The present invention relates to compositions and methods related to controlling insects, including compositions having a synergistic blend of ingredients.
Various chemicals and mixtures have been studied for pesticidal activity for many years with a goal of obtaining a product which is selective for invertebrates such as insects and has little or no toxicity to vertebrates such as mammals, fish, fowl and other species and does not otherwise persist in and damage the environment.
Most of the previously known and commercialized products having sufficient pesticidal activity to be useful also have toxic or deleterious effects on mammals, fish, fowl or other species which are not the target of the product. For example, organophosphorus compounds and carbamates inhibit the activity of acetylcholinesterase in insects as well as in all classes of animals. Chlordimeform and related formamidines are known to act on octopamine receptors of insects but have been removed from the market because of cardiotoxic potential in vertebrates and carcinogenicity in animals and a varied effect on different insects. Other compounds, which can be less toxic to mammals and other non-target species, are sometimes difficult to identify.
Embodiments of the present invention include pest control blends, including, in a synergistic combination, at least two ingredients such as, for example, Lilac Flower Oil, D-Limonene, Thyme Oil, Lime Oil, Black Seed Oil, Wintergreen Oil, Linalool, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol, Geraniol 60, Triethyl Citrate, Methyl Salicylate, and the like.
The pest control blends of the invention can have a coefficient of synergy of at least 1.5 for each active ingredient, as measured by a test on a target organism, wherein the test can be selected from: knockdown time, killing time, repellency, and residual effectiveness. Likewise, the coefficient of synergy can be at least 5, or at least 10, or at least 25, for at least one active ingredient.
In some embodiments, exposure to the blend disrupts cellular calcium levels within the target organism, and/or exposure to the blend disrupts cyclic AMP levels within cells of the target organism. In some embodiments, exposure to the blend can result in binding of a receptor of the olfactory cascade of the target organism. In some embodiments, one or more components of the blend can act as an agonist or antagonist on the receptor of the target organism. Some blends include at least three active ingredients, or at least four active ingredients.
Embodiments of the invention also provide pest control formulations, including any of the blends of the invention. The pest control formulation can include at least one ingredient such as, for example, Hercolyn D, Mineral Oil, Soy Bean Oil, Piperonyl Alcohol, Ethyl Linalool, Hedione, Dipropylene glycol, Citral, gamma-terpinene, Sodium Lauryl Sulfate, Thymol, Alpha-Pinene, alpha-Terpineol, Terpinolene, Para-Cymene, Trans-Anethole, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene-4-ol, Span 80, Tween 80, Potassium Sorbate, Sodium Benzoate, Isopar M, BHA, BHT, dl-alpha-tocopherol lineaolate, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, Polyglycerol-4-oleate, Tocopherol Gamma Tenox, Xanthan Gum, A45 Propellent, Lecithin, a propellent, water, a surfactant, a cationic agent, Sodium Benzoate, Xanthan, Ksorbate, a carrier, a stabilizer, and the like.
In other embodiments, pest control formulations include any of the blends of the invention in combination with one or more synthetic pesticides such as a pyrethroid, a chloronicotinyl insecticide, or a neonicotinoid.
In other embodiments, the invention provides methods of making a synergistic pest control formulation having desirable environmental properties. The methods can include the steps of: selecting an ingredient from a group of candidate ingredients known or believed to be generally safe for use in contact with vertebrates; screening the ingredient for binding to a G protein-coupled receptor of an invertebrate, wherein the binding results in measurable disruption of cellular calcium or cyclic AMP; combining the screened ingredient with at least one other screened ingredient, wherein the ingredients, in combination, are synergistic in an effect against a target organism. The receptor can be a receptor of the insect olfactory cascade, including, for example, a tyramine receptor, an octopamine receptor, olfactory receptor Or83b, olfactory receptor 43a, and the like.
Embodiments of the invention also provide pest control formulations, such as a pest-control composition comprising a synergistic combination of at least 2 ingredients from an ingredient family, wherein the ingredient family is an Ingredient Family listed in Table 2. Some embodiments provide a pest-control composition comprising a synergistic combination of at least 3 ingredients from an ingredient family, wherein the ingredient family is an Ingredient Family listed in Table 2 having at least 3 ingredients.
Some embodiments provide a pest-control composition comprising a synergistic combination of at least 4 ingredients from an ingredient family, wherein the ingredient family is an Ingredient Family listed in Table 2 having at least 4 ingredients.
Some embodiments provide a pest-control composition of any of claims 1-3, wherein the ingredients are present within a range specified in Range 1 of Table 2.
Some embodiments provide a pest-control composition of any of claims 1-3, wherein the ingredients are present within a range specified in Range 2 of Table 2.
Some embodiments provide a pest-control composition of any of claims 1-3, wherein the ingredients are present within a range specified in Range 3 of Table 2.
Some embodiments provide a pest-control composition of any of claims 1-3, wherein the ingredients are present within a range specified in Range 4 of Table 2.
Some embodiments provide a pest-control composition of any of claims 1-3, wherein the ingredients are present in Exemplified amounts specified in Table 2.
Some embodiments provide a pest-control composition of any of the preceding claims, wherein at least one of the ingredients is the Exemplified Form specified in Table 2.
Some embodiments provide a pest-control composition of any of the preceding claims, wherein at least two ingredients interact with a receptor selected from a tyramine receptor, an olfactory receptor Or43a, and an olfactory receptor Or83b.
Some embodiments provide a pest-control composition of claim 10, wherein interaction with the receptor results in a disruption of an intracellular level of at least one of cAMP and calcium.
Some embodiments provide a pest-control composition of claim 11, wherein the disruption is sustained for at least 60 seconds.
Some embodiments provide a pest-control composition of claim 12, wherein the disruption in a target pest results in repellency, knockdown, or killing of the target pest.
Some embodiments provide a pest-control composition of any of the preceding claims, wherein a target pest is an insect, an arthropod, a worm, a parasitic organism, a fungus, a bacterium, or a plant.
Some embodiments provide a pest-control composition of any of the preceding claims, having a coefficient of synergy of at least 1.5.
Some embodiments provide a pest-control composition of any of the preceding claims, having a synergistic effect according to the Colby test for synergy.
Some embodiments provide a pest-control composition of any of the preceding claims, wherein the composition has a synergistic pest-control activity that exceeds additive effects of the ingredients.
Some embodiments provide a composition of any of the preceding claims, wherein the composition has a synergistic pest-control activity that comprises pest control associated with the composition at a reference concentration that is in excess of pest control associated with any single ingredient at the reference concentration.
Some embodiments provide a composition of any of the preceding claims, wherein the composition has a synergistic pest-control activity that comprises pest control associated with the composition at a reference concentration that is in excess of the additive total of pest controls associated with each ingredient, at the concentrations at which the active ingredients are present at the reference concentration of the composition.
Some embodiments provide a composition of any of the preceding claims, wherein the composition has a synergistic pest-control activity that comprises pest control associated with the composition at a first concentration that is the equivalent of pest control associated with any single ingredient at a second concentration, and the first concentration is lower than the second concentration.
Some embodiments provide a composition of any of the preceding claims, wherein the synergistic pest control comprises a residual pest control period associated with the composition that is longer than the residual pest control period associated with any single selected ingredient.
Some embodiments provide a composition of any of the preceding claims, wherein the at least two ingredients activate a same GPCR.
Some embodiments provide a composition of any of the preceding claims, wherein the at least two ingredients activate different GPCRs.
Embodiments of the invention can provide a method of controlling a pest, including providing a pest control composition; and contacting the pest with the composition, wherein the contacting results in synergistic control of a target pest.
Embodiments of the invention can provide a method of invertebrate control, including providing a composition comprising at least two active ingredients, wherein the at least two active ingredients are ligands of a G-protein coupled receptor in a target invertebrate; and contacting the invertebrate with the composition, wherein the contacting results in synergistic invertebrate control.
In some methods of embodiments of the invention, the control comprises repulsion of substantially all of the target pest or invertebrate, and in some the control comprises knockdown of substantially all of the target pest or invertebrate, and in others the control comprises killing of substantially all of the target pest or invertebrate.
Some embodiments provide a synergistic composition for controlling a target pest comprising at least one of the group consisting of Thyme Oil White, Methyl Salicylate, and Isopropyl myristate.
Some embodiments provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Thyme Oil White, Methyl Salicylate, and Isopropyl myristate.
Some embodiments provide a synergistic composition for controlling a target pest comprising Thyme Oil White, Methyl Salicylate, and Isopropyl myristate.
Some embodiments provide a synergistic composition for controlling a target pest comprising between 10 and 30% Thyme Oil White, between 30 and 60% Methyl Salicylate, and between 20 and 48% Isopropyl myristate.
Some embodiments provide a synergistic composition for controlling a target pest comprising between 18 and 23% Thyme Oil White, between 40 and 50% Methyl Salicylate, and between 30 and 38% Isopropyl myristate.
Some embodiments provide a synergistic composition for controlling a target pest comprising 20.6% Thyme Oil White, 45.1% Methyl Salicylate, and 34.3% Isopropyl myristate.
Some embodiments provide a synergistic composition for controlling a target pest comprising at least one of the group consisting of Isopropyl myristate, Wintergreen Oil, and Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of % Isopropyl myristate, Wintergreen Oil, and Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments provide a synergistic composition for controlling a target pest comprising Isopropyl myristate, Wintergreen Oil, and Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments provide a synergistic composition for controlling a target pest comprising between 25 and 48% Isopropyl myristate, 30 and 60% Wintergreen Oil, and between 10 and 30% Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments provide a synergistic composition for controlling a target pest comprising between 30 and 38% Isopropyl myristate, 40 and 50% Wintergreen Oil, and between 18 and 23% Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments provide a synergistic composition for controlling a target pest comprising 34.3% Isopropyl myristate, 45.1% Wintergreen Oil, and 20.6% Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments provide a synergistic composition for controlling a target pest comprising at least one of the group consisting of Wintergreen Oil, Isopropyl myristate, and Thyme Oil Red.
Some embodiments provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Wintergreen Oil, Isopropyl myristate, and Thyme Oil Red.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Wintergreen Oil, Isopropyl myristate, and Thyme Oil Red.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 30 and 60% Wintergreen Oil, between 20 and 48% Isopropyl myristate, and between 10 and 30% Thyme Oil Red.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 40 and 50% Wintergreen Oil, between 30 and 38% Isopropyl myristate, and between 18 and 23% Thyme Oil Red.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 45.10% Wintergreen Oil, 34.3% Isopropyl myristate, and 20.6% Thyme Oil Red.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least one of the group consisting of Isopropyl myristate, Wintergreen Oil (Technical grade), and Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Isopropyl myristate, Wintergreen Oil (Technical grade), and Thyme Oil White containing 1% Thyme Oil Red
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Isopropyl myristate, Wintergreen Oil (Technical grade), and Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 20 and 48% Isopropyl myristate, between 30 and 60% Wintergreen Oil (Technical grade), and between 10 and 30% Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 30 and 38% Isopropyl myristate, between 40 and 50% Wintergreen Oil (Technical grade), and between 18 and 23% Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 34.3% Isopropyl myristate, 45.10% Wintergreen Oil (Technical grade), and 20.6% Thyme Oil White containing 1% Thyme Oil Red.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least three of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 10 and 30% Thyme Oil White, between 30 and 60% Wintergreen Oil, between 20 and 48% Isopropyl myristate, and between 0.01 and 0.3% Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 18 and 23% Thyme Oil White, between 40 and 50% Wintergreen Oil, between 30 and 38% Isopropyl myristate, and between 0.05 and 0.15% Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 20.6% Thyme Oil White, 45.1% Wintergreen Oil, 34.2% Isopropyl myristate, and 0.1% Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Thyme Oil Red, Wintergreen Oil, Isopropyl myristate, and Vanillin 60.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least three of the group consisting of Thyme Oil Red, Wintergreen Oil, Isopropyl myristate, and Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Thyme Oil Red, Wintergreen Oil, Isopropyl myristate, and Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 10 and 30% Thyme Oil Red, between 30 and 60% Wintergreen Oil, between 20 and 48% Isopropyl myristate, and between 0.01 and 0.3% Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 18 and 23% Thyme Oil Red, 40 and 50% Wintergreen Oil, and between 30 and 38% Isopropyl myristate, and between 0.05 and 0.15% Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 20.6% Thyme Oil Red, 45.1% Wintergreen Oil, 34.2% Isopropyl myristate, and 0.1% Vanillin.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least one of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 30 and 55% Thyme Oil White, between 28 and 50% Isopropyl myristate, and between 15 and 26% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 36 and 46% Thyme Oil White, between 34 and 42% Isopropyl myristate, and between 18 and 22% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 41.86% Thyme Oil White, 38.34% Isopropyl myristate, and 19.80% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least one of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 12 and 30% Thyme Oil White, between 45 and 75% Isopropyl myristate, and between 12 and 30% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 18 and 24% Thyme Oil White, between 53 and 65% Isopropyl myristate, and between 18 and 23% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 21.30% Thyme Oil White, 58.54% Isopropyl myristate, and 20.16% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least one of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.78. A synergistic composition for controlling a target pest comprising at least two of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 22 and 40% Thyme Oil White, between 28 and 50% Isopropyl myristate, and between 20 and 40% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 28 and 35% Thyme Oil White, between 34 and 43% Isopropyl myristate, and between 26 and 33% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 31.57% Thyme Oil White, 38.56% Isopropyl myristate, 29.87% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least one of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 36.85% Thyme Oil White, 48.21% Isopropyl myristate, 14.94% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 36.85% Thyme Oil White, 48.21% Isopropyl myristate, 14.94% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 36.85% Thyme Oil White, 48.21% Isopropyl myristate, 14.94% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least one of the group consisting of Thyme Oil White containing 1% Thyme Oil Red, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Thyme Oil White containing 1% Thyme Oil Red, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Thyme Oil White containing 1% Thyme Oil Red, Isopropyl myristate, and Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 25 and 50% Thyme Oil White containing 1% Thyme Oil Red, between 35 and 65% Isopropyl myristate, and between 8 and 25% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 33 and 40% Thyme Oil White containing 1% Thyme Oil Red, between 44 and 55% Isopropyl myristate, and between 13 and 17% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 36.85% Thyme Oil White containing 1% Thyme Oil Red, 48.21% Isopropyl myristate, 14.94% Geraniol Fine, FCC.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least four of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.01 and 0.25% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.6% Xanthan Gum, between 0.01 and 0.1% Lecithin, between 60 and 98% Water, and between 5 and 25% Blend 41.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.05 and 0.16% Potassium Sorbate, between 0.1 and 0.2% Polyglycerol-4-oleate, between 0.2 and 0.36% Xanthan Gum, between 0.03 and 0.04% Lecithin, between 76 and 94% Water, and between 13 and 17% Blend 41.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 0.11% Potassium Sorbate, 0.15% Polyglycerol-4-oleate, 0.28% Xanthan Gum, 0.034% Lecithin, 84.4% Water, and 15.01% Blend 41.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least three to five of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least six or seven of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 1 and 5% Thyme Oil White, between 3 and 12% Wintergreen Oil, between 2 and 10% Isopropyl myristate, between 0.02 and 0.2% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.1% Lecithin, and between 60 and 98% Water.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 2.7 and 3.4% Thyme Oil White, between 6.0 and 7.5% Wintergreen Oil, between 4.5 and 5.7% Isopropyl myristate, between 0.08 and 0.14% Potassium Sorbate, between 0.1 and 0.2% Polyglycerol-4-oleate, between 0.25 and 0.31% Xanthan Gum, between 0.025 and 0.035% Lecithin, and between 76 and 92% Water.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 3.09% Thyme Oil White, 6.77% Wintergreen Oil, 5.15% Isopropyl myristate, 0.11% Potassium Sorbate, 0.15% Polyglycerol-4-oleate, 0.28% Xanthan Gum, 0.03% Lecithin, 84.41% Water.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least four or five of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.05 and 0.2% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.1% Lecithin, between 60 and 98% Water, and between 8 and 22% Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.09 and 0.13% Potassium Sorbate, between 0.1 and 0.2% Polyglycerol-4-oleate, between 0.25 and 0.31% Xanthan Gum, between 0.025 and 0.043% Lecithin, between 76 and 92% Water, and between 13 and 17% Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 0.11% Potassium Sorbate, 0.15% Polyglycerol-4-oleate, 0.28% Xanthan Gum, 0.034% Lecithin, 84.4% Water, and 15.01% Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least four or five of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.12% Potassium Sorbate, 0.16% Polyglycerol-4-oleate, 0.29% Xanthan Gum, 0.036% Lecithin, 89.4% Water, 10% Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.1 and 0.14% Potassium Sorbate, between 0.12 and 0.18% Polyglycerol-4-oleate, between 0.26 and 0.32% Xanthan Gum, between 0.03 and 0.045% Lecithin, between 80 and 98% Water, and between 8 and 12% Blend 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 0.12% Potassium Sorbate, 0.16% Polyglycerol-4-oleate, 0.29% Xanthan Gum, 0.036% Lecithin, 89.4% Water, 10% 120.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising CAR-01-097 (McCook) and Blend 10.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 60 and 90% CAR-01-097 (McCook) and between 10 and 40% Blend 10.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 70 and 80% CAR-01-097 (McCook) and between 20 and 30% Blend 10.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising CAR-01-097 (McCook) with 25% Blend 10.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Soy Bean Oil, Ethyl Alcohol (denatured), and Blend 10.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Soy Bean Oil, Ethyl Alcohol (denatured), and Blend 10.
A synergistic composition for controlling a target pest comprising between 10 and 30% Soy Bean Oil, between 35 and 65% Ethyl Alcohol (denatured), and between 20 and 40% Blend 10.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 18 and 22% Soy Bean Oil, between 45 and 55% Ethyl Alcohol (denatured), and between 27 and 33% Blend 10.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 20% Soy Bean Oil, 50% Ethyl Alcohol (denatured), and 30% Blend 10.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least four or five of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.05 and 0.2% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.05% Lecithin, between 60 and 98% Water, and between 8 and 25% Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.09 and 0.13% Potassium Sorbate, between 0.13 and 0.17% Polyglycerol-4-oleate, between 0.27 and 0.33% Xanthan Gum, between 0.025 and 0.035% Lecithin, between 76 and 92% Water, and between 13 and 17% Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 0.11% Potassium Sorbate, 0.15% Polyglycerol-4-oleate, 0.30% Xanthan Gum, 0.03% Lecithin, 84.4% Water, 15.01% Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least four or five of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.05 and 0.5% Potassium Sorbate, between 0.06 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.1% Lecithin, between 70 and 98% Water, and between 2 and 20% Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.1 and 0.14% Potassium Sorbate, between 0.14 and 0.18% Polyglycerol-4-oleate, between 0.27 and 0.33% Xanthan Gum, between 0.03 and 0.042% Lecithin, between 80 and 96% Water, and between 8 and 12% Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 0.12% Potassium Sorbate, 0.16% Polyglycerol-4-oleate, 0.30% Xanthan Gum, 0.036% Lecithin, 89.4% Water, 10% Blend 124.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two to seven of the group consisting of Citronella Oil, Carbopol 940, Butylated hyrdroxy toluene, Water, Emulsifying Wax, Light Liquid Paraffin, White Soft Paraffin, Sodium Metabisulphate, Propylene Glycol, Cresmer RH40 hydrogenated, Triethanolamine, Vitamin E Acetate, Disodium EDTA, and Blend 7.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least eight to thirteen of the group consisting of Citronella Oil, Carbopol 940, Butylated hyrdroxy toluene, Water, Emulsifying Wax, Light Liquid Paraffin, White Soft Paraffin, Sodium Metabisulphate, Propylene Glycol, Cresmer RH40 hydrogenated, Triethanolamine, Vitamin E Acetate, Disodium EDTA, and Blend 7.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Citronella Oil, Carbopol 940, Butylated hyrdroxy toluene, Water, Emulsifying Wax, Light Liquid Paraffin, White Soft Paraffin, Sodium Metabisulphate, Propylene Glycol, Cresmer RH40 hydrogenated, Triethanolamine, Vitamin E Acetate, Disodium EDTA, and Blend 7.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.1 and 0.4% Citronella Oil, between 0.1 and 0.4% Carbopol 940, between 0.4 and 0.2% Butylated hyrdroxy toluene, between 40 and 75% Water, between 6 and 25% Emulsifying Wax, between 2 and 8% Light Liquid Paraffin, between 4 and 15% White Soft Paraffin, between 0.1 and 0.5% Sodium Metabisulphate, between 0.8 and 5% Propylene Glycol, between 2 and 10% Cresmer RH40 hydrogenated, between 0.08 and 0.4% Triethanolamine, between 0.01 and 0.05% Vitamin E Acetate, between 0.01 and 0.1% Disodium EDTA, and between 1 and 15% Blend 7.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 0.18 and 0.22% Citronella Oil, between 0.18 and 0.22% Carbopol 940, between 0.8 and 0.12% Butylated hyrdroxy toluene, between 52 and 66% Water, between 12 and 16% Emulsifying Wax, between 3 and 5% Light Liquid Paraffin, between 7 and 11% White Soft Paraffin, between 0.2 and 0.3% Sodium Metabisulphate, between 1.5 and 2.5% Propylene Glycol, between 4 and 6% Cresmer RH40 hydrogenated, between 0.13 and 0.17% Triethanolamine, between 0.01 and 0.03% Vitamin E Acetate, between 0.04 and 0.06% Disodium EDTA, and between 4 and 6% Blend 7.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 0.20% Citronella Oil, 0.20% Carbopol 940, 0.10% Butylated hyrdroxy toluene, 59.83% Water, 14% Emulsifying Wax, 4.00% Light Liquid Paraffin, 9% White Soft Paraffin, 0.25% Sodium Metabisulphate, 2% Propylene Glycol, 5% Cresmer RH40 hydrogenated, 0.15% Triethanolamine, 0.02% Vitamin E Acetate, 0.05% Disodium EDTA, 5% Blend 7.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Blend 49, Lemon Grass Oil, and Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Blend 49, Lemon Grass Oil, and Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 35 and 65% Blend 49, between 15 and 35% Lemon Grass Oil, and between 15 and 35% Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 45 and 55% Blend 49, between 22 and 28% Lemon Grass Oil, and between 22 and 28% Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 50% Blend 49, 25% Lemon Grass Oil, and 25% Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Blend 51, Lemon Grass Oil, and Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Blend 51, Lemon Grass Oil, and Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 35 and 65% Blend 51, between 15 and 35% Lemon Grass Oil, and between 15 and 35% Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 45 and 55% Blend 51, between 22 and 28% Lemon Grass Oil, and between 22 and 28% Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 50% Blend 51, 25% Lemon Grass Oil, and 25% Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Blend 52, Lemon Grass Oil, and Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Blend 52, Lemon Grass Oil, and Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 35 and 65% Blend 52, between 15 and 35% Lemon Grass Oil, and between 15 and 35% Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 45 and 55% Blend 52, between 22 and 28% Lemon Grass Oil, and between 22 and 28% Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 50% Blend 52, 25% Lemon Grass Oil, and 25% Castor Oil Surfactant.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising at least two of the group consisting of Blend 7, Sodium Lauryl Sulfate, and Water.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising Blend 7, Sodium Lauryl Sulfate, and Water.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 2 and 20% Blend 7, between 0.2 and 2% Sodium Lauryl Sulfate, and between 70 and 99% Water.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising between 8 and 12% Blend 7, between 0.8 and 1.2% Sodium Lauryl Sulfate, and between 80 and 98% Water.
Some embodiments of the invention provide a synergistic composition for controlling a target pest comprising 10% Blend 7, 1% Sodium Lauryl Sulfate, 89% Water.
Embodiments of the present invention provide compositions for controlling a target pest.
The target pest can be selected from, for example, the group consisting of a fungus, a plant, an animal, a moneran, a protist, and the like. The target pest can be an arthropod species, such as, for example, an insect, an arachnid, or an arachnoid. The target pest can be a species belonging to an animal order, such as, for example, Acari, Anoplura, Araneae, Blattodea, Coleoptera, Collembola, Diptera, Grylloptera, Heteroptera, Homoptera, Hymenoptera, Isopoda, Isoptera, Lepidoptera, Mantodea, Mallophaga, Neuroptera, Odonata, Orthoptera, Psocoptera, Siphonaptera, Symphyla, Thysanura, Thysanoptera, and the like.
Embodiments of the invention are directed to methods of screening compositions for pest-control potential, compositions for controlling pests, and methods for using these compositions.
As used herein, “pests” can mean any organism whose existence it can be desirable to control. Pests can include, for example, bacteria, cestodes, fungi, insects, nematodes, parasites, plants, and the like.
As used herein, “pesticidal” can mean, for example, antibacterial, antifungal, antiparasitic, herbicidal, insecticidal, and the like.
Embodiments of the invention include compositions for controlling a target pest, which can include one or more plant essential oils and methods for using these compositions. The plant essential oils, when combined, can have a synergistic effect. The compositions also can include a fixed oil, which is typically a non-volatile non-scented plant oil. Additionally, in some embodiments, these compositions can be made up of generally regarded as safe (GRAS) compounds.
For purposes of simplicity, the term “insect” shall be used in this application; however, it should be understood that the term “insect” refers, not only to insects, but also to mites, spiders, and other arachnids, larvae, and like invertebrates. Also for purposes of this application, the term “insect control” shall refer to having a repellant effect, a pesticidal effect, or both. “Repellant effect” is an effect wherein more insects are repelled away from a host or area that has been treated with the composition than a control host or area that has not been treated with the composition. In some embodiments, repellant effect is an effect wherein at least about 75% of insects are repelled away from a host or area that has been treated with the composition. In some embodiments, repellant effect is an effect wherein at least about 90% of insects are repelled away from a host or area that has been treated with the composition. “Pesticidal effect” is an effect wherein treatment with a composition causes at least about 1% of the insects to die. In this regard, an LC1 to LC100 (lethal concentration) or an LD1 to LD100 (lethal dose) of a composition will cause a pesticidal effect. In some embodiments, the pesticidal effect is an effect wherein treatment with a composition causes at least about 5% of the exposed insects to die. In some embodiments, the target pest is a non-insect, such as a parasite.
Embodiments of the invention can be used to control parasites. As used herein, the term “parasite” includes parasites, such as but not limited to, protozoa, including intestinal protozoa, tissue protozoa, and blood protozoa.
In some embodiments, the pesticidal effect is an effect wherein treatment with a composition causes at least about 10% of the exposed insects to die. In some embodiments, the pesticidal effect is an effect wherein treatment with a composition causes at least about 25% of the insects to die. In some embodiments the pesticidal effect is an effect wherein treatment with a composition causes at least about 50% of the exposed insects to die. In some embodiments the pesticidal effect is an effect wherein treatment with a composition causes at least about 75% of the exposed insects to die. In some embodiments the pesticidal effect is an effect wherein treatment with a composition causes at least about 90% of the exposed insects to die.
