 Steiner et al. Dec 2003 B2
6712820 Orbay Mar 2004 B2
6719759 Wagner et al. Apr 2004 B2
6730091 Pfefferle et al. May 2004 B1
6866665 Orbay Mar 2005 B2
6955677 Dahners Oct 2005 B2
6974461 Wolter Dec 2005 B1
7001387 Farris et al. Feb 2006 B2
7063701 Michelson Jun 2006 B2
7090676 Huebner et al. Aug 2006 B2
7128744 Weaver et al. Oct 2006 B2
7137987 Patterson et al. Nov 2006 B2
7153309 Huebner et al. Dec 2006 B2
7179260 Gerlach et al. Feb 2007 B2
7250053 Orbay Jul 2007 B2
7294130 Orbay Nov 2007 B2
7322983 Harris Jan 2008 B2
7341589 Weaver et al. Mar 2008 B2
7344538 Myerson et al. Mar 2008 B2
7354441 Frigg Apr 2008 B2
7604657 Orbay et al. Oct 2009 B2
7632277 Woll et al. Dec 2009 B2
7635381 Orbay Dec 2009 B2
7637928 Fernandez Dec 2009 B2
7655029 Niedernberger et al. Feb 2010 B2
7655047 Swords Feb 2010 B2
7695472 Young Apr 2010 B2
7717946 Oepen et al. May 2010 B2
7722653 Young et al. May 2010 B2
7740648 Young et al. Jun 2010 B2
D622853 Raven, III Aug 2010 S
7771457 Kay et al. Aug 2010 B2
7776076 Grady, Jr. et al. Aug 2010 B2
7857838 Orbay Dec 2010 B2
7867260 Meyer et al. Jan 2011 B2
7867261 Sixto, Jr. et al. Jan 2011 B2
7875062 Lindemann et al. Jan 2011 B2
7905910 Gerlach et al. Mar 2011 B2
7909858 Gerlach et al. Mar 2011 B2
7951178 Jensen May 2011 B2
7951179 Matityahu May 2011 B2
7976570 Wagner et al. Jul 2011 B2
D643121 Millford et al. Aug 2011 S
D646785 Milford Oct 2011 S
8043297 Grady, Jr. et al. Oct 2011 B2
8057520 Ducharme et al. Nov 2011 B2
8062296 Orbay et al. Nov 2011 B2
8100953 White et al. Jan 2012 B2
8105367 Austin et al. Jan 2012 B2
8114081 Kohut et al. Feb 2012 B2
8118846 Leither et al. Feb 2012 B2
8118848 Ducharme et al. Feb 2012 B2
8162950 Digeser et al. Apr 2012 B2
8167918 Strnad et al. May 2012 B2
8177820 Anapliotis et al. May 2012 B2
8246661 Beutter et al. Aug 2012 B2
8252032 White et al. Aug 2012 B2
8257403 Den Hartog et al. Sep 2012 B2
8257405 Haidukewych et al. Sep 2012 B2
8257406 Kay et al. Sep 2012 B2
8262707 Huebner et al. Sep 2012 B2
8267972 Gehlert Sep 2012 B1
8317842 Graham et al. Nov 2012 B2
8323321 Gradl Dec 2012 B2
8337535 White et al. Dec 2012 B2
8343155 Fisher et al. Jan 2013 B2
8382807 Austin et al. Feb 2013 B2
8394098 Orbay et al. Mar 2013 B2
8394130 Orbay et al. Mar 2013 B2
8398685 McGarity et al. Mar 2013 B2
8403966 Ralph et al. Mar 2013 B2
8419775 Orbay et al. Apr 2013 B2
8435272 Dougherty et al. May 2013 B2
8439918 Gelfand May 2013 B2
8444679 Ralph et al. May 2013 B2
8491593 Prien et al. Jul 2013 B2
8506608 Cerynik et al. Aug 2013 B2
8512384 Beutter et al. Aug 2013 B2
8512385 White et al. Aug 2013 B2
8518090 Huebner et al. Aug 2013 B2
8523862 Murashko, Jr. Sep 2013 B2
8523919 Huebner et al. Sep 2013 B2
8523921 Horan et al. Sep 2013 B2
8540755 Whitmore Sep 2013 B2
8545535 Hirotsuka Oct 2013 B2
8551095 Fritzinger et al. Oct 2013 B2
8551143 Norris et al. Oct 2013 B2
8568462 Sixto, Jr. et al. Oct 2013 B2
8574268 Chan et al. Nov 2013 B2
8597334 Mocanu Dec 2013 B2
8603147 Sixto, Jr. et al. Dec 2013 B2
8617224 Kozak et al. Dec 2013 B2
8632574 Kortenbach et al. Jan 2014 B2
8641741 Murashko, Jr. Feb 2014 B2
8641744 Weaver et al. Feb 2014 B2
8663224 Overes et al. Mar 2014 B2
8728082 Fritzinger et al. May 2014 B2
8728126 Steffen May 2014 B2
8740905 Price et al. Jun 2014 B2
8747442 Orbay et al. Jun 2014 B2