In some embodiments of the invention, treatment with compositions of the invention will result in a knockdown of the target pest occurring within a few seconds to a few minutes. “Knockdown” is an effect wherein treatment with a composition causes at least about 1% to display reduced mobility. In some embodiments, the knockdown is an effect wherein treatment with a composition causes at least about 50% of the exposed insects to die.
The compositions of the present invention can be used to control target pest by either treating a host directly, or treating an area in which the host will be located, for example, an indoor living space, outdoor patio or garden. For purposes of this application, host is defined as a plant, human or other animal.
Treatment can include use of a oil-based formulation, a water-based formulation, a residual formulation, and the like. In some embodiments, combinations of formulations can be employed to achieve the benefits of different formulation types.
Embodiments of the invention are directed to compositions for controlling insects and methods for using these compositions. Compositions of the present invention can include any of the following oils, or mixtures thereof.
Embodiments of the invention are directed to compositions for controlling insects and methods for using these compositions. Compositions of the present invention can include any of the following oils, or mixtures thereof.
Methyl salicylate, also known as betula oil. Methyl salicylate is a major component of oil of wintergreen and is sometimes referred to interchangeably with oil of wintergreen. It is a natural product of many species of plants, is the methyl ester of salicylic acid, and can be produced chemically from the condensation reaction of salicylic acid and methanol. Some of the plants producing it are called wintergreens, hence the common name. Methyl salicylate can be used by plants as a pheromone to warn other plants of pathogens (Shulaev, et al. (Feb. 20, 1997) Nature 385: 718-721). The release of methyl salicylate can also function as an exopheromone aid in the recruitment of beneficial insects to kill the herbivorous insects (James, et al. (August 2004) J. Chem. Ecol. 30(8): 1613-1628). Numerous plants produce methyl salicylate including species of the family Pyrolaceae and of the genera Gaultheria and Betula. It is noted that, where a given blend or formulation or other composition is disclosed herein as containing wintergreen oil, an alternative embodiment, containing methyl salicylate in place of wintergreen oil, is also contemplated. Likewise, where a blend or forumlation of other composition includes methyl salicylate, an alternative embodiment, containing wintergreen oil, is also contemplated.
Thyme Oil is a natural product that can be extracted from certain plants, including species from the Labiatae family; for example, thyme oil can be obtained from Thymus vulgaris (also known as, T. ilerdensis, T. aestivus, and T. velantianus), generally by distillation from the leafy tops and tender stems of the plant. Two commercial varieties of Thyme oil are recognized, the ‘red,’ the crude distillate, which is deep orange in color, and the ‘white,’ which is colourless or pale yellow, which is the ‘red’ rectified by re-distilling. Thyme oil principally contains the phenols thymol and carvacrol, along with borneol, linalool, and cymene, and rosmarinic and ursolic acids. Where an embodiment describes the use of thyme oil white, other embodiments are specifically contemplated in which the thyme oil white is replaced by thyme oil red, thymol, carvacrol, borneol, linalool, cymene, rosmarinic acid, ursolic acid, or a mixture of any of these with each other or with thyme oil white. Particularly preferable are mixtures of thyme oil white and thyme oil red that contain 10% or less thyme oil red, more preferably 5% or less, and most preferably 1%.
Thymol is a monoterpene phenol derivative of cymene, C10H13OH, isomeric with carvacrol, found in thyme oil, and extracted as a white crystalline substance. It is also known as hydroxycymene and 5-methyl-2-(1-methylethyl) phenol. Where an embodiment describes the use of thymol, other embodiments are specifically contemplated in which the thymol is replaced by carvacrol, thyme oil white, thyme oil red, or a mixture of any of these with each other or with thyme oil white.
Lime oil is derived from Citrus aurantifolia (also known as Citrus medica var. acida and C. latifolia) of the Rutaceae family and is also known as Mexican and West Indian lime, as well as sour lime. Its chief constituents are α-pinene, β-pinene, camphene, myrcene, p-cymene, d-limonene, γ-terpinene, terpinolene, 1,8-ceneole, linalool, terpinene-4-ol, α-terpineol, neral, geraniol, neral acetate, geranyl acetate, caryophyllene, trans-α-bergamotene, β-Bisabolen, borneol, and citral. It can be obtained in several forms, including Lime Oil 410 (an artificial Mexican-exressed lime oil available from Millennium Specialty Chemicals). Where an embodiment describes the use of any form of lime oil, other embodiments are specifically contemplated in which the lime oil is replaced by α-pinene, β-pinene,camphene, myrcene, p-cymene, d-limonene, γ-terpinene, terpinolene, 1,8-ceneole, linalool, terpinene-4-ol, α-terpineol, neral, geraniol, neral acetate, geranyl acetate, caryophyllene, trans-α-bergamotene, β-Bisabolen, borneol, or citral, or a mixture of any of these with each other or with any form of lime oil.
Black seed oil is obtained from the seeds of Nigella sativa. Its chief constituents are carvone, α-pinene, sabinene, β-pinene, and p-cymene, as well as the fatty acids myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and arachidic acid. Where an embodiment describes the use of any form of black seed oil, other embodiments are specifically contemplated in which the black seed oil is replaced by d-carvone, l-carvone, a racemic mixture of d-carvone and l-carvone, α-pinene, sabinene, β-pinene, or p-cymene, or a mixture of any of these with each other, with any of myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, or arachidic acid or with any form of black seed oil.
Linalool is a naturally-occurring terpene alcohol chemical found in many flowers and spice plants. It is also known as 3,7-dimethylocta-1,6-dien-3-ol. It has two stereoisomeric forms: (S)-(+)-linalool (known as licareol) and (R)-(−)-linalool (known as coriandrol). Linalool can be obtained as linalool coeur (a racemic mixture, CAS number 78-70-6), or in preferred derivative forms such as tetrahydrolinalool (the saturated form), ethyl linalool, linalyl acetate, and pseudo linalyl acetate (7-octen-2-ol, 2-methyl-6-methylene:acetate). Where an embodiment describes the use of any form of linalool, other embodiments are specifically contemplated in which the linalool is replaced by licareol, coriandrol, tetrahydrolinalool, ethyl linalool, linalyl acetate, pseudo linalyl acetate, or a mixture of any of these with each other or with any form of linalool. Similarly, where an embodiment describes the use of tetrahydrolinalool, other embodiments are specifically contemplated in which the tetrahydrolinalool is replaced by licareol, coriandrol, racemic linalool, ethyl linalool, linalyl acetate, pseudo linalyl acetate, or a mixture of any of these with each other or with tetrahydrolinalool. Additionally, where an embodiment describes the use of ethyl linalool, other embodiments are specifically contemplated in which the ethyl linalool is replaced by licareol, coriandrol, tetrahydrolinalool, racemic linalool, linalyl acetate, pseudo linalyl acetate, or a mixture of any of these with each other or with ethyl linalool. Finally, where an embodiment describes the use of linalyl acetate, other embodiments are specifically contemplated in which the linalyl acetate is replaced by licareol, coriandrol, tetrahydrolinalool, racemic linalool, ethyl linalool, pseudo linalyl acetate, or a mixture of any of these with each other or with linalyl acetate.
Geraniol, also called rhodinol and 3,7-dimethyl-2,6-octadien-1-ol, is a monoterpenoid and an alcohol. It is the primary part of oil-of-rose and palmarosa oil. It is used in perfumes and as a flavoring. It is also produced by the scent glands of honey bees to help them mark nectar-bearing flowers and locate the entrances to their hives. Geraniol can be obtained in a highly pure form as Geraniol Fine, FCC (Food Chemicals Codex grade), which is 98% minimum pure geraniol and 99% minimum nerol and geraniol. Geraniol can be also be obtained, for example, as Geraniol 60, Geraniol 85, and Geraniol 95. When Geraniol is obtained as Geraniol 60, Geraniol 85, or Geraniol 95, then about forty percent, fifteen percent, or five percent of the oil can be nerol. Nerol is a monoterpene (C10H18O), the cis-isomer of geraniol, which can be extracted from attar of roses, oil of orange blossoms and oil of lavender. Citral (3,7-dimethyl-2,6-octadienal or lemonal) is the generic name for the aldehyde form of nerol and geraniol, and can be obtained from lemon myrtly, Litsea cubeba, lemongrass, Lemon verbena, lemon balm, lemon, and orange. The E-isomer of citral is known as geranial or citral A. The Z-isomer is known as neral or citral B. Where an embodiment describes the use of any form of geraniol, other embodiments are specifically contemplated in which the geraniol is replaced by another form of geraniol (such as Geraniol Fine FCC or any geraniol/nerol mixture), nerol, geranial, neral, citral, or a mixture of any of these with each other or with any form of geraniol. Similarly, Where an embodiment describes the use of any form of citral, other embodiments are specifically contemplated in which the citral is replaced by a form of geraniol (such as Geraniol Fine FCC or any gernaiol/nerol mixture), nerol, geranial, neral, or a mixture of any of these with each other or with citral.
Vanillin (also known as methyl vanillin, vanillic aldehyde, vanillin, and 4-hydroxy-3-methoxybenzaldehyde) is the primary component of the extract of the vanilla bean. In addition to vanillin, natural vanilla extract also contains p-hydroxybenzaldehyde, vanillic acid, piperonal, and p-hydroxybenzoic acid. Synthetic vanillin is used as a flavoring agent in foods, beverages, and pharmaceuticals. Where an embodiment describes the use of vanillin, other embodiments are specifically contemplated in which the vanillin is replaced by natural vanilla extract, p-hydroxybenzaldehyde, vanillic acid, piperonal, ethyl vanillin, or p-hydroxybenzoic acid, or a mixture of any of these with each other or with vanillin.
Hercolyn-D is a solvent used to give oils high viscosity; it comprises the methyl esters of hydrogenated rosin acids and is available commercially from Hercules Corporation. Where an embodiment describes the use of Hercolyn D, other embodiments are specifically contemplated in which Hercolyn D may be replaced by other plasticizers such as Hercoflex 900, abalyn, abitol, castor oil, and mineral oil, or a mixture of any of these with each other or with Hercolyn D.
Isopropyl myristate is the ester of isopropanol and myristic acid; it is also known as 1-tetradecanoic acid, methylethyl ester, myristic acid isopropyl ester, and propan-2-yl tetradecanoate. Where an embodiment describes the use of isopropyl myristate, other embodiments are specifically contemplated in which isopropyl myristate may be replaced by similar chemicals such as isopropyl palmitate, isopropyl isothermal, putty stearate, isostearyl neopentonate, myristyl myristate, decyl oleate, octyl sterate, octyl palmitate, isocetyl stearate, or PPG myristyl propionate, or a mixture of any of these with each other or with isopropyl myristate.
Piperonal (heliotropine, protocatechuic aldehyde methylene ether) is an aromatic aldehyde that comes as transparent crystals, C8H6O3, and has a floral odor. It is used as flavoring and in perfume. It can be obtained by oxidation of piperonyl alcohol. Where an embodiment describes the use of piperonal, other embodiments are specifically contemplated in which piperonal may be replaced by piperonyl alcohol, 3,4-methylenedioxybenzylamine, 3,4-methylenedioxymandelonitrile, piperonylic acid, piperonyl acetate, piperonylacetone, piperonylideneacetone, piperonyl isobutyrate, piperonyl butoxide, piperonylglycine, or protocatecheuic acid or a mixture of any of these with each other or with piperonal. Similarly, where an embodiment describes the use of piperonyl alcohol, other embodiments are specifically contemplated in which piperonyl alcohol may be replaced by piperonal, 3,4-methylenedioxybenzylamine, 3,4-methylenedioxymandelonitrile, piperonylic acid, piperonyl acetate, piperonylacetone, piperonylideneacetone, piperonyl isobutyrate, piperonyl butoxide, piperonylglycine, or protocatecheuic acid, or a mixture of any of these with each other or with piperonyl alcohol.
Hedione®, also known as methyl dihydrojasmonate and cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester, is a compound developed in 1959 that is frequently used to impart a jasmine scent in perfumes. The most olfactorally active stereoisomer is (+)-cis-Hedione®. Where an embodiment describes the use of Hedione®, other embodiments are specifically contemplated in which Hedione® may be replaced by any of its stereoisomers, or any mixture thereof.
Triethyl citrate (also known as citric acid, triethyl ester; TEC; ethyl citrate; 2-hydroxy-1,2,3-propanetricarboxylic acid, triethyl ester; and Citroflex 2) is used as a high boiling solvent and plasticizer for vinyl resins and cellulose acetates. It is a plasticizer permitted in the field of food additives, food contact materials, medicines, and pharmaceuticals. Where an embodiment describes the use of triethyl citrate, other embodiments are specifically contemplated in which triethyl citrate may be replaced by other citrate plasticiser esters such as tributyl citrate, acetyl tributyl citrate and tri-(2-ethylhexyl)-citrate, or a mixture of any of these with each other or with triethyl citrate.
The terpinenes are isomeric hydrocarbons classified as terpenes. Some members of this group are used in a wide variety of flavor and fragrance compositions, as well as in extensions of citrus oils. Gamma-terpinene is also known as 1-isopropyl-4-methyl-1,4-cyclohexadiene, 4-methyl-1-(1-methylethyl)-1,4-cyclohexadiene, and p-mentha-1,4-diene. Alpha-terpinene is also known as 4-methyl-1-(1-methylethyl)-1,3-cyclohexadiene. Both alpha- and gamma-terpinene have a lemony fragrance. Beta-terpinene, also known as 4-methylene-1-(1-methylethyl)cyclohexene, has been prepared from sabinene. A derivative, terpinene-4-ol, is the primary active ingredient of tea tree oil and the compound of highest concentration in essential oil of nutmeg. Other monoterpene alcohol derivatives of the erpinenes include the α-, β-, and γ-terpineol isomers; the α-terpineol isomer is the major component of the naturally isolated terpineol. Other related compounds are terpinolene (4-Isopropylidene-1-methylcyclohexene; p-Menth-1,4(8)-diene; 1-Methyl-4-(1-methylethylidene)cyclohexene; 1-Methyl-4-propan-2-ylidene-cyclohexene), and the isomers α-phellandrene and β-phellandrene. Where an embodiment describes the use of gamma-terpinene, other embodiments are specifically contemplated in which gamma-terpinene may be replaced by other terpinenes or derivatives thereof such as terpinolene, α-phellandrene, β-phellandrene, alpha-terpinene, beta-terpinene, α-terpineol, β-terpineol, γ-terpineol, or terpinene-4-ol, or a mixture of any of these with each other or with gamma-terpinene. Where an embodiment describes the use of alpha-terpinene, other embodiments are specifically contemplated in which alpha-terpinene may be replaced by other terpinenes or derivatives thereof such as terpinolene, α-phellandrene, p-phellandrene, gamma-terpinene, beta-terpinene, α-terpineol, (β-terpineol, γ-terpineol, or terpinene-4-ol, or a mixture of any of these with each other or with alpha-terpinene. Where an embodiment describes the use of terpinene-4-ol, other embodiments are specifically contemplated in which terpinene-4-ol may be replaced by other terpinenes or derivatives thereof such as terpinolene, α-phellandrene, β-phellandrene, alpha-terpinene, beta-terpinene, α-terpineol, (β-terpineol, γ-terpineol, or gamma-terpinene, or a mixture of any of these with each other or with terpinene-4-ol. Where an embodiment describes the use of α-terpineol, other embodiments are specifically contemplated in which α-terpineol may be replaced by other terpinenes or derivatives thereof such as terpinolene, α-phellandrene, β-phellandrene, alpha-terpinene, beta-terpinene, terpinene-4-ol, (β-terpineol, γ-terpineol, or gamma-terpinene, or a mixture of any of these with each other or with α-terpineol. Where an embodiment describes the use of terpinolene, other embodiments are specifically contemplated in which terpinolene may be replaced by other terpinenes or derivatives thereof such as α-terpineol, α-phellandrene, β-phellandrene, alpha-terpinene, beta-terpinene, terpinene-4-ol, β-terpineol, γ-terpineol, or gamma-terpinene, or a mixture of any of these with each other or with terpinolene.
The pinenes encompass the isomeric forms α-pinene and β-pinene; both are important constituents of pine resin. Important pinene derivatives include the bicyclic ketones verbenone and chrysanthone. Where an embodiment describes the use of α-pinene, other embodiments are specifically contemplated in which α-pinene may be replaced by β-pinene, verbenone, or chrysanthone, or a mixture of any of these with each other or with α-pinene. Where an embodiment describes the use of β-pinene, other embodiments are specifically contemplated in which β-pinene may be replaced by α-pinene, verbenone, or chrysanthone, or a mixture of any of these with each other or with β-pinene.
Cymene is a monoterpene-related hydrocarbon, consisting of a benzene ring substituted with a methyl group and an isopropyl group. The para-substituted form occurs naturally and is a component of oil of cumin and thyme. The ortho- and meta-substituted also exist, but are less common. Where an embodiment describes the use of p-cymene, other embodiments are specifically contemplated in which terpinolene may be replaced by o-cymene or m-cymene, or a mixture of any of these with each other or with p-cymene.
Trans-anethole (also known as anethole, p-propenylanisole, anise camphor, isoestragole, or oil of aniseed) is an aromatic unsaturated ether that accounts for the licorice flavor of anise and fennel. It forms white crystals at room temperature and is closely related to estragole, its double-bond isomer, chavicol (p-allylphenol, the phenol analog), and safrole (shikimol), a methylenedioxy analog found in sassafras oil. Where an embodiment describes the use of t-anethole, other embodiments are specifically contemplated in which t-anethole may be replaced by estragole, chavicol, safrole, or a mixture of any of these with each other or with t-anethole.
Citronella oil is classified into two chemotypes. The Ceylon type obtained from Cymbopogon nardus Rendle consists of geraniol, limonene, methyl isoeugenol, citronellol, and citronellal. The Java type obtained from Cymbopogon winterianus Jowitt consists of citronellal, geraniol, geranyl acetate, and limonene. Where an embodiment describes the use of citronella oil, either they Ceylon type or the Java type may be used. Furthermore, where an embodiment describes the use of citronella oil, other embodiments are specifically contemplated in which citronella oil may be replaced by geraniol, limonene, methyl isoeugenol, citronellol, citronellal, geranyl acetate, or a mixture of any of these with each other or with citronella oil.
Borneol is a terpene and a bicyclic organic compound which exists as two enantiomers, d-borneol and l-borneol. Isoborneol is the exo isomer of borneol. Borneol can be oxidized to the ketone camphor, which exists in the optically active dextro and levo forms. Significant camphor derivatives are norcamphor and camphene. Where an embodiment describes the use of l-borneol, other embodiments are specifically contemplated in which l-borneol may be replaced by d-borneol, racemic borneol, isoborneol, d-camphor, l-camphor, racemic camphor, norcamphor, camphene, or a mixture of any of these with each other or with l-borneol. Where an embodiment describes the use of isoborneol, other embodiments are specifically contemplated in which isoborneol may be replaced by d-borneol, racemic borneol, l-borneol, d-camphor, l-camphor, racemic camphor, norcamphor, camphene, or a mixture of any of these with each other or with isoborneol. Where an embodiment describes the use of d-camphor, other embodiments are specifically contemplated in which d-camphor may be replaced by d-borneol, l-borneol, racemic borneol, isoborneol, l-camphor, racemic camphor, norcamphor, camphene, or a mixture of any of these with each other or with d-camphor. Where an embodiment describes the use of camphene, other embodiments are specifically contemplated in which camphene may be replaced by d-borneol, l-borneol, racemic borneol, isoborneol, d-camphor, l-camphor, racemic camphor, norcamphor, camphene, or a mixture of any of these with each other or with camphene.
Myrcene is a monoterpene that exists in nature as the structural form β-myrcene and is obtained from the essential oils of bay, verbena, and myrcia. The α-myrcene form is a structural isomer not found in nature. Where an embodiment describes the use of myrcene, this signifies the β-myrcene form, but other embodiments are specifically contemplated in which β-myrcene is replaced with α-myrcene or a mixture of α-myrcene and β-myrcene.
Other ingredients, including but not limited to black seed oil, borneol, camphene, carvacrol, β-caryophyllene, triethyl-citrate, p-cymene, hedion, heliotropine, hercolyn D, lilac flower oil, lime oil, limonene, linalool, ethyl-linalool, tetrahydro-linanool, α-pinene, β-pinene, piperonal, piperonyl alcohol, α-terpinene, tert-butyl-p-benzoquinone, α-thujene, and triethyl citrate can also be included in the compositions of the present invention.
In addition, the use of several long-chain aldehydes, such as octanal, nonanal, decanal, and dodecanal. Where an embodiment describes the use of one such aldehyde, other embodiments are specifically contemplated in which the designated aldehyde is replaced with any of the other aldeydes, or a mixture of any of these aldehydes with each other or with the designated aldehyde.
Tocopherols are a class of chemicals consisting of various methylated phenols, some of which have vitamin E activity. These include α-tocopherol, β-tocopherol, γ-tocopherol, and δ-tocopherol. Also belonging to this family are the tocotrienols, including α-tocotrienol, β-tocotrienol, γ-tocotrienol, and δ-tocotrienol. In preferred embodiments, mixtures of these compositions, such as tocopherol gamma tenox or Tenox GT, are employed. Where an embodiment describes the use of one tocopherol, other embodiments are specifically contemplated in which the designated tocopherol is replaced with any of the other tocopherols, or a mixture of any of these tocopherols with each other or with the designated tocopherol.
Certain mixtures of liquefied hydrocarbons, such as propellants A-46, A-70, or 142A may be used as propellants in embodiments of spray mixtures. Where an embodiment describes the use of one propellant, other embodiments are specifically contemplated in which the designated propellant is replaced with any of the other propellant, or a mixture of any of these propellants with each other or with the designated propellant.
In certain exemplary compositions of the invention that include lilac flower oil, one or more of the following compounds can be substituted for the lilac flower oil: tetrahydrolinalool; ethyl linalool; heliotropine; hedion; hercolyn D; and triethyl citrate. In certain exemplary compositions of the invention that include black seed oil, one or more of the following compounds can be substituted for the black seed oil: alpha-thujene: alpha-pinene; Beta-pinene; p-cymene; limonene; and tert-butyl-p-benzoquinone. In certain exemplary compositions of the invention that include thyme oil, one or more of the following compounds can be substituted for the thyme oil: thymol, α-thujone; α-pinene, camphene, β-pinene, p-cymene, α-terpinene, linalool, borneol, β-caryophyllene, and carvacrol. In certain exemplary embodiments of the invention that include methyl salicylate, oil of wintergreen can be substituted for the methyl salicylate. In certain exemplary embodiments of the invention that include oil of wintergreen, methyl salicylate can be substituted for the oil of wintergreen.
D-limonene is the main odour constituent of citrus (plant family Rutaceae), and is found in, among other citrus oils, lemon oil, lime oil, and orange oil. Where an embodiment describes the use of d-limonene, other embodiments are specifically contemplated in which the d-limonene is replaced by lemon oil, orange oil, lime oil, citrus oil, l-limonene, or dipentene (the racemic mixture of d-limonene and l-limonene).
In certain exemplary compositions of the invention that include lilac flower oil, one or more of the following compounds can be substituted for the lilac flower oil: tetrahydrolinalool; ethyl linalool; heliotropine; hedion; hercolyn D; and triethyl citrate. In certain exemplary compositions of the invention that include black seed oil, one or more of the following compounds can be substituted for the black seed oil: alpha-thujene: alpha-pinene; Beta-pinene; p-cymene; limonene; and tert-butyl-p-benzoquinone. In certain exemplary compositions of the invention that include thyme oil, one or more of the following compounds can be substituted for the thyme oil: thymol, α-thujone; α-pinene, camphene, β-pinene, p-cymene, α-terpinene, linalool, borneol, β-caryophyllene, and carvacrol. In certain exemplary embodiments of the invention that include methyl salicylate, oil of wintergreen can be substituted for the methyl salicylate. In certain exemplary embodiments of the invention that include oil of wintergreen, methyl salicylate can be substituted for the oil of wintergreen.
Oils used to prepare the exemplary compositions of the present invention can be obtained, for example, from the following sources: Millennium Specialty Chemical (Jacksonville, Fla.), Ungerer Company (Lincoln Park, N.J.), SAFC (Milwaukee, Wis.), and IFF Inc. (Hazlet, N.J.).
Exemplary embodiments of the invention also can include isopropyl myristate, which is an ester of isopropyl alcohol and myristic acid, is used as a thickening agent and emollient.
In those compositions including more than one oil, each oil can make up between about 0.1%, or less, to about 99%, or more, by weight, of the composition mixture. For example, one composition of the present invention comprises about 1% thymol and about 99% geraniol. Optionally, the compositions can additionally comprise a fixed oil, which is a non-volatile non-scented plant oil. Fixed oils useful in the formulations of the present invention include, but are not limited to, castor oil, corn oil, cumin oil, mineral oil, olive oil, peanut oil, safflower oil, sesame oil, and soy bean oil.
In certain exemplary embodiments, insect control compositions according to the invention include at least one of methyl salicylate, thyme oil, thymol, and/or geraniol. In other exemplary embodiments, insect control compositions include at least two of methyl salicylate, thyme oil, thymol, and/or geraniol. In other exemplary embodiments, insect control compositions according to the invention include methyl salicylate, thymol, and geraniol.
While embodiments of the invention can include active ingredients, carriers, inert ingredients, and other formulation components, preferred embodiments begin with a primary blend. A primary blend is preferably a synergistic combination containing two or more active ingredients and, optionally, additional ingredients. The primary blends can then be combined with other ingredients to produce a formulation. Accordingly, where concentrations, concentration ranges, or amounts, are given herein, such quantities typically are in reference to a primary blend or blends. Thus, when a primary blend is further modified by addition of other ingredients to produce a formulation, the concentrations of the active ingredients are reduced proportional to the presence of other ingredients in the formulation.
In preferred blends, methyl salicylate can be included at a concentration of between 10% or less to 60% or more; at a concentration of between 15%-50%; at a concentration of between 20%-45%; or at a concentration of about 39% by weight.
Thymol can be included at a concentration of between 5% or less to 40% or more; at a concentration of between 15%-25%; or at a concentration of about 20% by weight.
Thyme Oil can be included at a concentration of between 5% or less to 40% or more, at a concentration of between 15%-25%, or at a concentration of about 20% by weight. Geraniol can be included at a concentration of between 5% or less to 40% or more, at a concentration of 15%-25%, or at a concentration of about 20% by weight.
In certain exemplary embodiments, the following active ingredients can be provided at the following concentrations, expressed as a percentage by weight 39% Methyl salicylate; 20% Thymol (crystal); and 20% Geraniol 60. In other exemplary embodiments, the following active ingredients can be provided at the following concentrations: 39% Methyl salicylate; 20% Thyme Oil; and 20% Geraniol 60. In other exemplary embodiments, the following active ingredients can be provided at the following concentrations: 39% Methyl salicylate; 20% Thyme Oil; and 20% Geraniol 85. In other exemplary embodiments, the following active ingredients can be provided at the following concentrations: 39% Methyl salicylate; 20% Thyme Oil; and 20% Geraniol 95. Other exemplary embodiments are shown in the tables provided below.
In exemplary embodiments, the insect control formulation also includes isopropyl myristate at a concentration of between 10-30%, more preferably 15-25%, and most preferably about 20%. Vanillin is included, preferably at a concentration between 0.5 and 4%, most preferably about 1%.
In exemplary embodiments of the invention, thymol is present in crystal form. By using the crystal form, the more volatile components of the insect control composition are stabilized and remain in the area requiring insect control for a longer period. This is explained in U.S. Provisional Application No. 60/799,434, filed May 10, 2006 which is incorporated in its entirety herein by reference. Of course, other components can be included to stabilize the insect control composition. The stabilizer can be a crystal powder, dust, granule or other form which provides an absorption surface area for the insect control composition. Other plant essential oils that are crystalline at room temperature and can be used as stabilizers in formulations of the invention include but are not limited to cinnamic alcohol crystals, salicylic acid crystals, cedrol crystals, piperonal crystals, piperonyl alcohol crystals, (s)-cis-verbenol crystals and DL-menthol crystals which are all crystalline at room temperature. Another stabilizer that can be used is a crystal of Winsense WS-3, cyclohexanecarboxamide, N-methyl-2-(1-methylethyl) and Winsense WE-23, (N-2,3-trimethyl-2-isopropylbutamide) and the like. Another useful stabilizer is talc powder.
In order to produce the stabilized formulation, the stabilizer and the insect-control composition are mixed to allow the stabilizer to become coated with the composition as described in U.S. Provisional Application No. 60/799,434, mentioned above.
The compositions of the present invention can comprise, in admixture with a suitable carrier and optionally with a suitable surface active agent, plant essential oil compounds and/or derivatives thereof, natural and/or synthetic, including racemic mixtures, enantiomers, diastereomers, hydrates, salts, solvates and metabolites, etc.
A suitable carrier can include any carrier in the art known for plant essential oils, provided the carrier does not adversely effect the compositions of the present invention. The term “carrier” as used herein means an inert or fluid material, which can be inorganic or organic and of synthetic or natural origin, with which the active compound is mixed or formulated to facilitate its application to the container or carton or other object to be treated, or to facilitate its storage, transport and/or handling. In general, any of the materials customarily employed in formulating repellents, pesticides, herbicides, or fungicides, are suitable. The compositions of the present invention can be employed alone or in the form of mixtures with such solid and/or liquid dispersible carrier vehicles and/or other known compatible active agents such as other repellants, pesticides, or acaricides, nematicides, fungicides, bactericides, rodenticides, herbicides, fertilizers, growth-regulating agents, etc., if desired, or in the form of particular dosage preparations for specific application made therefrom, such as solutions, emulsions, suspensions, powders, pastes, and granules which are thus ready for use. The compositions of the present invention can be formulated or mixed with, if desired, conventional inert pesticide diluents or extenders of the type usable in conventional insect control agents, e.g., conventional dispersible carrier vehicles such as gases, solutions, emulsions, suspensions, emulsifiable concentrates, spray powders, pastes, soluble powders, dusting agents, granules, foams, pastes, tablets, aerosols, natural and synthetic materials impregnated with active compounds, microcapsules, coating compositions for use on seeds, and formulations used with burning equipment, such as fumigating cartridges, fumigating cans and fumigating coils, as well as ULV cold mist and warm mist formulations, etc.
The compositions of the present invention can further comprise surface-active agents. Examples of surface-active agents that can be employed with the present invention, include emulsifying agents, such as non-ionic and/or anionic emulsifying agents (e.g., polyethylene oxide esters of fatty acids, polyethylene oxide ethers of fatty alcohols, alkyl sulfates, alkyl sulfonates, aryl sulfonates, albumin hydrolyzates, etc., and especially alkyl arylpolyglycol ethers, magnesium stearate, sodium oleate, etc.); and/or dispersing agents such as lignin, sulfite waste liquors, methyl cellulose, etc.
In some embodiments, water-based formulations are preferred. Although oil-based formulations of insect-control agents are generally more effective, water-based formulations have the advantage that they do not leave behind an oily residue on treated surfaces. Preparation of water-based formulations for insect control are disclosed in U.S. Provisional Application No. 60/747,592, filed May 18, 2006, which is incorporated in its entirety herein by reference.
In certain embodiments, water-based formulations are provided wherein water and a surfactant comprise between about 1% to about 99%, by weight, of the composition mixture. For example, one composition of the present invention comprises about 1% water and surfactant and about 99% of a composition, including: about 39% Methyl salicylate; about 20% Thymol (crystal); about 20% Geraniol 60; and about 1% Vanillin. For another example, one composition of the present invention comprises about 50% water and surfactant and about 50% of a composition, including: about 39% Methyl salicylate; about 20% Thymol (crystal); about 20% Geraniol 60; and about 1% Vanillin.
The surfactant of the water-based formulation is provided to facilitate mixture of the insect-control composition with the water. The surfactant may include an end having a carboxyl group, which will face the water molecules, and a hydrocarbon end, which will face an oil component of the insect-control composition. As such, the surfactant allows the water and the oil component of the composition to be mixed to form an emulsion. Various surfactants may be used in the formulation of the present invention, for example, sodium lauryl sulfate (SLS, anionic), chlorhexidine (CLH, cationic), and Poloxamer 407 (POL407, nonionic), Sodium dodecylsulfate (SDS), Sodium cholate, Sodium deoxycholate, N-Lauroylsarcosine, Lauryldimethylamine-oxide (LDAO), Cetyltrimethylammoniumbromide (CTAB), Bis(2-ethylhexyl)sulfosuccinate, or mixtures thereof.
The solvent of the water-based formulation serves to reduce the water-oil surface tension of the emulsion. By reducing this surface tension, the oil spots are more readily dispersed in the water, and a thin film of the oil-water mixture is allowed to form on the treated surfaces, which surfaces may include areas within a household, outdoor areas, plants and the insects themselves. The solvent may also serve as a carrier and a synergist. The solvent may assist in fast penetration through the cell membrane of an insect being controlled to ensure the arrival of sufficient active ingredients to the site of action. Various solvents may be used, for example, isopar M, isopar C, or mixtures thereof.
To produce the water-based formulation, the insect-control composition containing one or more plant essential oils is mixed with water to create a slurry. The surfactant is then added to create certain embodiments of the water-based formulation. To create other embodiments of the water-based formulation, the solvent is then added. The final concentration of the insect-control composition in the formulation may be, for example, about 10-25%. The final concentration of the surfactant in the formulation may be, for example, about 1-10%. The final concentration of the solvent in the formulation may be, for example, 0 to about 10%. Some embodiments of the present invention are characterized by rapid killing, e.g., kill-on-contact, and some embodiments are characterized by residual effects, i.e., formulation remains on treated surface affecting insect control for an extended period of time. In the case of the embodiment characterized by residual effects, it should be noted that the solvent-component of the formulation is not necessary. In such embodiments of the invention, the formulation includes: water, an insect-control composition, a surfactant, and a stabilizer, such as the one described in the patent application entitled, “Formulations of Insect-Control Compositions having Residual Activity and Methods for Production and Use Thereof,” filed on May 10, 2005. Such embodiments may optionally include the solvent described herein.
Once the water-based formulation has been prepared, it may be applied to a desired area to affect insect control in that area. Once applied, it will form a thin film on the treated surfaces, adhering thereto and providing effective insect control. The formulation may be applied to the area in a variety of manners known in the art, for example, the formulation may be prepared as an aerosol or trigger spray.
In certain exemplary embodiments, the present invention encompasses a mixture of an insect control composition including one or more plant essential oils with a carrier. For example, embodiments of the present invention can include a carrier having a surface area, with the insect-control composition coated on the surface area of the carrier. The carrier may be, for example, crystals, powder, dust, granules or the like, which provides an absorption surface area for the insect-control compositions. One example of a carrier that can be used in accordance with the present invention is diatomaceous earth (DE). DE is a naturally occurring sedimentary rock that is easily crumbled into a fine powder. This powder has an abrasive feel, similar to pumice powder, and is very light, due to its high porosity. Diatomaceous earth consists of fossilized remains of diatoms, a type of hard-shelled algae.
To produce certain embodiments of the present invention, the carrier and the insect-control composition are mixed to allow the carrier to become coated with the composition. In some embodiments of the invention, after the carrier has been coated with the insect-control composition to form the formulation, the formulation can be applied to a desired area to affect insect control in that area. Because the carrier reduces the volatility of the insect-control composition, the composition will remain active in the desired area for an amount of time that is greater than the time the composition, alone, i.e., unformulated composition, would remain in the desired area. As such, the formulation continues to provide insect-control after the time by which the composition, alone, would have volatilized.
In certain embodiments, the insect control compositions can be combined with one or more synthetic pesticides such as a pyrethroid, a chloronicotinyl insecticide, and a neonicotinoid. For example, the insect control blends in one embodiment are combined with deltamethrin, clothianidin, or imidacloprid. Delatmethrin is available from AgrEvo Environmental Health, Inc., Montvale, N.J. Clothianidin and imidacloprid are available from Bayer CropScience LP, Research Triangle Park, N.C.
Embodiments of the present invention can be used to control insects by treating an area directly. For example, the area can be treated by spreading the formulation, for example, manually, automatically, with a fertilizer spreader, or the like.
The compositions of the present invention can be used to control insects by either treating a host directly, or treating an area in which the host will be located. For example, the host can be treated directly by using a cream or spray formulation, which can be applied externally or topically, e.g., to the skin of a human. A composition can be applied to the host, for example, in the case of a human, using formulations of a variety of personal products or cosmetics for use on the skin or hair. For example, any of the following can be used: fragrances, colorants, pigments, dyes, colognes, skin creams, skin lotions, deodorants, talcs, bath oils, soaps, shampoos, hair conditioners and styling agents.
The compositions of a select number of specifically contemplated embodiments of the present invention are shown in Table 1. This table lists these blends with a specific Blend Number. These blends can be used as components of other synergistic blends. In embodiments containing other blends as listed herein, Blend Numbers refer to the blends as listed in Table 1.
In some embodiments, the blend of compounds can include at least two of the group consisting of Lilac Flower Oil (LFO), D-Limonene, Thyme Oil White, and Blend 61 (see Table 1).
In some embodiments, the blend of compounds can include at least three of the group consisting of Lilac Flower Oil (LFO), D-Limonene, Thyme Oil White, and Blend 61.
In some embodiments, the blend of compounds can include Lilac Flower Oil (LFO), D-Limonene, Thyme Oil White, and Blend 61.
In some embodiments, the blend of compounds can include between 2 and 8% Lilac Flower Oil (LFO), between 60 and 99% D-Limonene, between 1 and 7% Thyme Oil White, and between 4 and 16% Blend 61.
In some embodiments, the blend of compounds can include between 4 and 5% Lilac Flower Oil (LFO), between 75 and 90% D-Limonene, between 3 and 4% Thyme Oil White, and between 8 and 12% Blend 61.
In some embodiments, the blend of compounds can include 4.40% LFO, 82.3% D-Limonene, 3.3% Thyme Oil White, and 10.0% Blend 61.
In some embodiments, the blend of compounds can include at least two of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Blend 62 (see Table 1), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include at least four of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Blend 62, Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Blend 62, Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include between 60 and 99% D-Limonene, between 1 and 6% Thyme Oil White, between 0.1 and 1.0% Linalool Coeur, between 0.4 and 1.5% Tetrahydrolinalool, between 0.01 and 0.1% Vanillin, between 0.5 and 1.5% Isopropyl myristate, between 0.3 and 1.3% Piperonal (aldehyde), between 5 and 15% Blend 62, between 0.1 and 0.9% Geraniol 60, and between 0.3 and 1.3% Triethyl Citrate.
In some embodiments, the blend of compounds can include between 75 and 90% D-Limonene, between 2.5 and 4% Thyme Oil White, between 0.5 and 0.65% Linalool Coeur, between 0.7 and 0.9% Tetrahydrolinalool, between 0.04 and 0.06% Vanillin, between 0.7 and 0.9% Isopropyl myristate, between 0.7 and 0.9% Piperonal (aldehyde), between 9 and 11% Blend 62, between 0.35 and 0.5% Geraniol 60, and between 0.7 and 0.9% Triethyl Citrate.
In some embodiments, the blend of compounds can include 82.52% D-Limonene, 3.28% Thyme Oil White, 0.57% Linalool Coeur, 0.78% Tetrahydrolinalool, 0.05% Vanillin, 0.80% Isopropyl myristate, 0.80% Piperonal (aldehyde), 9.99% Blend 62, 0.41% Geraniol 60, and 0.80% Triethyl Citrate.
In some embodiments, the blend of compounds can include at least two of the group consisting of Black Seed Oil (BSO), Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least four of the group consisting of Black Seed Oil (hereinafter referred to as BSO), Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include BSO, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 10 and 30% BSO, between 5 and 25% Linalool Coeur, between 5 and 30% Tetrahydrolinalool, between 0.8 and 3% Vanillin, between 15 and 30% Isopropyl myristate, between 4 and 10% Piperonal (aldehyde), and between 2 and 20% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 15 and 25% BSO, between 10 and 20% Linalool Coeur, between 15 and 23% Tetrahydrolinalool, between 1.5 and 2.5% Vanillin, between 20 and 25% Isopropyl myristate, between 6 and 8% Piperonal (aldehyde), and between 5 and 15% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include 21.50% BSO, 15.90% Linalool Coeur, 19.00% Tetrahydrolinalool, 1.80% Vanillin, 23.50% Isopropyl myristate, 7.80% Piperonal (aldehyde), and 10.50% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least two of the group consisting of D-Limonene, BSO, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol Fine FCC, and Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include at least four of the group consisting of D-Limonene, BSO, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol Fine FCC, and Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include D-Limonene, BSO, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol Fine FCC, and Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include between 5 and 15% D-Limonene, between 20 and 35% BSO, between 3 and 10% Linalool Coeur, between 4 and 15% Tetrahydrolinalool, between 0.2 and 1.5% Vanillin, between 5 and 15% Isopropyl myristate, between 1 and 5% Piperonal (aldehyde), between 1 and 10% Geraniol Fine FCC, and between 20 and 45% Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include between 8 and 10% D-Limonene, 24 and 28.5% BSO, 5.5 and 7.0% Linalool Coeur, between 7 and 9% Tetrahydrolinalool, between 0.7 and 0.9% Vanillin, between 8.5 and 10.5% Isopropyl myristate, between 2.8 and 3.6% Piperonal (aldehyde), between 3.8 and 5% Geraniol Fine FCC, and between 29 and 37% Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include 8.80% D-Limonene, 26.20% BSO, 6.40% Linalool Coeur, 7.80% Tetrahydrolinalool, 0.80% Vanillin, 9.50% Isopropyl myristate, 3.20% Piperonal (aldehyde), 4.30% Geraniol Fine FCC, and 33.00% Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Wintergreen Oil, Vanillin, and Isopropyl myristate.
In some embodiments, the blend of compounds can include at least three of the group consisting of Thyme Oil White, Wintergreen Oil, Vanillin, and Isopropyl myristate.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Vanillin, and Isopropyl myristate.
In some embodiments, the blend of compounds can include between 12 and 30% Thyme Oil White, between 30 and 60% Wintergreen Oil, between 0.5 and 2% Vanillin, and between 25 and 45% Isopropyl myristate.
In some embodiments, the blend of compounds can include between 18 and 23% Thyme Oil White, between 40 and 50% Wintergreen Oil, between 1 and 1.2% Vanillin, and between 30 and 37% Isopropyl myristate.
In some embodiments, the blend of compounds can include 20.50% Thyme Oil White, 45.00% Wintergreen Oil, 1.10% Vanillin, and 33.40% Isopropyl myristate.
In some embodiments, the blend of compounds can include at least one of the group consisting of D-Limonene, Thyme Oil White, and Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include at least two of the group consisting of D-Limonene, Thyme Oil White, and Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, and Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include between 40 and 70% D-Limonene, between 5 and 20% Thyme Oil White, and between 20 and 40% Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include between 50 and 62% D-Limonene, between 10.5 and 13.5% Thyme Oil White, and between 28 and 35% Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include 56.30% D-Limonene, 12.38% Thyme Oil White, and 31.32% Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include at least two of the group consisting of LFO, D-Limonene, Thyme Oil White, and Blend 61.
In some embodiments, the blend of compounds can include at least three of the group consisting of LFO, D-Limonene, Thyme Oil White, and Blend 61.
In some embodiments, the blend of compounds can include LFO, D-Limonene, Thyme Oil White, and Blend 61.
In some embodiments, the blend of compounds can include between 8 and 18% LFO, between 5 and 12% D-Limonene, between 5 and 15% Thyme Oil White, and between 55 and 80% Blend 61.
In some embodiments, the blend of compounds can include between 11.5 and 14.5% LFO, between 7.9 and 9.5% D-Limonene, between 8.5 and 10.6% Thyme Oil White, and between 61 and 76% Blend 61.
In some embodiments, the blend of compounds can include 12.94% LFO, 8.72% D-Limonene, 9.58% Thyme Oil White, and 68.76% Blend 61.
In some embodiments, the blend of compounds can include at least five of the group consisting of LFO, D-Limonene, Thyme Oil White, between Linalool Coeur, Citral, gamma-terpinene, Alpha-Pinene (98%), Alpha-Terpineol, Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include at least ten of the group consisting of LFO, D-Limonene, Thyme Oil White, between Linalool Coeur, Citral, gamma-terpinene, Alpha-Pinene (98%), Alpha-Terpineol, Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include LFO, D-Limonene, Thyme Oil White, Linalool Coeur, Citral, gamma-terpinene, Alpha-Pinene (98%), Alpha-Terpineol, Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include between 7 and 17% LFO, between 35 and 50% D-Limonene, between 5 and 15% Thyme Oil White, between 0.5 and 1.1% Linalool Coeur, between 3 and 10% Citral, between 3 and 10% gamma-terpinene, between 0.7 and 1.9% Alpha-Pinene (98%), between 2 and 6% Alpha-Terpineol, between 2 and 7% Terpinolene, between 0.5 and 2% Para-Cymene, between 1 and 2.5% Linalyl Acetate, between 1.2 and 2.5% Beta Pinene, between 0.02 and 0.3% Camphor Dextro, between 0.02 and 0.15% Terpinene 4 OL, between 1 and 3% Alpha Terpinene, between 0.4 and 1.4% Borneol L, between 0.1 and 0.7% Camphene, between 0.05 and 0.2% Decanal, between 0.04 and 0.16% Dodecanal, between 0.001 and 0.03% Fenchol Alpha, between 0.05 and 0.25% Geranyl Acetate, between 0.1 and 0.5% Isoborneol, between 0.1 and 0.4% 2-Methyl 1,3-cyclohexadiene, between 0.3 and 1.1% Myrcene, between 0.005 and 0.05% Nonanal, between 0.01 and 0.1% Octanal, and between 0.005 and 0.05% Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include between 11.5 and 14.5% LFO, between 38 and 46.5% D-Limonene, between 8.5 and 10.6% Thyme Oil White, between 0.76 and 0.92% Linalool Coeur, between 6 and 8% Citral, between 6.5 and 8% gamma-terpinene, between 1.1 and 1.5% Alpha-Pinene (98%), between 4.1 and 5.2% Alpha-Terpineol, between 3.8 and 5% Terpinolene, between 1 and 1.25% Para-Cymene, between 1.6 and 2% Linalyl Acetate, between 1.7 and 2.1% Beta Pinene, between 0.08 and 0.1% Camphor Dextro, between 0.07 and 0.09% Terpinene 4 OL, between 1.7 and 2.1% Alpha Terpinene, between 0.8 and 1.0% Borneol L, between 0.3 and 0.45% Camphene, between 0.10 and 0.14% Decanal, between 0.09 and 0.11% Dodecanal, between 0.005 and 0.015% Fenchol Alpha, between 0.1 and 0.14% Geranyl Acetate, between 0.2 and 0.35% Isoborneol, between 0.24 and 0.28% 2-Methyl 1,3-cyclohexadiene, between 0.7 and 0.85% Myrcene, between 0.015 and 0.025% Nonanal, between 0.03 and 0.05% Octanal, and between 0.015 and 0.025% Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include 12.94% LFO, 42.2% D-Limonene, 9.58% Thyme Oil White, 0.84% Linalool Coeur, 7.02% Citral, 7.23% gamma-terpinene, 1.33% Alpha-Pinene (98%), 4.68% Alpha-Terpineol, 4.33% Terpinolene, 1.11% Para-Cymene, 1.79% Linalyl Acetate, 1.93% Beta Pinene, 0.09% Camphor Dextro, 0.08% Terpinene 4 OL, 1.93% Alpha Terpinene, 0.89% Borneol L, 0.37% Camphene, 0.12% Decanal, 0.10% Dodecanal, 0.01% Fenchol Alpha, 0.12% Geranyl Acetate, 0.28% Isoborneol, 0.26% 2-Methyl 1,3-cyclohexadiene, 0.78% Myrcene, 0.02% Nonanal, 0.04% Octanal, and 0.02% Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include at least five of the group consisting of D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include at least seven of the group consisting of D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include between 5 and 15% D-Limonene, between 5 and 15% Thyme Oil White, between 50 and 85% Blend 61, between 1 and 2.5% Linalool Coeur, between 1 and 3.5% Tetrahydrolinalool, between 0.05 and 0.25% Vanillin, between 1 and 3% Isopropyl myristate, between 1 and 3.5% Piperonal (aldehyde), between 0.5 and 2% Geraniol 60, and between 1 and 3.5% Triethyl Citrate.
In some embodiments, the blend of compounds can include between 8.7 and 10.8% D-Limonene, between 7.7 and 9.4% Thyme Oil White, between 62 and 76% Blend 61, between 1.4 and 1.9% Linalool Coeur, between 2 and 2.5% Tetrahydrolinalool, between 0.13 and 0.17% Vanillin, between 2.1 and 2.55% Isopropyl myristate, between 2.1 and 2.55% Piperonal (aldehyde), between 1.08 and 1.35% Geraniol 60, and between 2.1 and 2.55% Triethyl Citrate.
In some embodiments, the blend of compounds can include 9.70% D-Limonene, 8.54% Thyme Oil White, 69.41% Blend 61, 1.66% Linalool Coeur, 2.29% Tetrahydrolinalool, 0.15% Vanillin, 2.35% Isopropyl myristate, 2.35% Piperonal (aldehyde), 1.21% Geraniol 60, and 2.35% Triethyl Citrate.
In some embodiments, the blend of compounds can include at least one of the group consisting of LFO and BSO.
In some embodiments, the blend of compounds can include LFO and BSO.
In some embodiments, the blend of compounds can include between 55 and 99% LFO and between 5 and 35% Black Seed Oil (BSO).
In some embodiments, the blend of compounds can include between 65 and 95% LFO and between 12 and 28% Black Seed Oil (BSO).
In some embodiments, the blend of compounds can include between 72 and 89% LFO and between 18 and 22% Black Seed Oil (BSO).
In some embodiments, the blend of compounds can include 80.09% LFO and 19.91% BSO.
In some embodiments, the blend of compounds can include between 35 and 65% LFO and between 35 and 65% BSO.
In some embodiments, the blend of compounds can include between 45 and 56% LFO and between 45 and 55% BSO.
In some embodiments, the blend of compounds can include 50.13% LFO and 49.87% BSO.
In some embodiments, the blend of compounds can include at least one of the group consisting of Thyme Oil White, Wintergreen Oil, and Isopropyl myristate.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Wintergreen Oil, and Isopropyl myristate.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, and Isopropyl myristate.
In some embodiments, the blend of compounds can include between 2 and 7% Thyme Oil White, between 44 and 70% Wintergreen Oil, and between 25 and 50% Isopropyl myristate.
In some embodiments, the blend of compounds can include between 4.1 and 5.2% Thyme Oil White, between 52 and 64% Wintergreen Oil, and between 33 and 42% Isopropyl myristate.
In some embodiments, the blend of compounds can include 4.60% Thyme Oil White, 57.80% Wintergreen Oil, and 37.60% Isopropyl myristate.
In some embodiments, the blend of compounds can include at least one of the group consisting of D-Limonene, Thyme Oil White, and Wintergreen Oil.
In some embodiments, the blend of compounds can include at least two of the group consisting of D-Limonene, Thyme Oil White, and Wintergreen Oil.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, and Wintergreen Oil.
In some embodiments, the blend of compounds can include between 20 and 40% D-Limonene, between 2 and 10% Thyme Oil White, and between 50 and 80% Wintergreen Oil.
In some embodiments, the blend of compounds can include between 25 and 31% D-Limonene, between 4 and 5% Thyme Oil White, and between 60 and 72% Wintergreen Oil.
In some embodiments, the blend of compounds can include 28.24% D-Limonene, 4.44% Thyme Oil White, and 67.32% Wintergreen Oil.
In some embodiments, the blend of compounds can include at least three of the group consisting of D-Limonene, Linalool Coeur, Tetrehydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol 60.
In some embodiments, the blend of compounds can include at least five of the group consisting of D-Limonene, Linalool Coeur, Tetrehydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol 60.
In some embodiments, the blend of compounds can include D-Limonene, Linalool Coeur, Tetrehydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol 60.
In some embodiments, the blend of compounds can include between 7 and 15% D-Limonene, between 9 and 20% Linalool Coeur, between 15 and 32% Tetrehydrolinalool, between 1.5 and 3.2% Vanillin, between 15 and 42% Isopropyl myristate, between 5 and 16% Piperonal (aldehyde), and between 5 and 16% Geraniol 60.
In some embodiments, the blend of compounds can include between 8.9 and 11% D-Limonene, between 12.5 and 16% Linalool Coeur, between 21.5 and 27% Tetrehydrolinalool, between 2.2 and 2.7% Vanillin, between 25 and 32% Isopropyl myristate, between 9 and 11% Piperonal (aldehyde), and between 9 and 11.4% Geraniol 60.
In some embodiments, the blend of compounds can include 9.90% D-Limonene, 14.14% Linalool Coeur, 24.29% Tetrehydrolinalool, 2.48% Vanillin, 28.92% Isopropyl myristate, 9.97% Piperonal (aldehyde), and 10.30% Geraniol 60.