8764751 Orbay et al. Jul 2014 B2
8764808 Gonzalez-Hernandez Jul 2014 B2
8777998 Daniels et al. Jul 2014 B2
8790376 Fritzinger et al. Jul 2014 B2
8790377 Ralph et al. Jul 2014 B2
8808333 Kuster et al. Aug 2014 B2
8808334 Strnad et al. Aug 2014 B2
8834532 Velikov et al. Sep 2014 B2
8834537 Castanada et al. Sep 2014 B2
8852246 Hansson Oct 2014 B2
8852249 Ahrens et al. Oct 2014 B2
8864802 Schwager et al. Oct 2014 B2
8870931 Dahners et al. Oct 2014 B2
8888825 Batsch et al. Nov 2014 B2
8906076 Mocanu et al. Dec 2014 B2
8911482 Lee et al. Dec 2014 B2
8926675 Leung et al. Jan 2015 B2
8940026 Hilse et al. Jan 2015 B2
8940028 Austin et al. Jan 2015 B2
8940029 Leung et al. Jan 2015 B2
8951291 Impellizzeri Feb 2015 B2
8968368 Tepic Mar 2015 B2
9011457 Grady, Jr. et al. Apr 2015 B2
9023052 Lietz et al. May 2015 B2
9050151 Schilter Jun 2015 B2
9072555 Michel Jul 2015 B2
9072557 Fierlbeck et al. Jul 2015 B2
9107678 Murner et al. Aug 2015 B2
9107711 Hainard Aug 2015 B2
9107713 Horan et al. Aug 2015 B2
9107718 Isch Aug 2015 B2
9113970 Lewis et al. Aug 2015 B2
9149310 Fritzinger et al. Oct 2015 B2
9161791 Frigg Oct 2015 B2
9161795 Chasbrummel et al. Oct 2015 B2
9168075 Dell'Oca Oct 2015 B2
9179950 Zajac et al. Nov 2015 B2
9179956 Cerynik et al. Nov 2015 B2
9180020 Gause et al. Nov 2015 B2
9211151 Weaver et al. Dec 2015 B2
9259217 Fritzinger et al. Feb 2016 B2
9259255 Lewis et al. Feb 2016 B2
9271769 Batsch et al. Mar 2016 B2
9283010 Medoff et al. Mar 2016 B2
9295506 Raven, III et al. Mar 2016 B2
9314284 Chan et al. Apr 2016 B2
9320554 Greenberg et al. Apr 2016 B2
9322562 Takayama et al. Apr 2016 B2
9370388 Globerman et al. Jun 2016 B2
D765851 Early et al. Sep 2016 S
9433407 Fritzinger et al. Sep 2016 B2
9433452 Weiner et al. Sep 2016 B2
9468479 Marotta et al. Oct 2016 B2
9480512 Orbay Nov 2016 B2
9486262 Andermahr et al. Nov 2016 B2
9492213 Orbay Nov 2016 B2
9510878 Nanavati et al. Dec 2016 B2
9510880 Terrill et al. Dec 2016 B2
9526543 Castaneda et al. Dec 2016 B2
9545277 Wolf et al. Jan 2017 B2
9549819 Bravo et al. Jan 2017 B1
9566097 Fierlbeck et al. Feb 2017 B2
9579133 Guthlein Feb 2017 B2
9622737 Gerber Apr 2017 B2
9622799 Orbay et al. Apr 2017 B2
9636157 Medoff May 2017 B2
9649141 Raven, III et al. May 2017 B2
9668794 Kuster et al. Jun 2017 B2
9801670 Hashmi et al. Oct 2017 B2
9814504 Ducharme et al. Nov 2017 B2
9980718 Housman May 2018 B2
10595849 Kaplan Mar 2020 B2
10945830 Dacosta Mar 2021 B2
20020045901 Wagner et al. Apr 2002 A1
20020147463 Martinek Oct 2002 A1
20040097937 Pike et al. May 2004 A1
20050107796 Gerlach et al. May 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050187551 Orbay et al. Aug 2005 A1
20060149265 James et al. Jul 2006 A1
20060241607 Myerson et al. Oct 2006 A1
20070173840 Huebner Jul 2007 A1
20070270849 Orbay et al. Nov 2007 A1
20070288022 Lutz Dec 2007 A1
20080021477 Strnad et al. Jan 2008 A1
20080234749 Forstein Sep 2008 A1
20080275510 Schonhardt et al. Nov 2008 A1
20090024172 Pizzicara Jan 2009 A1
20090024173 Reis, Jr. Jan 2009 A1
20090112270 Lunn Apr 2009 A1
20090118773 James et al. May 2009 A1
20090157124 Ferragamo Jun 2009 A1
20090198285 Raven, III Aug 2009 A1
20090228010 Gonzalez-Hernandez et al. Sep 2009 A1
20090228047 Derouet et al. Sep 2009 A1
20090248084 Hintermann Oct 2009 A1
20090281543 Orbay et al. Nov 2009 A1