In some embodiments, the blend of compounds can include at least three of the group consisting of D-Limonene, Black Seed Oil, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol Fine FCC, and Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include at least six of the group consisting of D-Limonene, Black Seed Oil, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol Fine FCC, and Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include D-Limonene, Black Seed Oil, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol Fine FCC, and Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include between 8.4 and 10.2% D-Limonene, between 29 and 35% Black Seed Oil, between 8.5 and 10.6% Linalool Coeur, between 10 and 12.8% Tetrahydrolinalool, between 1 and 1.35% Vanillin, between 12.5 and 15.5% Isopropyl myristate, between 4.2 and 5.3% Piperonal (aldehyde), between 5.7 and 6.9% Geraniol Fine FCC, and between 10.5 and 13% Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include between 8.4 and 10.2% D-Limonene, between 29 and 35% Black Seed Oil, between 8.5 and 10.6% Linalool Coeur, between 10 and 12.8% Tetrahydrolinalool, between 1 and 1.35% Vanillin, between 12.5 and 15.5% Isopropyl myristate, between 4.2 and 5.3% Piperonal (aldehyde), between 5.7 and 6.9% Geraniol Fine FCC, and between 10.5 and 13% Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include 9.30% D-Limonene, 31.92% Black Seed Oil, 9.48% Linalool Coeur, 11.40% Tetrahydrolinalool, 1.16% Vanillin, 14.04% Isopropyl myristate, 4.68% Piperonal (aldehyde), 6.29% Geraniol Fine FCC, and 11.72% Methyl Salicylate 98% Nat.
In some embodiments, the blend of compounds can include at least five of the group consisting of D-Limonene, Black Seed Oil, Linalool Coeur, Tetrahydrolinalool, Vanillin, Mineral Oil White (USP), Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least seven of the group consisting of D-Limonene, Black Seed Oil, Linalool Coeur, Tetrahydrolinalool, Vanillin, Mineral Oil White (USP), Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include D-Limonene, Black Seed Oil, Linalool Coeur, Tetrahydrolinalool, Vanillin, Mineral Oil White (USP), Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 5 and 15% D-Limonene, between 16 and 35% Black Seed Oil, between 5 and 15% Linalool Coeur, between 6 and 15% Tetrahydrolinalool, between 0.5 and 2% Vanillin, between 10 and 19% Mineral Oil White (USP), between 10 and 20% Isopropyl myristate, between 3 and 6% Piperonal (aldehyde), and between 4 and 8.5% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 8.7 and 10.4% D-Limonene, between 23 and 30% Black Seed Oil, between 8.9 and 10.8% Linalool Coeur, between 10.7 and 12.9% Tetrahydrolinalool, between 1.05 and 1.35% Vanillin, between 13.4 and 16.5% Mineral Oil White (USP), between 13 and 16% Isopropyl myristate, between 4.4 and 5.4% Piperonal (aldehyde), and between 5.9 and 7.2% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include 9.63% D-Limonene, 26.66% BSO, 9.82% Linalool Coeur, 11.81% Tetrahydrolinalool, 1.20% Vanillin, 14.97% Mineral Oil White (USP), 14.54% Isopropyl myristate, 4.85% Piperonal (aldehyde), and 6.51% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least three of the group consisting of BSO, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least five of the group consisting of BSO, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include BSO, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 40 and 65% BSO, between 5 and 15% Linalool Coeur, between 5 and 18% Tetrahydrolinalool, between 0.5 and 2% Vanillin, between 8 and 18% Isopropyl myristate, between 3 and 6% Piperonal (aldehyde), and between 5 and 8.5% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 47 and 58% BSO, between 8.7 and 10.5% Linalool Coeur, between 10 and 13% Tetrahydrolinalool, between 1.0 and 1.25% Vanillin, between 12.8 and 15.3% Isopropyl myristate, between 4.3 and 5.2% Piperonal (aldehyde), and between 5.7 and 7% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include 52.28% BSO, 9.63% Linalool Coeur, 11.57% Tetrahydrolinalool, 1.12% Vanillin, 14.26% Isopropyl myristate, 4.75% Piperonal (aldehyde), and 6.38% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Wintergreen Oil, Vanillin, and Isopropyl myristate.
In some embodiments, the blend of compounds can include at least three of the group consisting of Thyme Oil White, Wintergreen Oil, Vanillin, and Isopropyl myristate.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Vanillin, and Isopropyl myristate.
In some embodiments, the blend of compounds can include between 25 and 50% Thyme Oil White, between 15 and 32% Wintergreen Oil, between 0.5 and 2% Vanillin, and between 25 and 45% Isopropyl myristate.
In some embodiments, the blend of compounds can include between 34 and 42.5% Thyme Oil White, between 22 and 27.5% Wintergreen Oil, between 1.0 and 1.22% Vanillin, and between 32 and 40% Isopropyl myristate.
In some embodiments, the blend of compounds can include 38.21% Thyme Oil White, 24.79% Wintergreen Oil, 1.11% Vanillin, and 35.89% Isopropyl myristate.
In some embodiments, the blend of compounds can include at least one of the group consisting of Thyme Oil White, Wintergreen Oil, and Isopropyl myristate.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Wintergreen Oil, and Isopropyl myristate.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, and Isopropyl myristate.
In some embodiments, the blend of compounds can include between 30 and 50% Thyme Oil White, between 15 and 35% Wintergreen Oil, and between 25 and 45% Isopropyl myristate.
In some embodiments, the blend of compounds can include between 35 and 44% Thyme Oil White, between 22 and 27.2% Wintergreen Oil, and between 32 and 40% Isopropyl myristate.
In some embodiments, the blend of compounds can include 39.24% Thyme Oil White, 24.82% Wintergreen Oil, and 35.94% Isopropyl myristate.
In some embodiments, the blend of compounds can include at least one of the group consisting of Thyme Oil White, Isopropyl myristate, and Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Isopropyl myristate, and Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include Thyme Oil White, Isopropyl myristate, and Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include between 30 and 50% Thyme Oil White, between 25 and 45% Isopropyl myristate, and between 17 and 32% Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include between 35 and 44% Thyme Oil White, between 32 and 40% Isopropyl myristate, and between 22 and 27.2% Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include 39.24% Thyme Oil White, 35.94% Isopropyl myristate, and 24.82% Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include at least four of the group consisting of D-Limonene, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Piperonyl Alcohol, and Blend 62.
In some embodiments, the blend of compounds can include at least six of the group consisting of D-Limonene, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Piperonyl Alcohol, and Blend 62.
In some embodiments, the blend of compounds can include D-Limonene, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Piperonyl Alcohol, and Blend 62.
In some embodiments, the blend of compounds can include between 10 and 20% D-Limonene, between 2 and 4% Linalool Coeur, between 3.15 and 3.85% Tetrahydrolinalool, between 0.18 and 0.22% Vanillin, between 3.05 and 3.75% Isopropyl myristate, between 3.2 and 4.0% Piperonal (aldehyde), between 1.25 and 1.55% Piperonyl Alcohol, and between 63 and 78% Blend 62.
In some embodiments, the blend of compounds can include between 13.3 and 16.3% D-Limonene, between 2.6 and 3.2% Linalool Coeur, between 3.15 and 3.85% Tetrahydrolinalool, between 0.18 and 0.22% Vanillin, between 3.05 and 3.75% Isopropyl myristate, between 3.2 and 4.0% Piperonal (aldehyde), between 1.25 and 1.55% Piperonyl Alcohol, and between 63 and 78% Blend 62.
In some embodiments, the blend of compounds can include 14.8% D-Limonene, 2.9% Linalool Coeur, 3.5% Tetrahydrolinalool, 0.2% Vanillin, 3.4% Isopropyl myristate, 3.6% Piperonal (aldehyde), 1.4% Piperonyl Alcohol, and 70.2% Blend 62.
In some embodiments, the blend of compounds can include at least four of the group consisting of D-Limonene, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Piperonyl Alcohol, and Blend 62.
In some embodiments, the blend of compounds can include at least six of the group consisting of D-Limonene, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Piperonyl Alcohol, and Blend 62.
In some embodiments, the blend of compounds can include D-Limonene, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Piperonyl Alcohol, and Blend 62.
In some embodiments, the blend of compounds can include between 50 and 85% D-Limonene, between 2 and 4% Linalool Coeur, between 3 and 5% Tetrahydrolinalool, between 0.1 and 0.3% Vanillin, between 2.5 and 4.55% Isopropyl myristate, between 2.5 and 4.5% Piperonal (aldehyde), between 1 and 2% Piperonyl Alcohol, and between 10 and 20% Blend 62.
In some embodiments, the blend of compounds can include between 62 and 77% D-Limonene, between 2.6 and 3.2% Linalool Coeur, between 3.15 and 3.85% Tetrahydrolinalool, between 0.18 and 0.22% Vanillin, between 3.05 and 3.75% Isopropyl myristate, between 3.25 and 3.95% Piperonal (aldehyde), between 1.25 and 1.55% Piperonyl Alcohol, and between 13.5 and 16.7% Blend 62.
In some embodiments, the blend of compounds can include 69.8% D-Limonene, 2.9% Linalool Coeur, 3.5% Tetrahydrolinalool, 0.2% Vanillin, 3.4% Isopropyl myristate, 3.6% Piperonal (aldehyde), 1.4% Piperonyl Alcohol, and 15.2% Blend 62.
In some embodiments, the blend of compounds can include at least three of the group consisting of Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Piperonyl Alcohol, and Blend 62.
In some embodiments, the blend of compounds can include at least five of the group consisting of Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Piperonyl Alcohol, and Blend 62.
In some embodiments, the blend of compounds can include Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Piperonyl Alcohol, and Blend 62.
In some embodiments, the blend of compounds can include between 4 and 8% Linalool Coeur, between 5 and 9% Tetrahydrolinalool, between 0.2 and 0.6% Vanillin, between 4 and 9% Isopropyl myristate, between 4 and 9% Piperonal (aldehyde), between 2 and 4% Piperonyl Alcohol, and between 55 and 86% Blend 62.
In some embodiments, the blend of compounds can include between 5.1 and 6.3% Linalool Coeur, between 6.2 and 7.6% Tetrahydrolinalool, between 0.36 and 0.44% Vanillin, between 6.1 and 7.5% Isopropyl myristate, between 6.4 and 7.9% Piperonal (aldehyde), between 2.6 and 3.2% Piperonyl Alcohol, and between 63 and 78% Blend 62.
In some embodiments, the blend of compounds can include 5.7% Linalool Coeur, 6.9% Tetrahydrolinalool, 0.4% Vanillin, 6.8% Isopropyl myristate, 7.1% Piperonal (aldehyde), 2.9% Piperonyl Alcohol, and 70.2% Blend 62.
In some embodiments, the blend of compounds can include at least one of the group consisting of LFO, D-Limonene, and Thyme Oil White.
In some embodiments, the blend of compounds can include at least two of the group consisting of LFO, D-Limonene, and Thyme Oil White.
In some embodiments, the blend of compounds can include LFO, D-Limonene, and Thyme Oil White.
In some embodiments, the blend of compounds can include between 30 and 55% LFO, between 20 and 35% D-Limonene, and between 20 and 40% Thyme Oil White.
In some embodiments, the blend of compounds can include between 37 and 45.5% LFO, between 25 and 31% D-Limonene, and between 27.5 and 34% Thyme Oil White.
In some embodiments, the blend of compounds can include 41.4% LFO, 27.9% D-Limonene, and 30.7% Thyme Oil White.
In some embodiments, the blend of compounds can include at least one of the group consisting of D-Limonene, Thyme Oil White, and Blend 59.
In some embodiments, the blend of compounds can include at least two of the group consisting of D-Limonene, Thyme Oil White, and Blend 59.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, and Blend 59.
In some embodiments, the blend of compounds can include between 20 and 35% D-Limonene, between 23 and 37% Thyme Oil White, and between 33 and 52% Blend 59.
In some embodiments, the blend of compounds can include between 24 and 30% D-Limonene, between 27 and 33% Thyme Oil White, and between 38 and 47% Blend 59.
In some embodiments, the blend of compounds can include 27.35% D-Limonene, 30.08% Thyme Oil White, and 42.57% Blend 59.
In some embodiments, the blend of compounds can include at least five of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include at least seven of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include between 20 and 35% D-Limonene, between 23 and 37% Thyme Oil White, between 4 and 8% Linalool Coeur, between 6 and 9.5% Tetrahydrolinalool, between 0.3 and 0.7% Vanillin, between 6 and 10% Isopropyl myristate, between 6 and 10% Piperonal (aldehyde), between 3 and 5.5% Geraniol 60, and between 6.5 and 9.5% Triethyl Citrate.
In some embodiments, the blend of compounds can include between 24 and 31% D-Limonene, between 27 and 33% Thyme Oil White, between 5.1 and 6.3% Linalool Coeur, between 7.1 and 8.8% Tetrahydrolinalool, between 0.45 and 0.55% Vanillin, between 7.3 and 8.9% Isopropyl myristate, between 7.3 and 8.9% Piperonal (aldehyde), between 3.8 and 4.6% Geraniol 60, and between 7.3 and 8.9% Triethyl Citrate.
In some embodiments, the blend of compounds can include 27.4% D-Limonene, 30.1% Thyme Oil White, 5.7% Linalool Coeur, 7.9% Tetrahydrolinalool, 0.5% Vanillin, 8.1% Isopropyl myristate, 8.1% Piperonal (aldehyde), 4.2% Geraniol 60, and 8.1% Triethyl Citrate.
In some embodiments, the blend of compounds can include at least one of the group consisting of LFO, D-Limonene, and Thyme Oil White.
In some embodiments, the blend of compounds can include at least two of the group consisting of LFO, D-Limonene, and Thyme Oil White.
In some embodiments, the blend of compounds can include LFO, D-Limonene, and Thyme Oil White.
In some embodiments, the blend of compounds can include between 34 and 50% LFO, between 20 and 35% D-Limonene, and between 23 and 36% Thyme Oil White.
In some embodiments, the blend of compounds can include between 38 and 47% LFO, between 24 and 31% D-Limonene, and between 27 and 33% Thyme Oil White.
In some embodiments, the blend of compounds can include 42.6% LFO, 27.35% D-Limonene, and 30.08% Thyme Oil White.
In some embodiments, the blend of compounds can include at least three of the group consisting of D-Limonene, Thyme Oil White, Benzyl Alcohol, Isopar M, Water, Blend 59, and 10% SLS Blend.
In some embodiments, the blend of compounds can include at least seven of the group consisting of D-Limonene, Thyme Oil White, Benzyl Alcohol, Isopar M, Water, Blend 59, and 10% SLS Blend.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Benzyl Alcohol, Isopar M, Water, Blend 59, and 10% SLS Blend.
In some embodiments, the blend of compounds can include between 3 and 5.5% D-Limonene, between 3 and 6% Thyme Oil White, between 10 and 22% Benzyl Alcohol, between 14 and 27% Isopar M, between 35 and 53% Water, between 5 and 8% Blend 59, and between 2 and 4% of 10% SLS Blend (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include between 3.6 and 4.45% D-Limonene, between 4 and 4.9% Thyme Oil White, between 15 and 18.4% Benzyl Alcohol, between 18 and 23.5% Isopar M, between 41 and 49% Water, between 5.7 and 7% Blend 59, and between 2.8% and 3.5% of 10% SLS Blend (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include 4.03% D-Limonene, 4.43% Thyme Oil White, 16.61% Benzyl Alcohol, 20.95% Isopar M, 44.53% Water, 6.27% Blend 59, and 3.18% of 10% SLS Blend (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include at least seven of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, Triethyl Citrate, Benzyl Alcohol, Isopar M, Water, and 10% SLS Blend (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include at least nine of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, Triethyl Citrate, Benzyl Alcohol, Isopar M, Water, and 10% SLS Blend (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, Triethyl Citrate, Benzyl Alcohol, Isopar M, Water, and 10% SLS Blend (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include between 3 and 4% D-Limonene, between 3 and 5% Thyme Oil White, between 0.5 and 1.2% Linalool Coeur, between 0.9 and 1.6% Tetrahydrolinalool, between 0.04 and 0.1% Vanillin, between 0.8 and 1.5% Isopropyl myristate, between 0.8 and 2% Piperonal (aldehyde), between 0.3 and 0.8% Geraniol 60, between 0.8 and 1.6% Triethyl Citrate, between 12 and 21% Benzyl Alcohol, between 14 and 28% Isopar M, between 35 and 53% Water, and between 2.4 and 4% of 10% SLS Blend (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include between 3.6 and 4.45% D-Limonene, 4.0 and 4.75% Thyme Oil White, between 0.76 and 0.92% Linalool Coeur, between 1.05 and 1.27% Tetrahydrolinalool, between 0.063 and 0.077% Vanillin, between 1.05 and 1.33% Isopropyl myristate, between 1.05 and 1.33% Piperonal (aldehyde), between 0.56 and 0.68% Geraniol 60, between 1.05 and 1.33% Triethyl Citrate, between 15 and 18% Benzyl Alcohol, between 18 and 24.2% Isopar M, between 40 and 49% Water, and between 2.85 and 3.5% of 10% SLS Blend (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include 4.03% D-Limonene, 4.43% Thyme Oil White, 0.84% Linalool Coeur, 1.16% Tetrahydrolinalool, 0.07% Vanillin, 1.19% Isopropyl myristate, 1.19% Piperonal (aldehyde), 0.62% Geraniol 60, 1.19% Triethyl Citrate, 16.61% Benzyl Alcohol, 20.95% Isopar M, 44.53% Water, and 3.18% of 10% SLS Blend (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include at least one of the group consisting of D-Limonene, Thyme Oil White, and Blend 59.
In some embodiments, the blend of compounds can include at least two of the group consisting of D-Limonene, Thyme Oil White, and Blend 59.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, and Blend 59.
In some embodiments, the blend of compounds can include between 20 and 35% D-Limonene, between 22 and 37% Thyme Oil White, and between 34 and 51% Blend 59.
In some embodiments, the blend of compounds can include between 24 and 31% D-Limonene, between 27 and 33% Thyme Oil White, and between 38 and 47% Blend 59.
In some embodiments, the blend of compounds can include 27.35% D-Limonene, 30.08% Thyme Oil White, and 42.57% Blend 59.
In some embodiments, the blend of compounds can include at least two to five of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include at least six to eight of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include between 20 and 40% D-Limonene, between 20 and 40% Thyme Oil White, between 2.5 and 10% Linalool Coeur, between 4 and 12% Tetrahydrolinalool, between 0.2 and 1.0% Vanillin, between 5 and 12 Isopropyl myristate, between 5 and 12% Piperonal (aldehyde), between 2 and 6% Geraniol 60, and between 5 and 15% Triethyl Citrate.
In some embodiments, the blend of compounds can include between 24 and 31% D-Limonene, between 27 and 33% Thyme Oil White, between 5.2 and 6.4% Linalool Coeur, between 7 and 8.8% Tetrahydrolinalool, between 0.45 and 0.55% Vanillin, between 7.2 and 8.9% Isopropyl myristate, between 7.2 and 8.9% Piperonal (aldehyde), between 3.7 and 4.6% Geraniol 60, and between 7.3 and 9.0% Triethyl Citrate.
In some embodiments, the blend of compounds can include 27.35% D-Limonene, 30.08% Thyme Oil White, 5.73% Linalool Coeur, 7.88% Tetrahydrolinalool, 0.50% Vanillin, 8.08% Isopropyl myristate, 8.09% Piperonal (aldehyde), 4.18% Geraniol 60, and 8.11% Triethyl Citrate.
In some embodiments, the blend of compounds can include at least two of the group consisting of Lilac Flower Oil, D-Limonene, Thyme Oil White, and Blend 62.
In some embodiments, the blend of compounds can include at least three of the group consisting of Lilac Flower Oil, D-Limonene, Thyme Oil White, and Blend 62.
In some embodiments, the blend of compounds can include Lilac Flower Oil, D-Limonene, Thyme Oil White, and Blend 62.
In some embodiments, the blend of compounds can include between 2 and 8% Lilac Flower Oil, between 60 and 95% D-Limonene, between 1.5 and 6% Thyme Oil White, and between 5 and 16% Blend 62.
In some embodiments, the blend of compounds can include between 4 and 4.9% Lilac Flower Oil, between 76 and 91% D-Limonene, between 2.9 and 3.65% Thyme Oil White, and between 9 and 11% Blend 62.
In some embodiments, the blend of compounds can include 4.4% Lilac Flower Oil, 82.3% D-Limonene, 3.3% Thyme Oil White, and 10.0% Blend 62.
In some embodiments, the blend of compounds can include at least two of the group consisting of Lilac Flower Oil, D-Limonene, Thyme Oil White, and Blend 62.
In some embodiments, the blend of compounds can include at least three of the group consisting of Lilac Flower Oil, D-Limonene, Thyme Oil White, and Blend 62.
In some embodiments, the blend of compounds can include Lilac Flower Oil, D-Limonene, Thyme Oil White, and Blend 62.
In some embodiments, the blend of compounds can include between 6 and 20% Lilac Flower Oil, between 5 and 15% D-Limonene, between 5 and 20% Thyme Oil White, and between 45 and 85% Blend 62.
In some embodiments, the blend of compounds can include between 11.7 and 14.2% Lilac Flower Oil, between 7.9 and 9.6% D-Limonene, between 8.7 and 10.6% Thyme Oil White, and between 61 and 76% Blend 62.
In some embodiments, the blend of compounds can include 12.94% Lilac Flower Oil, 8.72% D-Limonene, 9.58% Thyme Oil White, and 68.76% Blend 62.
In some embodiments, the blend of compounds can include at least two to five of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Piperonal (aldehyde), Blend 62, Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include at least six to eight of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Piperonal (aldehyde), Blend 62, Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Piperonal (aldehyde), Blend 62, Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include between 5 and 15% D-Limonene, between 4 and 12% Thyme Oil White, between 0.5 and 4% Linalool Coeur, between 1 and 5% Tetrahydrolinalool, between 0.01 and 0.5% Vanillin, between 1 and 5% Piperonal (aldehyde), between 50 and 90% Blend 62, between 0.5 and 3% Geraniol 60, and between 1 and 5% Triethyl Citrate.
In some embodiments, the blend of compounds can include between 8.8 and 10.8% D-Limonene, between 7.7 and 9.5% Thyme Oil White, between 1.53 and 1.87% Linalool Coeur, between 2.1 and 2.5% Tetrahydrolinalool, between 0.09 and 0.11% Vanillin, between 2.15 and 2.65% Piperonal (aldehyde), between 62 and 77% Blend 62, between 1.05 and 1.35% Geraniol 60, and between 2.15 and 2.55% Triethyl Citrate.
In some embodiments, the blend of compounds can include 9.8% D-Limonene, 8.6% Thyme Oil White, 1.7% Linalool Coeur, 2.3% Tetrahydrolinalool, 0.1% Vanillin, 2.4% Piperonal (aldehyde), 69.3% Blend 62, 1.2% Geraniol 60, and 2.4% Triethyl Citrate.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Wintergreen Oil, and Isopropyl myristate.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, and Isopropyl myristate.
In some embodiments, the blend of compounds can include between 15 and 30% Thyme Oil White, between 30 and 60% Wintergreen Oil, and between 20 and 50% Isopropyl myristate.
In some embodiments, the blend of compounds can include between 18 and 23% Thyme Oil White, between 40 and 50% Wintergreen Oil, and between 31 and 38% Isopropyl myristate.
In some embodiments, the blend of compounds can include 20.6% Thyme Oil White, 45.1% Wintergreen Oil, and 34.3% Isopropyl myristate.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Black Seed Oil, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least five or six of the group consisting of Black Seed Oil, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include Black Seed Oil, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 15 and 35% Black Seed Oil, between 10 and 22% Linalool Coeur, between 12 and 28% Tetrahydrolinalool, between 0.5 to 4% Vanillin, between 15 and 32% Isopropyl myristate, between 4 and 12% Piperonal (aldehyde), and between 5 and 15% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 19 and 24% Black Seed Oil, between 14 and 17.5% Linalool Coeur, between 17 and 21% Tetrahydrolinalool, between 1.7 and 2.1% Vanillin, between 21 and 26% Isopropyl myristate, between 7 and 8.6% Piperonal (aldehyde), and between 9.5 and 11.6% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include 21.5% Black Seed Oil, 15.8% Linalool Coeur, 19.0% Tetrahydrolinalool, 1.9% Vanillin, 23.4% Isopropyl myristate, 7.8% Piperonal (aldehyde), and 10.5% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least two of the group consisting of Linalool Coeur, Soy Bean Oil, Thymol (crystal), and Alpha-Pinene (98%).
In some embodiments, the blend of compounds can include at least three of the group consisting of Linalool Coeur, Soy Bean Oil, Thymol (crystal), and Alpha-Pinene (98%).
In some embodiments, the blend of compounds can include Linalool Coeur, Soy Bean Oil, Thymol (crystal), and Alpha-Pinene (98%).
In some embodiments, the blend of compounds can include between 4 and 10% Linalool Coeur, between 16 and 32% Soy Bean Oil, between 25 and 50% Thymol (crystal), and between 2 and 8% Alpha-Pinene (98%).
In some embodiments, the blend of compounds can include between 6 and 7.4% Linalool Coeur, between 22 and 26% Soy Bean Oil, between 33 and 41% Thymol (crystal), and between 3.3 and 4.2% Alpha-Pinene (98%).
In some embodiments, the blend of compounds can include 6.63% Linalool Coeur, 24.03% Soy Bean Oil, 37.17% Thymol (crystal), and 3.78% Alpha-Pinene (98%).
In some embodiments, the blend of compounds can include at least two of the group consisting of Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), and Para-Cymene.
In some embodiments, the blend of compounds can include at least three of the group consisting of Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), and Para-Cymene.
In some embodiments, the blend of compounds can include Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), and Para-Cymene.
In some embodiments, the blend of compounds can include between 5 and 12% Linalool Coeur, between 30 and 65% Thymol (crystal), between 2.5 and 8% Alpha-Pinene (98%), and between 25 and 55% Para-Cymene.
In some embodiments, the blend of compounds can include between 7.9 and 9.6% Linalool Coeur, between 43 and 53% Thymol (crystal), between 4.5 and 5.5% Alpha-Pinene (98%), and between 33 and 42% Para-Cymene.
In some embodiments, the blend of compounds can include 8.73% Linalool Coeur, 48.93% Thymol (crystal), 4.97% Alpha-Pinene (98%), and 37.37% Para-Cymene.
In some embodiments, the blend of compounds can include at least two to five of the group consisting of D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least six to eight of the group consisting of D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 5 and 12% D-Limonene, between 6 and 14% Thyme Oil White, between 45 and 85% Blend 61, between 1 and 6% Linalool Coeur, between 1.5 and 8% Tetrahydrolinalool, between 0.1 and 1.0% Vanillin, between 1 and 8% Isopropyl myristate, between 0.5 and 3% Piperonal (aldehyde), and between 0.5 and 4% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 7.9 and 9.5% D-Limonene, between 8.6 and 10.5% Thyme Oil White, between 61 and 76% Blend 61, between 2.3 and 2.9% Linalool Coeur, between 2.8 and 3.4% Tetrahydrolinalool, between 0.29 and 0.35% Vanillin, between 3.4 and 4.3% Isopropyl myristate, between 1.16 and 1.42% Piperonal (aldehyde), and between 1.5 and 1.9% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include 8.72% D-Limonene, 9.58% Thyme Oil White, 68.76% Blend 61, 2.61% Linalool Coeur, 3.13% Tetrahydrolinalool, 0.32% Vanillin, 3.86% Isopropyl myristate, 1.29% Piperonal (aldehyde), and 1.73% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least two for the group consisting of D-Limonene, Thyme Oil White, and Methyl Salicylate (Synth.).
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, and Methyl Salicylate (Synth.).
In some embodiments, the blend of compounds can include between 20 and 42% D-Limonene, between 2 and 8% Thyme Oil White, and between 45 and 85% Methyl Salicylate (Synth.).
In some embodiments, the blend of compounds can include between 25 and 31% D-Limonene, between 4 and 4.9% Thyme Oil White, and between 60 and 74% Methyl Salicylate (Synth.).
In some embodiments, the blend of compounds can include 28.24% D-Limonene, 4.44% Thyme Oil White, and 67.32% Methyl Salicylate (Synth.).
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Isopropyl Myristate, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include Thyme Oil White, Isopropyl Myristate, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include between 12 and 30% Thyme Oil White, between 20 and 50% Isopropyl Myristate, and between 30 and 60% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include between 18 and 23% Thyme Oil White, between 31 and 37.8% Isopropyl Myristate, and between 40 and 50% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include 20.6% Thyme Oil White, 34.3% Isopropyl Myristate, and 45.1% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include at least two of the group consisting of Castor Oil hydrogenated—PEO40, Lemon Grass Oil—India, and Blend 7.
In some embodiments, the blend of compounds can include Castor Oil hydrogenated—PEO40, Lemon Grass Oil—India, and Blend 7.
In some embodiments, the blend of compounds can include between 35 and 70% Castor Oil hydrogenated—PEO40, between 15 and 35% Lemon Grass Oil—India, and between 15 and 35% Blend 7.
In some embodiments, the blend of compounds can include between 49 and 60% Castor Oil hydrogenated (PEO40), between 20.7 and 25% Lemon Grass Oil (India), and between 20 and 24.6% Blend 7.
In some embodiments, the blend of compounds can include 54.63% Castor Oil hydrogenated—PEO40, 22.93% Lemon Grass Oil—India, and 22.44% Blend 7.
In some embodiments, the blend of compounds can include at least two of the group consisting of Lilac Flower Oil, D-Limonene, Thyme Oil White, and Black Seed Oil.
In some embodiments, the blend of compounds can include at least three of the group consisting of Lilac Flower Oil, D-Limonene, Thyme Oil White, and Black Seed Oil.
In some embodiments, the blend of compounds can include Lilac Flower Oil, D-Limonene, Thyme Oil White, and Black Seed Oil.
In some embodiments, the blend of compounds can include between 10 and 25% Lilac Flower Oil, between 45 and 90% D-Limonene, between 5 and 18% Thyme Oil White, and between 2.5 and 8% Black Seed Oil.
In some embodiments, the blend of compounds can include between 14.5 and 17.8% Lilac Flower Oil, between 60 and 75% D-Limonene, between 10 and 12.4% Thyme Oil White, and between 4.4 and 5.4% Black Seed Oil.
In some embodiments, the blend of compounds can include 16.18% Lilac Flower Oil, 67.81% D-Limonene, 11.18% Thyme Oil White, and 4.83% Black Seed Oil.
In some embodiments, the blend of compounds can include at least two of the group consisting of Lilac Flower Oil (LFO), D-Limonene, Thyme Oil White, and Black Seed Oil (BSO).
In some embodiments, the blend of compounds can include at least three of the group consisting of Lilac Flower Oil (LFO), D-Limonene, Thyme Oil White, and Black Seed Oil (BSO).
In some embodiments, the blend of compounds can include Lilac Flower Oil (LFO), D-Limonene, Thyme Oil White, and Black Seed Oil (BSO).
In some embodiments, the blend of compounds can include between 10 and 25% Lilac Flower Oil (LFO), between 45 and 90% D-Limonene, between 6 and 16% Thyme Oil White, and between 3 and 9% Black Seed Oil (BSO).
In some embodiments, the blend of compounds can include between 14.4 and 17.6% Lilac Flower Oil (LFO), between 60 and 75% D-Limonene, between 10.4 and 12.7% Thyme Oil White, and between 4.8 and 5.8% Black Seed Oil (BSO).
In some embodiments, the blend of compounds can include 16.01% LFO, 67.09% D-Limonene, 11.59% Thyme Oil White, and 5.31% BSO.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, Triethyl Citrate, and Isopar M.
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, Triethyl Citrate, and Isopar M.
In some embodiments, the blend of compounds can include at least eight to ten of the group consisting of D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, Triethyl Citrate, and Isopar M.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, Triethyl Citrate, and Isopar M.
In some embodiments, the blend of compounds can include between 5 and 12% D-Limonene, between 5 and 15% Thyme Oil White, between 40 and 70% Blend 61, between 0.5 and 4% Linalool Coeur, between 1 and 5% Tetrahydrolinalool, between 0.05 and 0.5% Vanillin, between 1 and 5% Isopropyl myristate, between 1 and 5% Piperonal (aldehyde), between 0.5 and 4% Geraniol 60, between 1 and 6% Triethyl Citrate, and between 8 and 18% Isopar M.
In some embodiments, the blend of compounds can include between 8 and 9.6% D-Limonene, between 8.8 and 10.6% Thyme Oil White, between 50 and 60% Blend 61, between 1.5 and 1.85% Linalool Coeur, between 2.1 and 2.5% Tetrahydrolinalool, between 0.135 and 0.165% Vanillin, between 2.1 and 2.5% Isopropyl myristate, between 2.1 and 2.6% Piperonal (aldehyde), between 1.1 and 1.35% Geraniol 60, between 2.1 and 2.6% Triethyl Citrate, and between 12.5 and 15.3% Isopar M.
In some embodiments, the blend of compounds can include 8.83% D-Limonene, 9.71% Thyme Oil White, 55.17% Blend 61, 1.68% Linalool Coeur, 2.31% Tetrahydrolinalool, 0.15% Vanillin, 2.37% Isopropyl myristate, 2.37% Piperonal (aldehyde), 1.23% Geraniol 60, 2.38% Triethyl Citrate, and 13.80% Isopar M.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include at least eight or nine of the group consisting of D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Blend 61, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include between 5 and 15% D-Limonene, between 5 and 15% Thyme Oil White, between 45 and 85% Blend 61, between 0.8 and 3% Linalool Coeur, between 1 and 5% Tetrahydrolinalool, between 0.5 and 0.5% Vanillin, between 1 and 5% Isopropyl myristate, between 1 and 5% Piperonal (aldehyde), between 0.5 and 2.5% Geraniol 60, and between 1 and 5% Triethyl Citrate.
In some embodiments, the blend of compounds can include between 7.9 and 9.5% D-Limonene, between 8.6 and 10.5% Thyme Oil White, between 62 and 76% Blend 61, between 1.5 and 1.82% Linalool Coeur, between 2 and 2.5% Tetrahydrolinalool, between 0.14 and 0.16% Vanillin, between 2.1 and 2.6% Isopropyl myristate, between 2.1 and 2.6% Piperonal (aldehyde), between 1.1 and 1.32% Geraniol 60, and between 2.1 and 2.6% Triethyl Citrate.
In some embodiments, the blend of compounds can include 8.72% D-Limonene, 9.59% Thyme Oil White, 69.35% Blend 61, 1.66% Linalool Coeur, 2.28% Tetrahydrolinalool, 0.15% Vanillin, 2.34% Isopropyl myristate, 2.34% Piperonal (aldehyde), 1.21% Geraniol 60, and 2.35% Triethyl Citrate.
In some embodiments, the blend of compounds can include at least two of the group consisting of LFO, D-Limonene, Thyme Oil White, and Blend 61.
In some embodiments, the blend of compounds can include at least three of the group consisting of LFO, D-Limonene, Thyme Oil White, and Blend 61.
In some embodiments, the blend of compounds can include LFO, D-Limonene, Thyme Oil White, and Blend 61.
In some embodiments, the blend of compounds can include between 10 and 22% LFO, between 50 and 85% D-Limonene, between 2.5 and 8% Thyme Oil White, and between 5 and 16% Blend 61.
In some embodiments, the blend of compounds can include between 14.7 and 18% LFO, between 61 and 76% D-Limonene, between 4.8 and 5.9% Thyme Oil White, and between 9 and 11% Blend 61.
In some embodiments, the blend of compounds can include 16.31% LFO, 68.34% D-Limonene, 5.37% Thyme Oil White, and 9.98% Blend 61.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), Para-Cymene, and Trans-anethole.
In some embodiments, the blend of compounds can include at least four of the group consisting of Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), Para-Cymene, and Trans-anethole.
In some embodiments, the blend of compounds can include Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), Para-Cymene, and Trans-anethole.
In some embodiments, the blend of compounds can include between 3 and 8% Linalool Coeur, between 25 and 55% Thymol (crystal), between 1 and 4% Alpha-Pinene (98%), between 25 and 50% Para-Cymene, and between 12 and 26% Trans-anethole.
In some embodiments, the blend of compounds can include between 4.2 and 5.2% Linalool Coeur, between 36 and 45% Thymol (crystal), between 1.7 and 2.1% Alpha-Pinene (98%), between 31 and 38% Para-Cymene, and between 16 and 20% Trans-anethole.
In some embodiments, the blend of compounds can include 4.7% Linalool Coeur, 40.8% Thymol (crystal), 1.9% Alpha-Pinene (98%), 34.49% Para-Cymene, and 18.2% Trans-anethole.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Linalool Coeur, Soy Bean Oil, Thymol (crystal), Alpha-Pinene (98%), and Para-Cymene.
In some embodiments, the blend of compounds can include at least four of the group consisting of Linalool Coeur, Soy Bean Oil, Thymol (crystal), Alpha-Pinene (98%), and Para-Cymene.
In some embodiments, the blend of compounds can include Linalool Coeur, Soy Bean Oil, Thymol (crystal), Alpha-Pinene (98%), and Para-Cymene.
In some embodiments, the blend of compounds can include between 4 and 10% Linalool Coeur, between 16 and 30% Soy Bean Oil, between 25 and 55% Thymol (crystal), between 1.5 and 6% Alpha-Pinene (98%), and between 18 and 40% Para-Cymene.
In some embodiments, the blend of compounds can include between 6 and 7.4% Linalool Coeur, between 21.5 and 26.5% Soy Bean Oil, between 33 and 41% Thymol (crystal), between 3.4 and 4.2% Alpha-Pinene (98%), and between 25 and 31% Para-Cymene.
In some embodiments, the blend of compounds can include 6.6% Linalool Coeur, 24.0% Soy Bean Oil, 37.2% Thymol (crystal), 3.8% Alpha-Pinene (98%), and 28.39% Para-Cymene.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), Para-Cymene, and Trans-anethole.
In some embodiments, the blend of compounds can include at least four of the group consisting of Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), Para-Cymene, and Trans-anethole.
In some embodiments, the blend of compounds can include Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), Para-Cymene, and Trans-anethole.
In some embodiments, the blend of compounds can include between 30 and 55% Linalool Coeur, between 25 and 45% Thymol (crystal), between 3 and 8% Alpha-Pinene (98%), between 1 and 4% Para-Cymene, and between 12 and 26% Trans-anethole.
In some embodiments, the blend of compounds can include between 36 and 45% Linalool Coeur, between 31 and 37.5% Thymol (crystal), between 4.2 and 5.2% Alpha-Pinene (98%), between 1.7 and 2.1% Para-Cymene, and between 16.5 and 20% Trans-anethole.
In some embodiments, the blend of compounds can include 40.8% Linalool Coeur, 34.4% Thymol (crystal), 4.7% Alpha-Pinene (98%), 1.9% Para-Cymene, and 18.20% Trans-anethole.
In some embodiments, the blend of compounds can include at least two of the group consisting of Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), and Para-Cymene.
In some embodiments, the blend of compounds can include at least three of the group consisting of Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), and Para-Cymene.
In some embodiments, the blend of compounds can include Linalool Coeur, Thymol (crystal), Alpha-Pinene (98%), and Para-Cymene.
In some embodiments, the blend of compounds can include between 6 and 14% Linalool Coeur, between 30 and 65% Thymol (crystal), between 5 and 14% Alpha-Pinene (98%), and between 22.5 and 45% Para-Cymene.
In some embodiments, the blend of compounds can include between 8.5 and 10.5% Linalool Coeur, between 42 and 53% Thymol (crystal), between 8.5 and 10.4% Alpha-Pinene (98%), and between 30 and 36.5% Para-Cymene.
In some embodiments, the blend of compounds can include 9.49% Linalool Coeur, 47.87% Thymol (crystal), 9.46% Alpha-Pinene (98%), and 33.18% Para-Cymene.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least four or five of the group consisting of Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 15 and 25% Linalool Coeur, between 18 and 32% Tetrahydrolinalool, between 1 and 5% Vanillin, between 18 and 40% Isopropyl myristate, between 5 and 16% Piperonal (aldehyde), and between 8 and 18% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include between 18 and 22.3% Linalool Coeur, between 22 and 27% Tetrahydrolinalool, between 2.2 and 2.7% Vanillin, between 26 and 33% Isopropyl myristate, between 9 and 11% Piperonal (aldehyde), and between 12 and 14.6% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include 20.15% Linalool Coeur, 24.23% Tetrahydrolinalool, 2.47% Vanillin, 29.84% Isopropyl myristate, 9.95% Piperonal (aldehyde), and 13.36% Geraniol Fine FCC.
In some embodiments, the blend of compounds can include at least two to five of the group consisting of Tetrahydrolinalool, Vanillin, Hercolyn D, Isopropyl myristate, Piperonal (aldehyde), Ethyl Linalool, Hedione, Triethyl Citrate, and Dipropylene glycol (DPG).
In some embodiments, the blend of compounds can include at least six to eight of the group consisting of Tetrahydrolinalool, Vanillin, Hercolyn D, Isopropyl myristate, Piperonal (aldehyde), Ethyl Linalool, Hedione, Triethyl Citrate, and Dipropylene glycol (DPG).
In some embodiments, the blend of compounds can include Tetrahydrolinalool, Vanillin, Hercolyn D, Isopropyl myristate, Piperonal (aldehyde), Ethyl Linalool, Hedione, Triethyl Citrate, and Dipropylene glycol (DPG).
In some embodiments, the blend of compounds can include between 15 and 30% Tetrahydrolinalool, between 0.5 and 3% Vanillin, between 2 and 8% Hercolyn D, between 10 and 20% Isopropyl myristate, between 4 and 12% Piperonal (aldehyde), between 15 and 32% Ethyl Linalool, between 4 and 10% Hedione, between 6 and 14% Triethyl Citrate, and between 5 and 14% Dipropylene glycol (DPG).
In some embodiments, the blend of compounds can include between 20 and 26% Tetrahydrolinalool, between 1.0 and 1.4% Vanillin, between 4 and 4.9% Hercolyn D, between 13.5 and 16.6% Isopropyl myristate, between 6.8 and 8.3% Piperonal (aldehyde), between 20 and 25.2% Ethyl Linalool, between 6 and 7.3% Hedione, between 9 and 11.2% Triethyl Citrate, and between 8.1 and 10% Dipropylene glycol (DPG).
In some embodiments, the blend of compounds can include 22.98% Tetrahydrolinalool, 1.17% Vanillin, 4.44% Hercolyn D, 15.10% Isopropyl myristate, 7.55% Piperonal (aldehyde), 22.91% Ethyl Linalool, 6.67% Hedione, 10.10% Triethyl Citrate, and 9.09% Dipropylene glycol (DPG).
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Linalool Coeur, Tetradyrdolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include at least five or six of the group consisting of Linalool Coeur, Tetradyrdolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include Linalool Coeur, Tetradyrdolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Geraniol 60, and Triethyl Citrate.
In some embodiments, the blend of compounds can include between 10 and 18% Linalool Coeur, between 12 and 25% Tetradyrdolinalool, between 0.5 and 2.5% Vanillin, between 12 and 28% Isopropyl myristate, between 12 and 30% Piperonal (aldehyde), between 6 and 14% Geraniol 60, and between 15 and 28% Triethyl Citrate.
In some embodiments, the blend of compounds can include between 12.2 and 14.8% Linalool Coeur, between 16.9 and 20.1% Tetradyrdolinalool, 1.08 and 1.32% Vanillin, between 17 and 21% Isopropyl myristate, between 17 and 21% Piperonal (aldehyde), between 8.8 and 10.8% Geraniol 60, and between 17 and 21% Triethyl Citrate.
In some embodiments, the blend of compounds can include 13.5% Linalool Coeur, 18.5% Tetradyrdolinalool, 1.2% Vanillin, 19.0% Isopropyl myristate, 19.0% Piperonal (aldehyde), 9.8% Geraniol 60, and 19.1% Triethyl Citrate.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Piperonyl Alcohol.
In some embodiments, the blend of compounds can include at least four or five of the group consisting of Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Piperonyl Alcohol.
In some embodiments, the blend of compounds can include Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), and Piperonyl Alcohol.
In some embodiments, the blend of compounds can include between 14 and 26% Linalool Coeur, between 16 and 32% Tetrahydrolinalool, between 0.5 and 3% Vanillin, between 16 and 32% Isopropyl myristate, between 16 and 32% Piperonal (aldehyde), and between 6 and 14% Piperonyl Alcohol.
In some embodiments, the blend of compounds can include between 17 and 21% Linalool Coeur, between 21 and 25.5% Tetrahydrolinalool, between 1.08 and 1.32% Vanillin, between 20.6 and 25.2% Isopropyl myristate, between 21 and 26% Piperonal (aldehyde), and between 8.6 and 10.5% Piperonyl Alcohol.
In some embodiments, the blend of compounds can include 19.2% Linalool Coeur, 23.2% Tetrahydrolinalool, 1.2% Vanillin, 22.9% Isopropyl myristate, 23.8% Piperonal (aldehyde), and 9.6% Piperonyl Alcohol.
In some embodiments, the blend of compounds can include of at least two to five of the group consisting of D-Limonene, Linalool Coeur, Citral, gamma-terpinene, Alpha-Pinene (98%), Alpha-Terpineol, Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include of at least six to nine of the group consisting of D-Limonene, Linalool Coeur, Citral, gamma-terpinene, Alpha-Pinene (98%), Alpha-Terpineol, Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include of at least ten to thirteen of the group consisting of D-Limonene, Linalool Coeur, Citral, gamma-terpinene, Alpha-Pinene (98%), Alpha-Terpineol, Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include of at least fourteen to seventeen of the group consisting of D-Limonene, Linalool Coeur, Citral, gamma-terpinene, Alpha-Pinene (98%), Alpha-Terpineol, Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include of at least eighteen to twenty-one of the group consisting of D-Limonene, Linalool Coeur, Citral, gamma-terpinene, Alpha-Pinene (98%), Alpha-Terpineol, Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include of at least twenty-two to twenty-four of the group consisting of D-Limonene, Linalool Coeur, Citral, gamma-terpinene, Alpha-Pinene (98%), Alpha-Terpineol, Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include D-Limonene, Linalool Coeur, Citral, gamma-terpinene, Alpha-Pinene (98%), Alpha-Terpineol, Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include between 38 and 60% D-Limonene, between 0.5 and 2.5% Linalool Coeur, between 6 and 14% Citral, between 6 and 16% gamma-terpinene, between 0.5 and 4% Alpha-Pinene (98%), between 3 and 10% Alpha-Terpineol, between 3 and 10% Terpinolene, between 0.5 and 4% Para-Cymene, between 1 and 5% Linalyl Acetate, between 1.2 and 5.5% Beta Pinene, between 0.05 and 0.4% Camphor Dextro, between 0.05 and 0.5% Terpinene 4 OL, between 1 and 6% Alpha Terpinene, between 0.5 and 2.5% Borneol L, between 0.2 and 1% Camphene, between 0.08 and 0.4% Decanal, between 0.08 and 0.4% Dodecanal, between 0.001 and 0.05% Fenchol Alpha, between 0.1 and 0.4% Geranyl Acetate, between 0.2 and 0.8% Isoborneol, between 0.1 and 0.8% 2-Methyl 1,3-cyclohexadiene, between 0.5 and 4% Myrcene, between 0.01 and 0.08% Nonanal, between 0.01 and 0.15% Octanal, and between 0.01 and 0.1% Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include between 43 and 54% D-Limonene, between 1.1 and 1.34% Linalool Coeur, between 9.2 and 11.3% Citral, between 9.4 and 11.6% gamma-terpinene, between 1.7 and 2.13% Alpha-Pinene (98%), between 6.1 and 7.5% Alpha-Terpineol, between 5.6 and 7.0% Terpinolene, between 1.45 and 1.76% Para-Cymene, between 2.34 and 2.86% Linalyl Acetate, between 2.5 and 3.1% Beta Pinene, between 0.12 and 0.14% Camphor Dextro, between 0.1 and 0.12% Terpinene 4 OL, between 2.5 and 3.1% Alpha Terpinene, between 1.17 and 1.43% Borneol L, between 0.49 and 0.61% Camphene, between 0.155 and 0.185% Decanal, between 0.13 and 0.15% Dodecanal, between 0.009 and 0.011% Fenchol Alpha, between 0.16 and 0.20% Geranyl Acetate, between 0.37 and 0.45% Isoborneol, between 0.34 and 0.42% 2-Methyl 1,3-cyclohexadiene, between 1.03 and 1.25% Myrcene, between 0.027 and 0.033% Nonanal, between 0.054 and 0.066% Octanal, and between 0.027 and 0.033% Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include 48.58% D-Limonene, 1.22% Linalool Coeur, 10.21% Citral, 10.51% gamma-terpinene, 1.94% Alpha-Pinene (98%), 6.80% Alpha-Terpineol, 6.30% Terpinolene, 1.61% Para-Cymene, 2.60% Linalyl Acetate, 2.80% Beta Pinene, 0.13% Camphor Dextro, 0.11% Terpinene 4 OL, 2.80% Alpha Terpinene, 1.30% Borneol L, 0.54% Camphene, 0.17% Decanal, 0.14% Dodecanal, 0.01% Fenchol Alpha, 0.18% Geranyl Acetate, 0.41% Isoborneol, 0.38% 2-Methyl 1,3-cyclohexadiene, 1.14% Myrcene, 0.03% Nonanal, 0.06% Octanal, and 0.03% Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include at least two to six of the group consisting of D-Limonene, Linalool Coeur, gamma-terpinene, Alpha-Pinene (98%), Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include at least seven to ten of the group consisting of D-Limonene, Linalool Coeur, gamma-terpinene, Alpha-Pinene (98%), Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include at least eleven to fourteen of the group consisting of D-Limonene, Linalool Coeur, gamma-terpinene, Alpha-Pinene (98%), Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include at least fifteen to eighteen of the group consisting of D-Limonene, Linalool Coeur, gamma-terpinene, Alpha-Pinene (98%), Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include at least nineteen to twenty-two of the group consisting of D-Limonene, Linalool Coeur, gamma-terpinene, Alpha-Pinene (98%), Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include D-Limonene, Linalool Coeur, gamma-terpinene, Alpha-Pinene (98%), Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Camphor Dextro, Terpinene 4 OL, Alpha Terpinene, Borneol L, Camphene, Decanal, Dodecanal, Fenchol Alpha, Geranyl Acetate, Isoborneol, 2-Methyl 1,3-cyclohexadiene, Myrcene, Nonanal, Octanal, and Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include between 42 and 75% D-Limonene, between 0.5 and 4% Linalool Coeur, between 6 and 18% gamma-terpinene, between 1 and 5% Alpha-Pinene (98%), between 3 and 14% Terpinolene, between 0.5 and 4% Para-Cymene, between 1 and 6% Linalyl Acetate, between 1 and 6% Beta Pinene, between 0.01 and 0.5% Camphor Dextro, between 0.001 and 0.5% Terpinene 4 OL, between 1 and 6% Alpha Terpinene, between 0.5 and 4% Borneol L, between 0.1 and 2% Camphene, between 0.05 and 0.5% Decanal, between 0.05 and 0.5% Dodecanal, between 0.001 and 0.1% Fenchol Alpha, between 0.05 and 0.5% Geranyl Acetate, between 0.1 and 1% Isoborneol, between 0.1 and 1% 2-Methyl 1,3-cyclohexadiene, between 0.5 and 4% Myrcene, between 0.01 and 0.1% Nonanal, between 0.01 and 0.25% Octanal, and between 0.01 and 0.1% Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include between 52 and 65% D-Limonene, between 1.3 and 1.61% Linalool Coeur, between 11.4 and 13.9% gamma-terpinene, between 2.1 and 2.6% Alpha-Pinene (98%), between 6.8 and 8.5% Terpinolene, between 1.7 and 2.2% Para-Cymene, between 2.8 and 2.45% Linalyl Acetate, between 3 and 3.7% Beta Pinene, between 0.145 and 0.176% Camphor Dextro, between 0.12 and 0.14% Terpinene 4 OL, between 3 and 3.7% Alpha Terpinene, between 1.42 and 1.72% Borneol L, between 0.59 and 0.71% Camphene, between 0.18 and 0.22% Decanal, between 0.155 and 0.185% Dodecanal, between 0.009 and 0.011% Fenchol Alpha, 0.2 and 0.24% Geranyl Acetate, between 0.44 and 0.54% Isoborneol, between 0.42 and 0.5% 2-Methyl 1,3-cyclohexadiene, between 1.24 and 1.5% Myrcene, between 0.036 and 0.044% Nonanal, between 0.06 and 0.08% Octanal, and between 0.036 and 0.044% Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include 58.54% D-Limonene, 1.47% Linalool Coeur, 12.66% gamma-terpinene, 2.34% Alpha-Pinene (98%), 7.59% Terpinolene, 1.94% Para-Cymene, 3.13% Linalyl Acetate, 3.37% Beta Pinene, 0.16% Camphor Dextro, 0.13% Terpinene 4 OL, 3.37% Alpha Terpinene, 1.57% Borneol L, 0.65% Camphene, 0.20% Decanal, 0.17% Dodecanal, 0.01% Fenchol Alpha, 0.22% Geranyl Acetate, 0.49% Isoborneol, 0.46% 2-Methyl 1,3-cyclohexadiene, 1.37% Myrcene, 0.04% Nonanal, 0.07% Octanal, and 0.04% Tocopherol Gamma Tenox.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of D-Limonene, Linalool Coeur, Alpha-Pinene (98%), Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Alpha Terpinene, Camphene, and Myrcene.