20090299369 Orbay et al. Dec 2009 A1
20090312760 Forstein et al. Dec 2009 A1
20100057086 Price et al. Mar 2010 A1
20100114097 Siravo et al. May 2010 A1
20100121326 Woll et al. May 2010 A1
20100274247 Grady, Jr. et al. Oct 2010 A1
20100318125 Gerber Dec 2010 A1
20110106086 Laird May 2011 A1
20110112576 Nguyen May 2011 A1
20110218580 Schwager et al. Sep 2011 A1
20120010667 Eglseder Jan 2012 A1
20120059424 Epperly et al. Mar 2012 A1
20120203227 Martin Aug 2012 A1
20120232599 Schoenly et al. Sep 2012 A1
20120323284 Baker et al. Dec 2012 A1
20130006302 Paulk Jan 2013 A1
20130018426 Tsai et al. Jan 2013 A1
20130046347 Cheng et al. Feb 2013 A1
20130060291 Petersheim Mar 2013 A1
20130123841 Lyon May 2013 A1
20130138156 Derouet May 2013 A1
20130150902 Leite Jun 2013 A1
20130165981 Clasbrummet et al. Jun 2013 A1
20130211463 Mizuno et al. Aug 2013 A1
20130289630 Fritzinger Oct 2013 A1
20140005728 Koay et al. Jan 2014 A1
20140018862 Koay et al. Jan 2014 A1
20140031879 Sixto, Jr. et al. Jan 2014 A1
20140066998 Martin Mar 2014 A1
20140094856 Sinha Apr 2014 A1
20140121710 Weaver et al. May 2014 A1
20140180345 Chan et al. Jun 2014 A1
20140277178 O'Kane et al. Sep 2014 A1
20140277181 Garlock Sep 2014 A1
20140316473 Pfeffer et al. Oct 2014 A1
20140330320 Wolter Nov 2014 A1
20140378975 Castaneda et al. Dec 2014 A1
20150051650 Verstreken et al. Feb 2015 A1
20150051651 Terrill et al. Feb 2015 A1
20150073486 Marotta et al. Mar 2015 A1
20150105829 Laird Apr 2015 A1
20150112355 Dahners et al. Apr 2015 A1
20150134011 Medoff May 2015 A1
20150142065 Schonhardt et al. May 2015 A1
20150190185 Koay et al. Jul 2015 A1
20150209091 Sixto, Jr. et al. Jul 2015 A1
20150216571 Impellizzeri Aug 2015 A1
20150223852 Lietz et al. Aug 2015 A1
20150272638 Langford Oct 2015 A1
20150282851 Michel Oct 2015 A1
20150313653 Ponce et al. Nov 2015 A1
20150313654 Horan et al. Nov 2015 A1
20150327898 Martin Nov 2015 A1
20150351816 Lewis et al. Dec 2015 A1
20150374421 Rocci et al. Dec 2015 A1
20160022336 Bateman Jan 2016 A1
20160030035 Zajac et al. Feb 2016 A1
20160045237 Cerynik et al. Feb 2016 A1
20160045238 Bohay et al. Feb 2016 A1
20160074081 Weaver et al. Mar 2016 A1
20160166297 Mighell et al. Jun 2016 A1
20160166298 Mighell et al. Jun 2016 A1
20160183990 Koizumi et al. Jun 2016 A1
20160262814 Wainscott Sep 2016 A1
20160278828 Ragghianti Sep 2016 A1
20160310183 Shah et al. Oct 2016 A1
20160310185 Sixto et al. Oct 2016 A1
20160324552 Baker et al. Nov 2016 A1
20160354122 Montello et al. Dec 2016 A1
20170035478 Andermahr et al. Feb 2017 A1
20170042592 Kim Feb 2017 A1
20170042596 Mighell et al. Feb 2017 A9
20170049493 Gauneau et al. Feb 2017 A1
20170065312 Lauf et al. Mar 2017 A1
20170105775 Ricker et al. Apr 2017 A1
20170215931 Cremer et al. Aug 2017 A1
20190336190 Allard Nov 2019 A1
20200245997 Balboa Aug 2020 A1
20210177394 Rippe Jun 2021 A1
Foreign Referenced Citations (12)
Number Date Country
201987653 Sep 2011 CN
202313691 Jul 2012 CN
202821574 Mar 2013 CN
202821575 Mar 2013 CN
203506858 Apr 2014 CN
203815563 Sep 2014 CN
105982727 Oct 2016 CN
2846870 May 2004 FR
2928259 Sep 2009 FR
2003210478 Jul 2003 JP
201316942 May 2013 TW
2016079504 May 2016 WO
Related Publications (1)
Number Date Country
20230389917 A1 Dec 2023 US
Continuations (1)
Number Date Country
Parent 16717589 Dec 2019 US
Child 18340505 US