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of D-Limonene, Linalool Coeur, Alpha-Pinene (98%), Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Alpha Terpinene, Camphene, and Myrcene.
In some embodiments, the blend of compounds can include at least eight or nine of the group consisting of D-Limonene, Linalool Coeur, Alpha-Pinene (98%), Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Alpha Terpinene, Camphene, and Myrcene.
In some embodiments, the blend of compounds can include D-Limonene, Linalool Coeur, Alpha-Pinene (98%), Terpinolene, Para-Cymene, Linalyl Acetate, Beta Pinene, Alpha Terpinene, Camphene, and Myrcene.
In some embodiments, the blend of compounds can include between 25 and 45% D-Limonene, between 6 and 14% Linalool Coeur, between 2 and 8% Alpha-Pinene (98%), between 6 and 14% Terpinolene, between 6 and 14% Para-Cymene, between 2.5 and 8% Linalyl Acetate, between 2 and 8% Beta Pinene, between 2 and 8% Alpha Terpinene, between 2.5 and 9% Camphene, and between 6 and 15% Myrcene.
In some embodiments, the blend of compounds can include between 31 and 38% D-Limonene, between 9 and 11.1% Linalool Coeur, between 4.5 and 5.5% Alpha-Pinene (98%), between 9 and 11.2% Terpinolene, between 9 and 11.1% Para-Cymene, between 2.8 and 5.9% Linalyl Acetate, between 4.5 and 5.8% Beta Pinene, between 4.3 and 5.4% Alpha Terpinene, between 5.2 and 6.4% Camphene, and between 8.3 and 10.2% Myrcene.
In some embodiments, the blend of compounds can include 34.50% D-Limonene, 10.05% Linalool Coeur, 5.01% Alpha-Pinene (98%), 10.10% Terpinolene, 10.04% Para-Cymene, 5.30% Linalyl Acetate, 5.02% Beta Pinene, 4.88% Alpha Terpinene, 5.84% Camphene, and 9.26% Myrcene.
In some embodiments, the blend of compounds can include Blend 41 and Blend 105 (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include between 70 and 99% Blend 41 and between 5 and 15% Blend 105 (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include between 81 and 99% Blend 41 and between 9 and 11% Blend 105 (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include 90% Blend 41 and 10% Blend 105 (10% Sodium Lauryl Sulfate, 90.00% Water).
In some embodiments, the blend of compounds can include at least two of the group consisting of Polyglycerol-4-oleate, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include at least three of the group consisting of Polyglycerol-4-oleate, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include Polyglycerol-4-oleate, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include between 0.6 and 1.4% Polyglycerol-4-oleate, between 0.05 and 0.5% Lecithin, between 6 and 16% Water, and between 70 and 99% Blend 41.
In some embodiments, the blend of compounds can include between 0.8 and 1.0% Polyglycerol-4-oleate, between 0.18 and 0.22% Lecithin, between 8.8 and 10.8% Water, and between 80 and 98% Blend 41.
In some embodiments, the blend of compounds can include 0.90% Polyglycerol-4-oleate, 0.20% Lecithin, 9.8% Water, and 89.1% Blend 41.
In some embodiments, the blend of compounds can include at least two of the group consisting of Potassium sorbate, Xanthan Gum, Water, and Blend 65.
In some embodiments, the blend of compounds can include at least three of the group consisting of Potassium sorbate, Xanthan Gum, Water, and Blend 65.
In some embodiments, the blend of compounds can include Potassium sorbate, Xanthan Gum, Water, and Blend 65.
In some embodiments, the blend of compounds can include 0.2 and 2.5% Potassium sorbate, between 0.1 and 0.8% Xanthan Gum, between 60 and 95% Water, and between 10 and 22% Blend 65.
In some embodiments, the blend of compounds can include between 0.9 and 1.1% Potassium sorbate, between 0.25 and 0.31% Xanthan Gum, between 73 and 89% Water, and between 15.3 and 18.4% Blend 65.
In some embodiments, the blend of compounds can include 1.00% Potassium sorbate, 0.28% Xanthan Gum, 81.82% Water, and 16.90% Blend 65.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Potassium sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include at least four or five of the group consisting of Potassium sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include Potassium sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include between 0.05 and 0.2% Potassium sorbate, between 0.05 and 0.25% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.1% Lecithin, between 50 and 95% Water, and between 5 and 20% Blend 41.
In some embodiments, the blend of compounds can include between 0.10 and 0.12% Potassium sorbate, between 0.135 and 0.165% Polyglycerol-4-oleate, between 0.25 and 0.31% Xanthan Gum, between 0.030 and 0.038% Lecithin, between 76 and 92% Water, and between 13.5 and 16.5% Blend 41.
In some embodiments, the blend of compounds can include 0.11% Potassium sorbate, 0.15% Polyglycerol-4-oleate, 0.28% Xanthan Gum, 0.034% Lecithin, 84.4% Water, and 15% Blend 41.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include between 1.5 and 5% Thyme Oil White, between 3 and 10% Wintergreen Oil, between 2 and 8% Isopropyl myristate, between 0.05 and 0.5% Potassium sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.1% Lecithin, and between 50 and 95% Water.
In some embodiments, the blend of compounds can include 2.7 and 3.4% Thyme Oil White, between 6 and 7.5% Wintergreen Oil, between 4.5 and 5.7% Isopropyl myristate, between 0.1 and 0.12% Potassium sorbate, between 0.135 and 0.165% Polyglycerol-4-oleate, between 0.25 and 0.31% Xanthan Gum, between 0.027 and 0.033% Lecithin, and between 76 and 91% Water.
In some embodiments, the blend of compounds can include 3.09% Thyme Oil White, 6.77% Wintergreen Oil, 5.15% Isopropyl myristate, 0.11% Potassium sorbate, 0.15% Polyglycerol-4-oleate, 0.28% Xanthan Gum, 0.03% Lecithin, and 84.41% Water.
In some embodiments, the blend of compounds can include at least two of the group consisting of Polyglycerol-4-oleate, Lecithin, Water, and Blend 18.
In some embodiments, the blend of compounds can include at least three of the group consisting of Polyglycerol-4-oleate, Lecithin, Water, and Blend 18.
In some embodiments, the blend of compounds can include Polyglycerol-4-oleate, Lecithin, Water, and Blend 18.
In some embodiments, the blend of compounds can include between 0.5 and 2% Polyglycerol-4-oleate, between 0.1 and 0.5% Lecithin, between 2 and 20% Water, and between 50 and 98% Blend 18.
In some embodiments, the blend of compounds can include 0.8 and 1.0% Polyglycerol-4-oleate, between 0.18 and 0.22% Lecithin, between 8 and 12% Water, and between 80 and 95% Blend 18.
In some embodiments, the blend of compounds can include 0.90% Polyglycerol-4-oleate, 0.20% Lecithin, 9.8% Water, and 89.10% Blend 18.
In some embodiments, the blend of compounds can include at least two of the group consisting of Water, Blend 65, and Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include Water, Blend 65, and Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include between 1 and 6% Water, between 50 and 95% Blend 65, and between 5 and 20% Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include between 2.7 and 3.4% Water, between 76 and 92% Blend 65, and between 11.5 and 14% Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include 3.1% Water, 84.2% Blend 65, and 12.7% Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include between 8 and 25% Thyme Oil White, between 20 and 50% Wintergreen Oil, between 15 and 40% Isopropyl myristate, between 0.05 and 0.5% Potassium sorbate, between 0.1 and 2% Polyglycerol-4-oleate, between 0.1 and 0.6% Xanthan Gum, between 0.05 and 0.4% Lecithin, and between 10 and 40% Water.
In some embodiments, the blend of compounds can include between 14 and 17% Thyme Oil White, between 30 and 37% Wintergreen Oil, between 23 and 27.5% Isopropyl myristate, between 0.115 and 0.145% Potassium sorbate, between 0.7 and 0.83% Polyglycerol-4-oleate, between 0.29 and 0.36% Xanthan Gum, between 0.15 and 0.19% Lecithin, and between 21 and 26% Water.
In some embodiments, the blend of compounds can include 15.5% Thyme Oil White, 33.8% Wintergreen Oil, 25.7% Isopropyl myristate, 0.13% Potassium sorbate, 0.76% Polyglycerol-4-oleate, 0.32% Xanthan Gum, 0.17% Lecithin, and 23.6% Water.
In some embodiments, the blend of compounds can include at least two of the group consisting of Water, Blend 65, and Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include Water, Blend 65, and Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include between 5 and 20% Water, between 50 and 95% Blend 65, and between 5 and 20% Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include between 8 and 12% Water, between 70 and 88% Blend 65, and between 10.5 and 13.2% Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include 9.2% Water, 78.87% Blend 65, and 11.90% Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Potassium sorbate, Polyglycerol-4-oleate, Xanthan gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include at least four or five of the group consisting of Potassium sorbate, Polyglycerol-4-oleate, Xanthan gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include Potassium sorbate, Polyglycerol-4-oleate, Xanthan gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include between 0.05 and 0.25% Potassium sorbate, between 0.4 and 1.5% Polyglycerol-4-oleate, between 0.1 and 1% Xanthan gum, between 0.05 and 0.5% Lecithin, between 10 and 40% Water, and between 40 and 90% Blend 41.
In some embodiments, the blend of compounds can include between 0.11 and 0.15% Potassium sorbate, between 0.7 and 0.84% Polyglycerol-4-oleate, between 0.29 and 0.36% Xanthan gum, between 0.15 and 0.19% Lecithin, between 25 and 32% Water, and between 63 and 77% Blend 41.
In some embodiments, the blend of compounds can include 0.13% Potassium sorbate, 0.76% Polyglycerol-4-oleate, 0.32% Xanthan gum, 0.17% Lecithin, 28.6% Water, and 70% Blend 41.
In some embodiments, the blend of compounds can include at least two of the group consisting of Water, Blend 69, and Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include Water, Blend 69, and Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include between 1 and 6% Water, between 50 and 95% Blend 69, and between 5 and 20% Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include between 2.8 and 3.4% Water, between 76 and 92% Blend 69, and between 11.5 and 14% Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include 3.1% Water, 84.2% Blend 69, and 12.7% Blend 104 (1% Potassium Sorbate, 2.50% Xanthan Gum, 96.50% Water).
In some embodiments, the blend of compounds can include at least two of the group consisting Potassium sorbate, Xanthan gum, Water, and Blend 69.
In some embodiments, the blend of compounds can include at least three of the group consisting Potassium sorbate, Xanthan gum, Water, and Blend 69.
In some embodiments, the blend of compounds can include Potassium sorbate, Xanthan gum, Water, and Blend 69.
In some embodiments, the blend of compounds can include between 0.5 and 2% Potassium sorbate, between 0.1 and 0.6% Xanthan gum, between 50 and 95% Water, and between 5 and 30% Blend 69.
In some embodiments, the blend of compounds can include between 0.9 and 1.1% Potassium sorbate, between 0.25 and 0.31% Xanthan gum, between 73 and 90% Water, and between 15.3 and 18.5% Blend 69.
In some embodiments, the blend of compounds can include 1% Potassium sorbate, 0.28% Xanthan gum, 81.8% Water, and 16.9% Blend 69.
In some embodiments, the blend of compounds can include at least two of the group consisting of Polyglycerol-4-oleate, Lecithin, Water, and Blend 47.
In some embodiments, the blend of compounds can include at least three of the group consisting of Polyglycerol-4-oleate, Lecithin, Water, and Blend 47.
In some embodiments, the blend of compounds can include Polyglycerol-4-oleate, Lecithin, Water, and Blend 47.
In some embodiments, the blend of compounds can include between 0.5 and 2.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Lecithin, between 2 and 15% Water, and between 50 and 98% Blend 47.
In some embodiments, the blend of compounds can include between 0.8 and 1.0% Polyglycerol-4-oleate, between 0.18 and 0.22% Lecithin, between 8.9 and 11% Water, and between 80 and 92% Blend 47.
In some embodiments, the blend of compounds can include 0.90% Polyglycerol-4-oleate, 0.20% Lecithin, 9.8% Water, and 89.10% Blend 47.
In some embodiments, the blend of compounds can include at least two of the group consisting of Potassium sorbate, Xanthan gum, Water, and Blend 77.
In some embodiments, the blend of compounds can include at least three of the group consisting of Potassium sorbate, Xanthan gum, Water, and Blend 77.
In some embodiments, the blend of compounds can include Potassium sorbate, Xanthan gum, Water, and Blend 77.
In some embodiments, the blend of compounds can include between 0.5 and 2.5% Potassium sorbate, between 0.1 and 1% Xanthan gum, between 50 and 95% Water, and between 5 and 30% Blend 77.
In some embodiments, the blend of compounds can include between 0.9 and 1.1% Potassium sorbate, between 0.25 and 0.31% Xanthan gum, between 73 and 90% Water, and between 15.3 and 17.5% Blend 77.
In some embodiments, the blend of compounds can include 1.00% Potassium sorbate, 0.28% Xanthan gum, 81.82% Water, and 16.9% Blend 77.
In some embodiments, the blend of compounds can include at least two to five of the group consisting of Citronella Oil, Carbopol 940, BHT, Water, Emulsifying Wax, Light liquid paraffin, White Soft Paraffin, Sodium metabisulfate, Propylene glycol, Methyl paraben, Propyl paraben, Cresmer RH40 hydrogenated, Triethanolamine, Vitamin E acetate, Disodium EDTA, and Blend 7.
In some embodiments, the blend of compounds can include at least six to nine of the group consisting of Citronella Oil, Carbopol 940, BHT, Water, Emulsifying Wax, Light liquid paraffin, White Soft Paraffin, Sodium metabisulfate, Propylene glycol, Methyl paraben, Propyl paraben, Cresmer RH40 hydrogenated, Triethanolamine, Vitamin E acetate, Disodium EDTA, and Blend 7.
In some embodiments, the blend of compounds can include at least ten to fourteen of the group consisting of Citronella Oil, Carbopol 940, BHT, Water, Emulsifying Wax, Light liquid paraffin, White Soft Paraffin, Sodium metabisulfate, Propylene glycol, Methyl paraben, Propyl paraben, Cresmer RH40 hydrogenated, Triethanolamine, Vitamin E acetate, Disodium EDTA, and Blend 7.
In some embodiments, the blend of compounds can include Citronella Oil, Carbopol 940, BHT, Water, Emulsifying Wax, Light liquid paraffin, White Soft Paraffin, Sodium metabisulfate, Propylene glycol, Methyl paraben, Propyl paraben, Cresmer RH40 hydrogenated, Triethanolamine, Vitamin E acetate, Disodium EDTA, and Blend 7.
In some embodiments, the blend of compounds can include between 0.1 and 0.5% Citronella Oil, between 0.1 and 0.5% Carbopol 940, between 0.05 and 0.5% BHT, between 40 and 80% Water, between 8 and 25% Emulsifying Wax, between 2 and 8% Light liquid paraffin, between 5 and 15% White Soft Paraffin, between 0.1 and 0.5% Sodium metabisulfate, between 1 and 5% Propylene glycol, between 0.05 and 0.5% Methyl paraben, between 0.01 and 0.1% Propyl paraben, between 2 and 10% Cresmer RH40 hydrogenated, between 0.01 and 0.5% Triethanolamine, between 0.005 and 0.05% Vitamin E acetate, between 0.005 and 0.5% Disodium EDTA, and between 2 and 10% Blend 7.
In some embodiments, the blend of compounds can include between 0.18 and 0.22% Citronella Oil, between 0.18 and 0.22% Carbopol 940, between 0.9 and 0.11% BHT, between 54 and 66% Water, between 12.5 and 16% Emulsifying Wax, between 3.6 and 4.4% Light liquid paraffin, between 8.1 and 9.9% White Soft Paraffin, between 0.22 and 0.28% Sodium metabisulfate, between 1.8 and 2.2% Propylene glycol, between 0.13 and 0.17% Methyl paraben, between 0.045 and 0.055% Propyl paraben, between 4.5 and 5.5% Cresmer RH40 hydrogenated, between 0.13 and 0.17% Triethanolamine, between 0.018 and 0.022% Vitamin E acetate, between 0.045 and 0.055% Disodium EDTA, and between 4.5 and 5.5% Blend 7.
In some embodiments, the blend of compounds can include 0.20% Citronella Oil, 0.20% Carbopol 940, 0.10% BHT, 59.83% Water, 14.00% Emulsifying Wax, 4.00% Light liquid paraffin, 9.00% White Soft Paraffin, 0.25% Sodium metabisulfate, 2.00% Propylene glycol, 0.15% Methyl paraben, 0.05% Propyl paraben, 5.00% Cresmer RH40 hydrogenated, 0.15% Triethanolamine, 0.02% Vitamin E acetate, 0.05% Disodium EDTA, and 5.00% Blend 7.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Span 80, Sodium benzoate, Isopar M, A46 Propellant, Water, Isopropyl alcohol, and Blend 6.
In some embodiments, the blend of compounds can include at least five or six of the group consisting of Span 80, Sodium benzoate, Isopar M, A46 Propellant, Water, Isopropyl alcohol, and Blend 6.
In some embodiments, the blend of compounds can include Span 80, Sodium benzoate, Isopar M, A46 Propellant, Water, Isopropyl alcohol, and Blend 6.
In some embodiments, the blend of compounds can include between 0.005 and 0.5% Span 80, between 0.05 and 0.5% Sodium benzoate, between 15 and 40% Isopar M, between 8 and 25% A46 Propellant, between 20 and 60% Water, between 0.5 and 3% Isopropyl alcohol, and between 5 and 20% Blend 6.
In some embodiments, the blend of compounds can include between 0.045 and 0.055% Span 80, between 0.18 and 0.22% Sodium benzoate, between 26 and 32% Isopar M, between 13 and 16% A46 Propellant, between 38 and 46% Water, between 1.3 and 1.7% Isopropyl alcohol, and between 11.2 and 13.7% Blend 6.
In some embodiments, the blend of compounds can include 0.05% Span 80, 0.20% Sodium benzoate, 29% Isopar M, 14.5% A46 Propellant, 42.25% Water, 1.50% Isopropyl alcohol, and 12.5% Blend 6.
In some embodiments, the blend of compounds can include at least two of the group consisting of Isopar M, A46 propellant, Isopropyl alcohol, and Blend 36.
In some embodiments, the blend of compounds can include at least three of the group consisting of Isopar M, A46 propellant, Isopropyl alcohol, and Blend 36.
In some embodiments, the blend of compounds can include Isopar M, A46 propellant, Isopropyl alcohol, and Blend 36.
In some embodiments, the blend of compounds can include between 30 and 70% Isopar M, between 25 and 55% A46 propellant, between 1 and 6% Isopropyl alcohol, and between 3 and 12% Blend 36.
In some embodiments, the blend of compounds can include between 46 and 56% Isopar M, between 36 and 44% A46 propellant, between 2.7 and 3.3% Isopropyl alcohol, and between 5.4 and 6.6% Blend 36.
In some embodiments, the blend of compounds can include 51.0% Isopar M, 40.0% A46 propellant, 3.0% Isopropyl alcohol, and 6.0% Blend 36.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Isopar M, A46 propellant, Bifenthrin, Isopropyl alcohol, and Blend 36.
In some embodiments, the blend of compounds can include at least four of the group consisting of Isopar M, A46 propellant, Bifenthrin, Isopropyl alcohol, and Blend 36.
In some embodiments, the blend of compounds can include Isopar M, A46 propellant, Bifenthrin, Isopropyl alcohol, and Blend 36.
In some embodiments, the blend of compounds can include between 30 and 70% Isopar M, between 25 and 60% A46 propellant, between 0.005 and 0.1% Bifenthrin, between 1 and 6% Isopropyl alcohol, and between 3 and 12% Blend 36.
In some embodiments, the blend of compounds can include between 46 and 56% Isopar M, between 36 and 44% A46 propellant, between 0.045 and 0.055% Bifenthrin, between 2.7 and 3.3% Isopropyl alcohol, and between 5.4 and 6.6% Blend 36.
In some embodiments, the blend of compounds can include 51.0% Isopar M, 40.0% A46 propellant, 0.05% Bifenthrin, 3.0% Isopropyl alcohol, and 6.0% Blend 36.
In some embodiments, the blend of compounds can include at least two of the group consisting of Isopar M, A46 propellant, and Blend 31.
In some embodiments, the blend of compounds can include Isopar M, A46 propellant, and Blend 31.
In some embodiments, the blend of compounds can include between 25 and 70% Isopar M, between 20 and 65% A46 propellant, and between 3 and 12% Blend 31.
In some embodiments, the blend of compounds can include between 49 and 60% Isopar M, between 36 and 44% A46 propellant, and between 5.4 and 6.6% Blend 31.
In some embodiments, the blend of compounds can include 54.0% Isopar M, 40.0% A46 propellant, and 6.0% Blend 31.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyclycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyclycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyclycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include between 1 and 4% Thyme Oil White, between 2 and 8% Wintergreen Oil, between 1.5 and 5% Isopropyl myristate, between 0.01 and 0.5% Potassium Sorbate, between 0.05 and 0.5% Polyclycerol-4-oleate, between 0.1 and 0.6% Xanthan Gum, between 0.005 and 0.1% Lecithin, and between 60 and 99% Water.
In some embodiments, the blend of compounds can include between 1.8 and 2.3% Thyme Oil White, between 4 and 5% Wintergreen Oil, between 3.1 and 3.75% Isopropyl myristate, between 0.10 and 0.12% Potassium Sorbate, between 0.135 and 0.165% Polyclycerol-4-oleate, between 0.25 and 0.31% Xanthan Gum, between 0.027 and 0.033% Lecithin, and between 80 and 98% Water.
In some embodiments, the blend of compounds can include 2.06% Thyme Oil White, 4.51% Wintergreen Oil, 3.43% Isopropyl myristate, 0.11% Potassium Sorbate, 0.15% Polyclycerol-4-oleate, 0.28% Xanthan Gum, 0.03% Lecithin, and 89.42% Water.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include between 0.5 and 2% Thyme Oil White, between 1 and 5% Wintergreen Oil, between 0.5 and 4% Isopropyl myristate, between 0.05 and 0.5% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.6% Xanthan Gum, between 0.005 and 0.1% Lecithin, and between 60 and 99% Water.
In some embodiments, the blend of compounds can include between 0.9 and 1.15% Thyme Oil White, between 2 and 2.5% Wintergreen Oil, between 1.55 and 1.89% Isopropyl myristate, between 0.1 and 0.12% Potassium Sorbate, between 0.13 and 0.17% Polyglycerol-4-oleate, between 0.25 and 0.31% Xanthan Gum, between 0.027 and 0.033% Lecithin, and between 85 and 98% Water.
In some embodiments, the blend of compounds can include 1.03% Thyme Oil White, 2.26% Wintergreen Oil, 1.72% Isopropyl myristate, 0.11% Potassium Sorbate, 0.15% Polyglycerol-4-oleate, 0.28% Xanthan Gum, 0.03% Lecithin, and 94.43% Water.
In some embodiments, the blend of compounds can include at least two of the group consisting of Soya Lecithin, Polyglycerol-4-oleate, Water, and Blend 18.
In some embodiments, the blend of compounds can include at least three of the group consisting of Soya Lecithin, Polyglycerol-4-oleate, Water, and Blend 18.
In some embodiments, the blend of compounds can include Soya Lecithin, Polyglycerol-4-oleate, Water, and Blend 18.
In some embodiments, the blend of compounds can include between 0.1 and 0.5% Soya Lecithin, between 0.5 and 2.5% Polyglycerol-4-oleate, between 5 and 20% Water, and between 60 and 99% Blend 18.
In some embodiments, the blend of compounds can include between 0.18 and 0.22% Soya Lecithin, between 0.8 and 1.0% Polyglycerol-4-oleate, between 8.8 and 10.8% Water, and between 80 and 98% Blend 18.
In some embodiments, the blend of compounds can include 0.20% Soya Lecithin, 0.90% Polyglycerol-4-oleate, 9.80% Water, and 89.10% Blend 18.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Thyme Oil White, Isopropyl myristate, Soya Lecithin, Polyglycerol-4-oleate, Water, and Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include at least four or five of the group consisting of Thyme Oil White, Isopropyl myristate, Soya Lecithin, Polyglycerol-4-oleate, Water, and Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include Thyme Oil White, Isopropyl myristate, Soya Lecithin, Polyglycerol-4-oleate, Water, and Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include between 25 and 50% Thyme Oil White, between 20 and 45% Isopropyl myristate, between 0.1 and 0.5% Soya Lecithin, between 0.5 and 2.5% Polyglycerol-4-oleate, between 5 and 20% Water, and between 10 and 40% Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include between 32 and 38% Thyme Oil White, between 29 and 35% Isopropyl myristate, between 0.18 and 0.22% Soya Lecithin, between 0.8 and 1.0% Polyglycerol-4-oleate, between 8.8 and 10.8% Water, and between 20 and 24% Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include 35.0% Thyme Oil White, 32.0% Isopropyl myristate, 0.20% Soya Lecithin, 0.90% Polyglycerol-4-oleate, 9.80% Water, and 22.1% Wintergreen Oil (Technical grade).
In some embodiments, the blend of compounds can include at least two of the group consisting of Soya Lecithin, Polyglycerol-4-oleate, Water, and Blend 5.
In some embodiments, the blend of compounds can include at least three of the group consisting of Soya Lecithin, Polyglycerol-4-oleate, Water, and Blend 5.
In some embodiments, the blend of compounds can include Soya Lecithin, Polyglycerol-4-oleate, Water, and Blend 5.
In some embodiments, the blend of compounds can include between 0.05 and 0.5% Soya Lecithin, between 0.5 and 2.5% Polyglycerol-4-oleate, between 5 and 20% Water, and between 60 and 99% Blend 5.
In some embodiments, the blend of compounds can include between 0.09 and 0.11% Soya Lecithin, between 0.8 and 1.0% Polyglycerol-4-oleate, between 8.9 and 10.9% Water, and between 80 and 98% Blend 5.
In some embodiments, the blend of compounds can include 0.10% Soya Lecithin, 0.90% Polyglycerol-4-oleate, 9.90% Water, and 89.1% Blend 5.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Thyme Oil White, Wintergreen Oil, Vanillin, Isopropyl myristate, Soya Lecithin, Polyglycerol-4-oleate, and Water.
In some embodiments, the blend of compounds can include at least five or six of the group consisting of Thyme Oil White, Wintergreen Oil, Vanillin, Isopropyl myristate, Soya Lecithin, Polyglycerol-4-oleate, and Water.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Vanillin, Isopropyl myristate, Soya Lecithin, Polyglycerol-4-oleate, and Water.
In some embodiments, the blend of compounds can include between 10 and 30% Thyme Oil White, between 30 and 55% Wintergreen Oil, between 0.5 and 2.5% Vanillin, between 20 and 40% Isopropyl myristate, between 0.01 and 0.5% Soya Lecithin, between 0.5 and 2.5% Polyglycerol-4-oleate, and between 5 and 20% Water.
In some embodiments, the blend of compounds can include between 16 and 20.5% Thyme Oil White, between 36 and 44% Wintergreen Oil, between 0.89 and 1.08% Vanillin, between 26.5 and 33% Isopropyl myristate, between 0.09 and 0.11% Soya Lecithin, between 0.8 and 1.0% Polyglycerol-4-oleate, and between 8.9 and 10.9% Water.
In some embodiments, the blend of compounds can include 18.27% Thyme Oil White, 40.10% Wintergreen Oil, 0.98% Vanillin, 29.76% Isopropyl myristate, 0.10% Soya Lecithin, 0.90% Polyglycerol-4-oleate, and 9.90% Water.
In some embodiments, the blend of compounds can include at least two of the group consisting of Polyglycerol-4-oleate, Water, and Blend 18.
In some embodiments, the blend of compounds can include Polyglycerol-4-oleate, Water, and Blend 18.
In some embodiments, the blend of compounds can include between 1 and 4% Polyglycerol-4-oleate, between 5 and 20% Water, and between 60 and 99% Blend 18.
In some embodiments, the blend of compounds can include between 1.7 and 2.1% Polyglycerol-4-oleate, between 8 and 10% Water, and between 80 and 98% Blend 18.
In some embodiments, the blend of compounds can include 1.90% Polyglycerol-4-oleate, 9.00% Water, and 89.10% Blend 18.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Thyme Oil White, Isopropyl myristate, Polyglycerol-4-oleate, Water, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include at least four of the group consisting of Thyme Oil White, Isopropyl myristate, Polyglycerol-4-oleate, Water, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include Thyme Oil White, Isopropyl myristate, Polyglycerol-4-oleate, Water, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include between 25 and 50% Thyme Oil White, between 20 and 45% Isopropyl myristate, between 1 and 5% Polyglycerol-4-oleate, between 5 and 20% Water, and between 15 and 30% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include 31.5 and 38.5% Thyme Oil White, between 29 and 35% Isopropyl myristate, between 1.7 and 2.1% Polyglycerol-4-oleate, between 8 and 10% Water, and between 20 and 24% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include 35.0% Thyme Oil White, 32.0% Isopropyl myristate, 1.90% Polyglycerol-4-oleate, 9.00% Water, and 22.1% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Water, and Blend 88.
In some embodiments, the blend of compounds can include at least four of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Water, and Blend 88.
In some embodiments, the blend of compounds can include Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Water, and Blend 88.
In some embodiments, the blend of compounds can include between 0.05 and 0.25% Potassium Sorbate, between 1 and 4% Polyglycerol-4-oleate, between 0.1 and 0.6% Xanthan Gum, between 60 and 98% Water, and between 5 and 20% Blend 88.
In some embodiments, the blend of compounds can include between 0.10 and 0.12% Potassium Sorbate, between 1.7 and 2.1% Polyglycerol-4-oleate, between 0.24 and 0.31% Xanthan Gum, between 78 and 94% Water, and between 10 and 12.5% Blend 88.
In some embodiments, the blend of compounds can include 0.11% Potassium Sorbate, 1.90% Polyglycerol-4-oleate, 0.275% Xanthan Gum, 86.410% Water, and 11.30% Blend 88.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of D-Limonene, Thyme Oil White, Soya Lecithin, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Water, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of D-Limonene, Thyme Oil White, Soya Lecithin, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Water, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Soya Lecithin, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Water, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include between 2 and 10% D-Limonene, between 0.5 and 5% Thyme Oil White, between 0.001 and 0.1% Soya Lecithin, between 0.01 and 1% Potassium Sorbate, between 0.5 and 5% Polyglycerol-4-oleate, between 0.5 and 1% Xanthan Gum, between 40 and 99% Water, and between 1 and 10% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include between 4 and 7% D-Limonene, between 1 and 2% Thyme Oil White, between 0.005 and 0.05% Soya Lecithin, between 0.05 and 0.2% Potassium Sorbate, between 1 and 3% Polyglycerol-4-oleate, between 0.2 and 0.5% Xanthan Gum, between 80 and 95% Water, and between 2.5 and 5% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include 5.67% D-Limonene, 1.25% Thyme Oil White, 0.011% Soya Lecithin, 0.11% Potassium Sorbate, 2.002% Polyglycerol-4-oleate, 0.275% Xanthan Gum, 87.529% Water, and 3.15% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include at least two of the group consisting of Potassium Sorbate, Xanthan Gum, Water, and blend 86.
In some embodiments, the blend of compounds can include at least three of the group consisting of Potassium Sorbate, Xanthan Gum, Water, and blend 86.
In some embodiments, the blend of compounds can include Potassium Sorbate, Xanthan Gum, Water, and blend 86.
In some embodiments, the blend of compounds can include between 0.05 and 0.5% Potassium Sorbate, between 0.1 and 0.5% Xanthan Gum, between 50 and 99% Water, and between 5 and 20% Blend 86.
In some embodiments, the blend of compounds can include between 0.1 and 0.12% Potassium Sorbate, between 0.24 and 0.31% Xanthan Gum, between 80 and 97% Water, and between 10 and 12.6% Blend 86.
In some embodiments, the blend of compounds can include 0.11% Potassium Sorbate, 0.275% Xanthan Gum, 88.315% Water, and 11.30% Blend 86.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Thyme Oil White, Isopropyl myristate, Soya Lecithin, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Water, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of Thyme Oil White, Isopropyl myristate, Soya Lecithin, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Water, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include Thyme Oil White, Isopropyl myristate, Soya Lecithin, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Water, and Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include between 2 and 10% Thyme Oil White, between 2 and 10% Isopropyl myristate, between 0.005 and 0.1% Soya Lecithin, between 0.001 and 0.5% Potassium Sorbate, between 0.01 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 50 and 99% Water, and between 1 and 5% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include between 3 and 5% Thyme Oil White, between 3.2 and 4% Isopropyl myristate, between 0.01 and 0.05% Soya Lecithin, between 0.01 and 0.0.1% Potassium Sorbate, between 0.9 and 0.115% Polyglycerol-4-oleate, between 0.25 and 0.30% Xanthan Gum, between 80 and 95% Water, and between 2 and 3% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include 3.95% Thyme Oil White, 3.62% Isopropyl myristate, 0.023% Soya Lecithin, 0.11% Potassium Sorbate, 0.102% Polyglycerol-4-oleate, 0.275% Xanthan Gum, 89.422% Water, and 2.50% Wintergreen Oil (Technical).
In some embodiments, the blend of compounds can include at two of the group consisting of Potassium Sorbate, Xanthan Gum, Water, and Blend 90.
In some embodiments, the blend of compounds can include at three of the group consisting of Potassium Sorbate, Xanthan Gum, Water, and Blend 90.
In some embodiments, the blend of compounds can include Potassium Sorbate, Xanthan Gum, Water, and Blend 90.
In some embodiments, the blend of compounds can include between 0.01 and 0.5% Potassium Sorbate, between 0.1 and 0.5% Xanthan Gum, between 50 and 99% Water, and between 5 and 20% Blend 90.
In some embodiments, the blend of compounds can include between 0.1 and 0.12% Potassium Sorbate, between 0.25 and 0.30% Xanthan Gum, between 80 and 95% Water, and between 10 and 12.6% Blend 90.
In some embodiments, the blend of compounds can include 0.11% Potassium Sorbate, 0.275% Xanthan Gum, 88.315% Water, and 11.30% Blend 90.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, and Water.
In some embodiments, the blend of compounds can include at least five or six of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, and Water.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, and Water.
In some embodiments, the blend of compounds can include between 1 and 10% Thyme Oil White, between 1 and 10% Wintergreen Oil, between 1 and 10% Isopropyl myristate, between 0.01 and 0.5% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, and between 50 and 99% Water.
In some embodiments, the blend of compounds can include between 2 and 5% Thyme Oil White, between 2 and 5% Wintergreen Oil, between 2 and 5% Isopropyl myristate, between 0.1 and 0.12% Potassium Sorbate, between 0.18 and 0.23% Polyglycerol-4-oleate, between 0.25 and 0.30% Xanthan Gum, and between 80 and 95% Water.
In some embodiments, the blend of compounds can include 3.95% Thyme Oil White, 2.50% Wintergreen Oil, 3.62% Isopropyl myristate, 0.11% Potassium Sorbate, 0.21% Polyglycerol-4-oleate, 0.275% Xanthan Gum, and 89.332% Water.
In some embodiments, the blend of compounds can include Potassium Sorbate, Xanthan Gum, and Water
In some embodiments, the blend of compounds can include between 0.9 and 1.1% Potassium Sorbate, between 2.2 and 2.8% Xanthan Gum, and between 87 and 100% Water.
In some embodiments, the blend of compounds can include 1.00% Potassium Sorbate, 2.500% Xanthan Gum, and 96.500% Water.
In some embodiments, the blend of compounds can include Sodium Benzoate and Water.
In some embodiments, the blend of compounds can include between 1.8 and 2.2% Sodium Benzoate and between 89 and 100% Water.
In some embodiments, the blend of compounds can include 2% Sodium Benzoate and 98% Water.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Span 80, Tween 80, Isopar M, Water, Blend 6, and Blend 99 (2% Sodium Benzoate, 98% Water).
In some embodiments, the blend of compounds can include at least four or five of the group consisting of Span 80, Tween 80, Isopar M, Water, Blend 6, and Blend 99 (2% Sodium Benzoate, 98% Water).
In some embodiments, the blend of compounds can include Span 80, Tween 80, Isopar M, Water, Blend 6, and Blend 99 (2% Sodium Benzoate, 98% Water).
In some embodiments, the blend of compounds can include between 0.1 and 5% Span 80, between 0.1 and 2.5% Tween 80, between 10 and 20% Isopar M, between 40 and 90% Water, between 1 and 5% Blend 6, and between 5 and 20% Blend 99 (2% Sodium Benzoate; 2% Sodium Benzoate, 98% Water).
In some embodiments, the blend of compounds can include between 1.05 and 1.32% Span 80, between 1.5 and 1.8% Tween 80, between 13 and 15.4% Isopar M, between 60 and 76% Water, between 2.5 and 3.2% Blend 6, and between 10 and 12.5% Blend 99 (2% Sodium Benzoate; 2% Sodium Benzoate, 98% Water).
In some embodiments, the blend of compounds can include 1.20% Span 80, 1.65% Tween 80, 14.20% Isopar M, 68.75% Water, 2.84% Blend 6, and 11.36% Blend 99 (2% Sodium Benzoate; 2% Sodium Benzoate, 98% Water).
In some embodiments, the blend of compounds can include at least two to four of the group consisting of D-Limonene, Thyme Oil White, Wintergreen Oil, Span 80, Tween 80, Sodium Benzoate, Isopar M, and Water.
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of D-Limonene, Thyme Oil White, Wintergreen Oil, Span 80, Tween 80, Sodium Benzoate, Isopar M, and Water.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Wintergreen Oil, Span 80, Tween 80, Sodium Benzoate, Isopar M, and Water.
In some embodiments, the blend of compounds can include between 0.5 and 5% D-Limonene, between 0.1 and 1% Thyme Oil White, between 0.1 and 2% Wintergreen Oil, between 0.5 and 2% Span 80, between 0.5 and 5% Tween 80, between 0.1 and 0.5% Sodium Benzoate, between 5 and 20% Isopar M, and between 50 and 95% Water.
In some embodiments, the blend of compounds can include between 1.4 and 1.8% D-Limonene, between 0.32 and 0.38% Thyme Oil White, between 0.8 and 0.98% Wintergreen Oil, between 1.1 and 1.3% Span 80, between 1.5 and 1.8% Tween 80, between 0.2 and 0.26% Sodium Benzoate, between 13 and 15.4% Isopar M, and between 71 and 88% Water.
In some embodiments, the blend of compounds can include 1.60% D-Limonene, 0.35% Thyme Oil White, 0.89% Wintergreen Oil, 1.20% Span 80, 1.65% Tween 80, 0.23% Sodium Benzoate, 14.20% Isopar M, and 79.88% Water.
In some embodiments, the blend of compounds can include Propellent A70 and Blend 100.
In some embodiments, the blend of compounds can include between 5 and 50% Propellent A70 and between 50 and 95% Blend 100.
In some embodiments, the blend of compounds can include between 20 and 24% Propellent A70 and between 70 and 86% Blend 100.
In some embodiments, the blend of compounds can include 22% Propellent A70 and 78% Blend 100.
In some embodiments, the blend of compounds can include at least two to five of the group consisting of D-Limonene, Thyme Oil White, Wintergreen Oil, Span 80, Tween 80, Sodium Benzoate, Isopar M, Water, and Propellent A70.
In some embodiments, the blend of compounds can include at least six to eight of the group consisting of D-Limonene, Thyme Oil White, Wintergreen Oil, Span 80, Tween 80, Sodium Benzoate, Isopar M, Water, and Propellent A70.
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Wintergreen Oil, Span 80, Tween 80, Sodium Benzoate, Isopar M, Water, and Propellent A70.
In some embodiments, the blend of compounds can include between 0.5 and 5% D-Limonene, between 0.1 and 0.5% Thyme Oil White, between 0.3 and 1% Wintergreen Oil, between 0.5 and 2% Span 80, between 0.5 and 2.5% Tween 80, between 0.1 and 0.5% Sodium Benzoate, between 5 and 20% Isopar M, between 30 and 80% Water, and between 10 and 50% Propellent A70.
In some embodiments, the blend of compounds can include between 1.1 and 1.4% D-Limonene, between 0.24 and 0.3% Thyme Oil White, between 0.62 and 0.76% Wintergreen Oil, between 0.85 and 1.04% Span 80, between 1.1 and 1.48% Tween 80, between 0.16 and 0.20% Sodium Benzoate, between 10 and 12.2% Isopar M, between 56 and 69% Water, and between 20 and 24% Propellent A70.
In some embodiments, the blend of compounds can include 1.25% D-Limonene, 0.27% Thyme Oil White, 0.69% Wintergreen Oil, 0.94% Span 80, 1.29% Tween 80, 0.18% Sodium Benzoate, 11.08% Isopar M, 62.31% Water, and 22.0% Propellent A70.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include at least five or six of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include between 0.5 and 2.5% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.1% Lecithin, between 50 and 98% Water, and between 10 and 20% Blend 41.
In some embodiments, the blend of compounds can include between 0.9 and 1.1% Potassium Sorbate, between 0.13 and 0.17% Polyglycerol-4-oleate, between 0.25 and 0.31% Xanthan Gum, between 0.030 and 0.037% Lecithin, between 75 and 91% Water, and between 13.5 and 16.6% Blend 41.
In some embodiments, the blend of compounds can include 1.0% Potassium Sorbate, 0.15% Polyglycerol-4-oleate, 0.28% Xanthan Gum, 0.034% Lecithin, 83.5% Water, and 15.1% Blend 41.
In some embodiments, the blend of compounds can include Water and Blend 66.
In some embodiments, the blend of compounds can include between 15 and 75% Water and between 25 and 85% Blend 66.
In some embodiments, the blend of compounds can include between 30 and 37% Water and between 59 and 74% Blend 66.
In some embodiments, the blend of compounds can include 33.40% Water and 66.60% Blend 66.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of D-Limonene, Thyme Oil White, Benzyl Alcohol, Isopar M, Water, Blend 59, and Blend 105 (10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include at least five or six of the group consisting of D-Limonene, Thyme Oil White, Benzyl Alcohol, Isopar M, Water, Blend 59, and Blend 105 (10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Benzyl Alcohol, Isopar M, Water, Blend 59, and Blend 105 (10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include between 2 and 10% D-Limonene, between 2 and 10% Thyme Oil White, between 10 and 30% Benzyl Alcohol, between 10 and 30% Isopar M, between 30 and 60% Water, between 3 and 12% Blend 59, and between 1 and 8% Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include between 3.6 and 4.5% D-Limonene, between 4 and 4.9% Thyme Oil White, between 15 and 18.2% Benzyl Alcohol, between 18 and 23.5% Isopar M, between 44 and 49% Water, between 5.6 and 7.0% Blend 59, and between 2.5 and 4% Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include 4.03% D-Limonene, 4.43% Thyme Oil White, 16.61% Benzyl Alcohol, 20.95% Isopar M, 44.53% Water, 6.27% Blend 59, and 3.18% Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include at least two to four of the group consisting of D-Limonene, Thyme Oil White, Benzyl Alcohol, Isopar M, Water, Bifenthrin, Blend 59, and Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include at least five to seven of the group consisting of D-Limonene, Thyme Oil White, Benzyl Alcohol, Isopar M, Water, Bifenthrin, Blend 59, and Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Benzyl Alcohol, Isopar M, Water, Bifenthrin, Blend 59, and Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include between 2 and 10% D-Limonene, between 2 and 10% Thyme Oil White, between 10 and 30% Benzyl Alcohol, between 10 and 40% Isopar M, between 30 and 60% Water, between 0.01 and 0.1% Bifenthrin, between 3 and 10% Blend 59, and between 1 and 10% Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate, 90% Water
In some embodiments, the blend of compounds can include between 3.6 and 4.45% D-Limonene, between 4.0 and 4.9% Thyme Oil White, between 15 and 18.4% Benzyl Alcohol, between 18 and 23.4% Isopar M, between 40 and 49% Water, between 0.045 and 0.055% Bifenthrin, between 5.6 and 7.0% Blend 59, and between 2.5 and 4% Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include 4.028% D-Limonene, 4.428% Thyme Oil White, 16.60% Benzyl Alcohol, 20.94% Isopar M, 44.51% Water, 0.05% Bifenthrin, 6.267% Blend 59, and 3.178% Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate, 90% Water).
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Span 80, Isopar M, Water, and Bifenthrin.
In some embodiments, the blend of compounds can include at least five or six of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Span 80, Isopar M, Water, and Bifenthrin.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Span 80, Isopar M, Water, and Bifenthrin.
In some embodiments, the blend of compounds can include between 1 and 5% Thyme Oil White, between 2 and 10% Wintergreen Oil, between 2 and 8% Isopropyl myristate, between 0.2 and 1% Span 80, between 6 and 25% Isopar M, between 40 and 95% Water, and between 0.02 and 0.1% Bifenthrin.
In some embodiments, the blend of compounds can include between 1.8 and 2.3% Thyme Oil White, between 4.0 and 5.0% Wintergreen Oil, between 3.1 and 3.8% Isopropyl myristate, between 0.45 and 0.55% Span 80, between 13.5 and 16.5% Isopar M, between 67 and 82% Water, and between 0.045 and 0.055% Bifenthrin.
In some embodiments, the blend of compounds can include 2.06% Thyme Oil White, 4.51% Wintergreen Oil, 3.43% Isopropyl myristate, 0.50% Span 80, 15% Isopar M, 74.45% Water, and 0.05% Bifenthrin.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Sodium Lauryl Sulfate, and Water.
In some embodiments, the blend of compounds can include at least four of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Sodium Lauryl Sulfate, and Water.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Sodium Lauryl Sulfate, and Water.
In some embodiments, the blend of compounds can include between 0.2 and 1% Thyme Oil White, between 0.5 and 2% Wintergreen Oil, between 0.3 and 2% Isopropyl myristate, between 0.005 and 0.1% Sodium Lauryl Sulfate, and between 50 and 99% Water.
In some embodiments, the blend of compounds can include between 0.36 and 0.45% Thyme Oil White, between 0.8 and 1.0% Wintergreen Oil, between 0.6 and 0.76% Isopropyl myristate, between 0.018 and 0.022% Sodium Lauryl Sulfate, and between 88 and 99% Water.
In some embodiments, the blend of compounds can include 0.41% Thyme Oil White, 0.90% Wintergreen Oil, 0.69% Isopropyl myristate, 0.02% Sodium Lauryl Sulfate, and 97.98% Water.
In some embodiments, the blend of compounds can include at least three of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and AgSorb.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and AgSorb.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and AgSorb.
In some embodiments, the blend of compounds can include between 0.5 and 3% Thyme Oil White, between 1 and 5% Wintergreen Oil, between 0.5 and 5% Isopropyl myristate, and between 50 and 99% AgSorb.
In some embodiments, the blend of compounds can include between 0.9 and 1.15% Thyme Oil White, between 2.0 and 2.5% Wintergreen Oil, between 1.5 and 1.9% Isopropyl myristate, and between 85 and 98% AgSorb.
In some embodiments, the blend of compounds can include 1.03% Thyme Oil White, 2.26% Wintergreen Oil, 1.71% Isopropyl myristate, and 95.00% AgSorb.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and DG Light.
In some embodiments, the blend of compounds can include at least three of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and DG Light.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and DG Light.
In some embodiments, the blend of compounds can include between 0.5 and 2.5% Thyme Oil White, between 1 and 5% Wintergreen Oil, between 0.5 and 5% Isopropyl myristate, and between 50 and 99% DG Light.
In some embodiments, the blend of compounds can include between 0.9 and 1.16% Thyme Oil White, between 2.0 and 2.5% Wintergreen Oil, between 1.5 and 1.9% Isopropyl myristate, and between 85 and 98% DG Light.
In some embodiments, the blend of compounds can include 1.03% Thyme Oil White, 2.26% Wintergreen Oil, 1.71% Isopropyl myristate, and 95.0% DG Light.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Sodium Lauryl Sulfate, and Water.
In some embodiments, the blend of compounds can include at least four of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Sodium Lauryl Sulfate, and Water.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Sodium Lauryl Sulfate, and Water.
In some embodiments, the blend of compounds can include between 0.2 and 1% Thyme Oil White, between 0.5 and 2% Wintergreen Oil, between 0.3 and 2% Isopropyl myristate, between 0.005 and 0.1% Sodium Lauryl Sulfate, and between 50 and 99% Water.
In some embodiments, the blend of compounds can include between 0.36 and 0.45% Thyme Oil White, between 0.8 and 1.0% Wintergreen Oil, between 0.6 and 0.78% Isopropyl myristate, between 0.018 and 0.022% Sodium Lauryl Sulfate, and between 87 and 99% Water.
In some embodiments, the blend of compounds can include 0.41% Thyme Oil White, 0.90% Wintergreen Oil, 0.69% Isopropyl myristate, 0.02% Sodium Lauryl Sulfate, and 97.98% Water.
In some embodiments, the blend of compounds can include at least 2 to 4 of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Blend 62, Geraniol 60, Triethyl Citrate, Water, and Blend 105 (10% Sodium Lauryl Sulfate; 90% Water).
In some embodiments, the blend of compounds can include at least 5 to 7 of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Blend 62, Geraniol 60, Triethyl Citrate, Water, and Blend 105 (10% Sodium Lauryl Sulfate; 90% Water).
In some embodiments, the blend of compounds can include at least 8 to 10 of the group consisting of D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Blend 62, Geraniol 60, Triethyl Citrate, Water, and Blend 105 (10% Sodium Lauryl Sulfate; 90% Water).
In some embodiments, the blend of compounds can include D-Limonene, Thyme Oil White, Linalool Coeur, Tetrahydrolinalool, Vanillin, Isopropyl myristate, Piperonal (aldehyde), Blend 62, Geraniol 60, Triethyl Citrate, Water, and Blend 105 (10% Sodium Lauryl Sulfate; 90% Water).
In some embodiments, the blend of compounds can include between 10 and 40% D-Limonene, between 0.5 and 2% Thyme Oil White, between 0.05 and 0.5% Linalool Coeur, between 0.1 and 0.5% Tetrahydrolinalool, between 0.005 and 0.1% Vanillin, between 0.1 and 0.5% Isopropyl myristate, between 0.1 and 0.5% Piperonal (aldehyde), between 1 and 5% Blend 62, between 0.05 and 0.5% Geraniol 60, between 0.1 and 0.5% Triethyl Citrate, between 30 and 90% Water, and between 1.5 and 5% Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate; 90% Water).
In some embodiments, the blend of compounds can include between 22 and 27% D-Limonene, between 0.89 and 1.1% Thyme Oil White, between 0.15 and 0.19% Linalool Coeur, between 0.2 and 0.26% Tetrahydrolinalool, between 0.018 and 0.022% Vanillin, between 0.22 and 0.26% Isopropyl myristate, between 0.215 and 0.265% Piperonal (aldehyde), between 2.7 and 3.3% Blend 62, between 0.11 and 0.13% Geraniol 60, between 0.22 and 0.26% Triethyl Citrate, between 60 and 74% Water, and between 2.7 and 3.3% Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate; 90% Water).
In some embodiments, the blend of compounds can include 24.76% D-Limonene, 0.98% Thyme Oil White, 0.17% Linalool Coeur, 0.23% Tetrahydrolinalool, 0.02% Vanillin, 0.24% Isopropyl myristate, 0.24% Piperonal (aldehyde), 3.00% Blend 62, 0.12% Geraniol 60, 0.24% Triethyl Citrate, 67% Water, and 3% Blend 105 (Stock 10% SLS Blend; 10% Sodium Lauryl Sulfate; 90% Water).
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Xanthan Gum, Water, and Blend 65.
In some embodiments, the blend of compounds can include at least five or six of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Xanthan Gum, Water, and Blend 65.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Xanthan Gum, Water, and Blend 65.
In some embodiments, the blend of compounds can include between 10 and 30% Thyme Oil White, between 25 and 60% Wintergreen Oil, between 20 and 50% Isopropyl myristate, between 0.1 and 2% Potassium Sorbate, between 0.05 and 0.5% Xanthan Gum, between 50 and 99% Water, and between 10 and 30% Blend 65.
In some embodiments, the blend of compounds can include between 18 and 23% Thyme Oil White, between 40 and 50% Wintergreen Oil, between 31 and 38% Isopropyl myristate, between 0.9 and 1.1% Potassium Sorbate, between 0.25 and 0.31% Xanthan Gum, between 72 and 89% Water, between 15 and 17.6% Blend 65.
In some embodiments, the blend of compounds can include 20.6% Thyme Oil White, 45.1% Wintergreen Oil, 34.3% Isopropyl myristate, 1% Potassium Sorbate, 0.28% Xanthan Gum, 81.82% Water, and 16.90% Blend 65.
In some embodiments, the blend of compounds can include Miracle Gro (Sterile), and Blend 41.
In some embodiments, the blend of compounds can include between 80 and 99% Miracle Gro (Sterile), and 1 to 20% Blend 41.
In some embodiments, the blend of compounds can include between 90 and 98% Miracle Gro (Sterile), and between 2 and 10% Blend 41.
In some embodiments, the blend of compounds can include 95% Miracle Gro (Sterile), and 5% Blend 41.
In some embodiments, the blend of compounds can include at least two to four of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Span 80, Isopar M, Water, and Bifenthrin.
In some embodiments, the blend of compounds can include at least five or six of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Span 80, Isopar M, Water, and Bifenthrin.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Span 80, Isopar M, Water, and Bifenthrin.
In some embodiments, the blend of compounds can include between 0.2 and 1% Thyme Oil White, between 0.5 and 2.5% Wintergreen Oil, between 0.5 and 2% Isopropyl myristate, between 0.2 and 1% Span 80, between 5 and 20% Isopar M, between 50 and 95% Water, and between 0.005 and 0.1% Bifenthrin
In some embodiments, the blend of compounds can include between 0.45 and 0.56% Thyme Oil White, between 1.0 and 1.3% Wintergreen Oil, between 0.78 and 0.95% Isopropyl myristate, between 0.45 and 0.55% Span 80, between 13.5 and 16.5% Isopar M, between 73 and 90% Water, and between 0.045 and 0.055% Bifenthrin.
In some embodiments, the blend of compounds can include 0.51% Thyme Oil White, 1.13% Wintergreen Oil, 0.86% Isopropyl myristate, 0.50% Span 80, 15% Isopar M, 81.95% Water, and 0.05% Bifenthrin.
In some embodiments, a formulation can include a carrier such as diatomaceous earth and a blend of compounds including blackseed oil and geranium oil.
In some embodiments, a carrier-based formulation can include between 5 and 35% blackseed oil.
In some embodiments, the carrier-based formulation can include between 25 and 55% geranium oil.
In some embodiments, a formulation can include a carrier such as diatomaceous earth and a blend of compounds including blackseed oil, geranium oil and piperonal. The concentration of blackseed oil can be between 5 and 35%. The concentration of geranium oil can be between 25 and 55%. The concentration of piperonal can be between 5 and 35%.
In some embodiments, a formulation can include a carrier such as diatomaceous earth and a blend of compounds including blackseed oil, geranium oil piperonal, and linalool. The concentration of blackseed oil can be between 5% and 35%. The concentration of geranium oil can be between 25% and 55%. The concentration of piperonal can be between 5% and 35%. The concentration of linalool can be between 5% and 35%.
In some embodiments, the blend of compounds can include at least one of the group consisting of Thyme Oil White, Methyl Salicylate, and Isopropyl myristate.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Methyl Salicylate, and Isopropyl myristate.
In some embodiments, the blend of compounds can include Thyme Oil White, Methyl Salicylate, and Isopropyl myristate.
In some embodiments, the blend of compounds can include between 10 and 30% Thyme Oil White, between 30 and 60% Methyl Salicylate, and between 20 and 48% Isopropyl myristate.
In some embodiments, the blend of compounds can include between 18 and 23% Thyme Oil White, between 40 and 50% Methyl Salicylate, and between 30 and 38% Isopropyl myristate.
In some embodiments, the blend of compounds can include 20.6% Thyme Oil White, 45.1% Methyl Salicylate, and 34.3% Isopropyl myristate.
In some embodiments, the blend of compounds can include at least one of the group consisting of Isopropyl myristate, Wintergreen Oil, and Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include at least two of the group consisting of % Isopropyl myristate, Wintergreen Oil, and Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include Isopropyl myristate, Wintergreen Oil, and Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include between 25 and 48% Isopropyl myristate, 30 and 60% Wintergreen Oil, and between 10 and 30% Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include between 30 and 38% Isopropyl myristate, 40 and 50% Wintergreen Oil, and between 18 and 23% Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include 34.3% Isopropyl myristate, 45.1% Wintergreen Oil, and 20.6% Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include at least one of the group consisting of Wintergreen Oil, Isopropyl myristate, and Thyme Oil Red.
In some embodiments, the blend of compounds can include at least two of the group consisting of Wintergreen Oil, Isopropyl myristate, and Thyme Oil Red.
In some embodiments, the blend of compounds can include Wintergreen Oil, Isopropyl myristate, and Thyme Oil Red.
In some embodiments, the blend of compounds can include between 30 and 60% Wintergreen Oil, between 20 and 48% Isopropyl myristate, and between 10 and 30% Thyme Oil Red.
In some embodiments, the blend of compounds can include between 40 and 50% Wintergreen Oil, between 30 and 38% Isopropyl myristate, and between 18 and 23% Thyme Oil Red.
In some embodiments, the blend of compounds can include 45.10% Wintergreen Oil, 34.3% Isopropyl myristate, and 20.6% Thyme Oil Red.
In some embodiments, the blend of compounds can include at least one of the group consisting of Isopropyl myristate, Wintergreen Oil (Technical grade), and Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include at least two of the group consisting of Isopropyl myristate, Wintergreen Oil (Technical grade), and Thyme Oil White containing 1% Thyme Oil Red
In some embodiments, the blend of compounds can include Isopropyl myristate, Wintergreen Oil (Technical grade), and Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include between 20 and 48% Isopropyl myristate, between 30 and 60% Wintergreen Oil (Technical grade), and between 10 and 30% Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include between 30 and 38% Isopropyl myristate, between 40 and 50% Wintergreen Oil (Technical grade), and between 18 and 23% Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include 34.3% Isopropyl myristate, 45.10% Wintergreen Oil (Technical grade), and 20.6% Thyme Oil White containing 1% Thyme Oil Red.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and Vanillin
In some embodiments, the blend of compounds can include at least three of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and Vanillin.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, and Vanillin.
In some embodiments, the blend of compounds can include between 10 and 30% Thyme Oil White, between 30 and 60% Wintergreen Oil, between 20 and 48% Isopropyl myristate, and between 0.01 and 0.3% Vanillin.
In some embodiments, the blend of compounds can include between 18 and 23% Thyme Oil White, between 40 and 50% Wintergreen Oil, between 30 and 38% Isopropyl myristate, and between 0.05 and 0.15% Vanillin.
In some embodiments, the blend of compounds can include 20.6% Thyme Oil White, 45.1% Wintergreen Oil, 34.2% Isopropyl myristate, and 0.1% Vanillin.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil Red, Wintergreen Oil, Isopropyl myristate, and Vanillin
In some embodiments, the blend of compounds can include at least three of the group consisting of Thyme Oil Red, Wintergreen Oil, Isopropyl myristate, and Vanillin.
In some embodiments, the blend of compounds can include Thyme Oil Red, Wintergreen Oil, Isopropyl myristate, and Vanillin.
In some embodiments, the blend of compounds can include 10 and 30% Thyme Oil Red, between 30 and 60% Wintergreen Oil, between 20 and 48% Isopropyl myristate, and between 0.01 and 0.3% Vanillin.
In some embodiments, the blend of compounds can include 18 and 23% Thyme Oil Red, 40 and 50% Wintergreen Oil, and between 30 and 38% Isopropyl myristate, and between 0.05 and 0.15% Vanillin.
In some embodiments, the blend of compounds can include 20.6% Thyme Oil Red, 45.1% Wintergreen Oil, 34.2% Isopropyl myristate, and 0.1% Vanillin.
In some embodiments, the blend of compounds can include at least one of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include between 30 and 55% Thyme Oil White, between 28 and 50% Isopropyl myristate, and between 15 and 26% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include between 36 and 46% Thyme Oil White, between 34 and 42% Isopropyl myristate, and between 18 and 22% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include 41.86% Thyme Oil White, 38.34% Isopropyl myristate, and 19.80% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include at least one of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include between 12 and 30% Thyme Oil White, between 45 and 75% Isopropyl myristate, and between 12 and 30% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include 18 and 24% Thyme Oil White, between 53 and 65% Isopropyl myristate, and between 18 and 23% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include 21.30% Thyme Oil White, 58.54% Isopropyl myristate, and 20.16% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include at least one of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include between 22 and 40% Thyme Oil White, between 28 and 50% Isopropyl myristate, and between 20 and 40% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include between 28 and 35% Thyme Oil White, between 34 and 43% Isopropyl myristate, and between 26 and 33% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include 31.57% Thyme Oil White, 38.56% Isopropyl myristate, 29.87% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include at least one of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include Thyme Oil White, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include 36.85% Thyme Oil White, 48.21% Isopropyl myristate, 14.94% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include 36.85% Thyme Oil White, 48.21% Isopropyl myristate, 14.94% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include 36.85% Thyme Oil White, 48.21% Isopropyl myristate, 14.94% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can includeat least one of the group consisting of Thyme Oil White containing 1% Thyme Oil Red, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include at least two of the group consisting of Thyme Oil White containing 1% Thyme Oil Red, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include Thyme Oil White containing 1% Thyme Oil Red, Isopropyl myristate, and Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include between 25 and 50% Thyme Oil White containing 1% Thyme Oil Red, between 35 and 65% Isopropyl myristate, and between 8 and 25% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include between 33 and 40% Thyme Oil White containing 1% Thyme Oil Red, between 44 and 55% Isopropyl myristate, and between 13 and 17% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include 36.85% Thyme Oil White containing 1% Thyme Oil Red, 48.21% Isopropyl myristate, 14.94% Geraniol Fine, FCC.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include at least four of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 41.
In some embodiments, the blend of compounds can include between 0.01 and 0.25% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.6% Xanthan Gum, between 0.01 and 0.1% Lecithin, between 60 and 98% Water, and between 5 and 25% Blend 41.
In some embodiments, the blend of compounds can include between 0.05 and 0.16% Potassium Sorbate, between 0.1 and 0.2% Polyglycerol-4-oleate, between 0.2 and 0.36% Xanthan Gum, between 0.03 and 0.04% Lecithin, between 76 and 94% Water, and between 13 and 17% Blend 41.
In some embodiments, the blend of compounds can include 0.11% Potassium Sorbate, 0.15% Polyglycerol-4-oleate, 0.28% Xanthan Gum, 0.034% Lecithin, 84.4% Water, and 15.01% Blend 41.
In some embodiments, the blend of compounds can include at least three to five of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include at least six or seven of the group consisting of Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include Thyme Oil White, Wintergreen Oil, Isopropyl myristate, Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, and Water.
In some embodiments, the blend of compounds can include between 1 and 5% Thyme Oil White, between 3 and 12% Wintergreen Oil, between 2 and 10% Isopropyl myristate, between 0.02 and 0.2% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.1% Lecithin, and between 60 and 98% Water.
In some embodiments, the blend of compounds can include between 2.7 and 3.4% Thyme Oil White, between 6.0 and 7.5% Wintergreen Oil, between 4.5 and 5.7% Isopropyl myristate, between 0.08 and 0.14% Potassium Sorbate, between 0.1 and 0.2% Polyglycerol-4-oleate, between 0.25 and 0.31% Xanthan Gum, between 0.025 and 0.035% Lecithin, and between 76 and 92% Water.
In some embodiments, the blend of compounds can include 3.09% Thyme Oil White, 6.77% Wintergreen Oil, 5.15% Isopropyl myristate, 0.11% Potassium Sorbate, 0.15% Polyglycerol-4-oleate, 0.28% Xanthan Gum, 0.03% Lecithin, 84.41% Water.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
In some embodiments, the blend of compounds can include at least four or five of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
In some embodiments, the blend of compounds can include Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
In some embodiments, the blend of compounds can include between 0.05 and 0.2% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.1% Lecithin, between 60 and 98% Water, and between 8 and 22% Blend 120.
In some embodiments, the blend of compounds can include between 0.09 and 0.13% Potassium Sorbate, between 0.1 and 0.2% Polyglycerol-4-oleate, between 0.25 and 0.31% Xanthan Gum, between 0.025 and 0.043% Lecithin, between 76 and 92% Water, and between 13 and 17% Blend 120.
In some embodiments, the blend of compounds can include 0.11% Potassium Sorbate, 0.15% Polyglycerol-4-oleate, 0.28% Xanthan Gum, 0.034% Lecithin, 84.4% Water, and 15.01% Blend 120.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
In some embodiments, the blend of compounds can include at least four or five of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
In some embodiments, the blend of compounds can include Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 120.
In some embodiments, the blend of compounds can include between 0.12% Potassium Sorbate, 0.16% Polyglycerol-4-oleate, 0.29% Xanthan Gum, 0.036% Lecithin, 89.4% Water, 10% Blend 120.
In some embodiments, the blend of compounds can include between 0.1 and 0.14% Potassium Sorbate, between 0.12 and 0.18% Polyglycerol-4-oleate, between 0.26 and 0.32% Xanthan Gum, between 0.03 and 0.045% Lecithin, between 80 and 98% Water, and between 8 and 12% Blend 120.
In some embodiments, the blend of compounds can include 0.12% Potassium Sorbate, 0.16% Polyglycerol-4-oleate, 0.29% Xanthan Gum, 0.036% Lecithin, 89.4% Water, 10% 120.
In some embodiments, the blend of compounds can include CAR-01-097 (McCook) and Blend 10.
In some embodiments, the blend of compounds can include between 60 and 90% CAR-01-097 (McCook) and between 10 and 40% Blend 10.
In some embodiments, the blend of compounds can include between 70 and 80% CAR-01-097 (McCook) and between 20 and 30% Blend 10.
In some embodiments, the blend of compounds can include CAR-01-097 (McCook) with 25% Blend 10.
In some embodiments, the blend of compounds can include at least two of the group consisting of Soy Bean Oil, Ethyl Alcohol (denatured), and Blend 10.
In some embodiments, the blend of compounds can include Soy Bean Oil, Ethyl Alcohol (denatured), and Blend 10.
In some embodiments, the blend of compounds can include between 10 and 30% Soy Bean Oil, between 35 and 65% Ethyl Alcohol (denatured), and between 20 and 40% Blend 10.
In some embodiments, the blend of compounds can include between 18 and 22% Soy Bean Oil, between 45 and 55% Ethyl Alcohol (denatured), and between 27 and 33% Blend 10.
In some embodiments, the blend of compounds can include 20% Soy Bean Oil, 50% Ethyl Alcohol (denatured), and 30% Blend 10.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
In some embodiments, the blend of compounds can include at least four or five of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
In some embodiments, the blend of compounds can include Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
In some embodiments, the blend of compounds can include between 0.05 and 0.2% Potassium Sorbate, between 0.05 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.05% Lecithin, between 60 and 98% Water, and between 8 and 25% Blend 124.
In some embodiments, the blend of compounds can include between 0.09 and 0.13% Potassium Sorbate, between 0.13 and 0.17% Polyglycerol-4-oleate, between 0.27 and 0.33% Xanthan Gum, between 0.025 and 0.035% Lecithin, between 76 and 92% Water, and between 13 and 17% Blend 124.
In some embodiments, the blend of compounds can include 0.11% Potassium Sorbate, 0.15% Polyglycerol-4-oleate, 0.30% Xanthan Gum, 0.03% Lecithin, 84.4% Water, 15.01% Blend 124.
In some embodiments, the blend of compounds can include at least two or three of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
In some embodiments, the blend of compounds can include at least four or five of the group consisting of Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
In some embodiments, the blend of compounds can include Potassium Sorbate, Polyglycerol-4-oleate, Xanthan Gum, Lecithin, Water, and Blend 124.
In some embodiments, the blend of compounds can include between 0.05 and 0.5% Potassium Sorbate, between 0.06 and 0.5% Polyglycerol-4-oleate, between 0.1 and 0.5% Xanthan Gum, between 0.01 and 0.1% Lecithin, between 70 and 98% Water, and between 2 and 20% Blend 124.
In some embodiments, the blend of compounds can include between 0.1 and 0.14% Potassium Sorbate, between 0.14 and 0.18% Polyglycerol-4-oleate, between 0.27 and 0.33% Xanthan Gum, between 0.03 and 0.042% Lecithin, between 80 and 96% Water, and between 8 and 12% Blend 124.
In some embodiments, the blend of compounds can include 0.12% Potassium Sorbate, 0.16% Polyglycerol-4-oleate, 0.30% Xanthan Gum, 0.036% Lecithin, 89.4% Water, 10% Blend 124.
In some embodiments, the blend of compounds can include at least two to seven of the group consisting of Citronella Oil, Carbopol 940, Butylated hyrdroxy toluene, Water, Emulsifying Wax, Light Liquid Paraffin, White Soft Paraffin, Sodium Metabisulphate, Propylene Glycol, Cresmer RH40 hydrogenated, Triethanolamine, Vitamin E Acetate, Disodium EDTA, and Blend 7.
In some embodiments, the blend of compounds can include at least eight to thirteen of the group consisting of Citronella Oil, Carbopol 940, Butylated hyrdroxy toluene, Water, Emulsifying Wax, Light Liquid Paraffin, White Soft Paraffin, Sodium Metabisulphate, Propylene Glycol, Cresmer RH40 hydrogenated, Triethanolamine, Vitamin E Acetate, Disodium EDTA, and Blend 7.
In some embodiments, the blend of compounds can include Citronella Oil, Carbopol 940, Butylated hyrdroxy toluene, Water, Emulsifying Wax, Light Liquid Paraffin, White Soft Paraffin, Sodium Metabisulphate, Propylene Glycol, Cresmer RH40 hydrogenated, Triethanolamine, Vitamin E Acetate, Disodium EDTA, and Blend 7.
In some embodiments, the blend of compounds can include between 0.1 and 0.4% Citronella Oil, between 0.1 and 0.4% Carbopol 940, between 0.4 and 0.2% Butylated hyrdroxy toluene, between 40 and 75% Water, between 6 and 25% Emulsifying Wax, between 2 and 8% Light Liquid Paraffin, between 4 and 15% White Soft Paraffin, between 0.1 and 0.5% Sodium Metabisulphate, between 0.8 and 5% Propylene Glycol, between 2 and 10% Cresmer RH40 hydrogenated, between 0.08 and 0.4% Triethanolamine, between 0.01 and 0.05% Vitamin E Acetate, between 0.01 and 0.1% Disodium EDTA, and between 1 and 15% Blend 7.
In some embodiments, the blend of compounds can include between 0.18 and 0.22% Citronella Oil, between 0.18 and 0.22% Carbopol 940, between 0.8 and 0.12% Butylated hyrdroxy toluene, between 52 and 66% Water, between 12 and 16% Emulsifying Wax, between 3 and 5% Light Liquid Paraffin, between 7 and 11% White Soft Paraffin, between 0.2 and 0.3% Sodium Metabisulphate, between 1.5 and 2.5% Propylene Glycol, between 4 and 6% Cresmer RH40 hydrogenated, between 0.13 and 0.17% Triethanolamine, between 0.01 and 0.03% Vitamin E Acetate, between 0.04 and 0.06% Disodium EDTA, and between 4 and 6% Blend 7.
In some embodiments, the blend of compounds can include 0.20% Citronella Oil, 0.20% Carbopol 940, 0.10% Butylated hyrdroxy toluene, 59.83% Water, 14% Emulsifying Wax, 4.00% Light Liquid Paraffin, 9% White Soft Paraffin, 0.25% Sodium Metabisulphate, 2% Propylene Glycol, 5% Cresmer RH40 hydrogenated, 0.15% Triethanolamine, 0.02% Vitamin E Acetate, 0.05% Disodium EDTA, 5% Blend 7.
In some embodiments, the blend of compounds can include at least two of the group consisting of Blend 49, Lemon Grass Oil, and Castor Oil Surfactant.
In some embodiments, the blend of compounds can include Blend 49, Lemon Grass Oil, and Castor Oil Surfactant.
In some embodiments, the blend of compounds can include between 35 and 65% Blend 49, between 15 and 35% Lemon Grass Oil, and between 15 and 35% Castor Oil Surfactant.
In some embodiments, the blend of compounds can include between 45 and 55% Blend 49, between 22 and 28% Lemon Grass Oil, and between 22 and 28% Castor Oil Surfactant.
In some embodiments, the blend of compounds can include 50% Blend 49, 25% Lemon Grass Oil, and 25% Castor Oil Surfactant.
In some embodiments, the blend of compounds can include at least two of the group consisting of Blend 51, Lemon Grass Oil, and Castor Oil Surfactant.
In some embodiments, the blend of compounds can include Blend 51, Lemon Grass Oil, and Castor Oil Surfactant.
In some embodiments, the blend of compounds can include between 35 and 65% Blend 51, between 15 and 35% Lemon Grass Oil, and between 15 and 35% Castor Oil Surfactant.
In some embodiments, the blend of compounds can include between 45 and 55% Blend 51, between 22 and 28% Lemon Grass Oil, and between 22 and 28% Castor Oil Surfactant.
In some embodiments, the blend of compounds can include 50% Blend 51, 25% Lemon Grass Oil, and 25% Castor Oil Surfactant.
In some embodiments, the blend of compounds can include at least two of the group consisting of Blend 52, Lemon Grass Oil, and Castor Oil Surfactant.
In some embodiments, the blend of compounds can include Blend 52, Lemon Grass Oil, and Castor Oil Surfactant.
In some embodiments, the blend of compounds can include between 35 and 65% Blend 52, between 15 and 35% Lemon Grass Oil, and between 15 and 35% Castor Oil Surfactant.
In some embodiments, the blend of compounds can include between 45 and 55% Blend 52, between 22 and 28% Lemon Grass Oil, and between 22 and 28% Castor Oil Surfactant.
In some embodiments, the blend of compounds can include 50% Blend 52, 25% Lemon Grass Oil, and 25% Castor Oil Surfactant.
In some embodiments, the blend of compounds can include at least two of the group consisting of Blend 7, Sodium Lauryl Sulfate, and Water.
In some embodiments, the blend of compounds can include Blend 7, Sodium Lauryl Sulfate, and Water.
In some embodiments, the blend of compounds can include between 2 and 20% Blend 7, between 0.2 and 2% Sodium Lauryl Sulfate, and between 70 and 99% Water.
In some embodiments, the blend of compounds can include between 8 and 12% Blend 7, between 0.8 and 1.2% Sodium Lauryl Sulfate, and between 80 and 98% Water.
In some embodiments, the blend of compounds can include 10% Blend 7, 1% Sodium Lauryl Sulfate, 89% Water.
The composition of exemplary synergistic blends is listed in the following table:
The present invention comprises compositions for controlling insects and methods for using these compositions. The present invention comprises compositions for controlling insects, which comprise one or more plant essential oils and methods for using these compositions. The plant essential oils, when combined, can have a synergistic effect. The compositions of the present invention can include any of the following oils listed below, or mixtures thereof:
The compositions of the present invention may also include any of the following oils listed below, or mixtures thereof:
In those compositions including more than one oil, each oil can make up between about 1% to about 99%, by weight, of the composition mixture. For example, one composition of the present invention comprises about 1% thymol and about 99% geraniol. Optionally, the compositions can additionally comprise a fixed oil, which is a non-volatile non-scented plant oil. For example, the composition could include one or more of the following fixed oils listed below:
For example, one composition of the present invention includes about 1% thymol, about 50% geraniol and about 49% mineral oil. Additionally, it is contemplated that these compositions may be made up of generally regarded as safe (GRAS) compounds, for example: thyme oil, geraniol, lemon grass oil, lilac flower oil, black seed oil, lime oil, eugenol, castor oil, mineral oil, and safflower oil.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise alpha-terpineol or pyrethrum. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise alpha-terpineol or pyrethrum. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise alpha-terpineol or pyrethrum.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise benzyl alcohol or eugenol. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or eugenol. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or eugenol.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise benzyl alcohol or cis-jasmone. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or cis-jasmone. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or cis-jasmone.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise benzyl alcohol or jasmone. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or jasmone. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or jasmone.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise benzyl alcohol or tetrahydrofurfuryl alcohol. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or tetrahydrofurfuryl alcohol. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or tetrahydrofurfuryl alcohol.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise eugenol or pyrethrum. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise eugenol or pyrethrum. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise eugenol or pyrethrum.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thyme oil or pyrethrum. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thyme oil or pyrethrum. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thyme oil or pyrethrum.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or carbaryl. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or carbaryl. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or carbaryl.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or chrysanthemate ester. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or chrysanthemate ester. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or chrysanthemate ester.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or chrysanthemyl alcohol or chrysanthemic acid. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or chrysanthemyl alcohol or chrysanthemic acid. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or chrysanthemyl alcohol or chrysanthemic acid.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or eugenol or trans-anethole, or alpha-terpineol, or citronellal, or propargite. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or eugenol or trans-anethole, or alpha-terpineol, or citronellal, or propargite. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or eugenol or trans-anethole, or alpha-terpineol, or citronellal, or propargite.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or eugenol or trans-anethole, or alpha-terpineol, or citronellal, or pyrethrum. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or eugenol or trans-anethole, or alpha-terpineol, or citronellal, or pyrethrum. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or eugenol or trans-anethole, or alpha-terpineol, or citronellal, or pyrethrum.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or eugenol or trans-anethole, or alpha-terpineol, or citronellal, or tebufenozide. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or eugenol or trans-anethole, or alpha-terpineol, or citronellal, or tebufenozide. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or eugenol or trans-anethole, or alpha-terpineol, or citronellal, or tebufenozide.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or cis-jasmone. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or cis-jasmone. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or cis-jasmone.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or deltamethrin. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or deltamethrin. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or deltamethrin.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or lavandustin A. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or lavandustin A. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or lavandustin A.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or PD 98059. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or PD 98059. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or PD 98059.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or permethrin. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or permethrin. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or permethrin.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or pyrethrum. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or pyrethrum. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or pyrethrum.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise benzyl alcohol or pyrethrum. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or pyrethrum. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or pyrethrum.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise benzyl alcohol or chrysanthemate ester. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or chrysanthemate ester. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or chrysanthemate ester.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise benzyl alcohol, or chrysanthemyl alcohol, or chrysanthemic acid. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol, or chrysanthemyl alcohol, or chrysanthemic acid. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol, or chrysanthemyl alcohol, or chrysanthemic acid.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise benzyl alcohol or trans-anethole. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or trans-anethole. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol or trans-anethole.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise benzyl alcohol, or tetrahydrofurfuryl alcohol, or PD 98059, or trans-anethole, or chrysanthemate ester. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol, or tetrahydrofurfuryl alcohol, or PD 98059, or trans-anethole, or chrysanthemate ester. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol, or tetrahydrofurfuryl alcohol, or PD 98059, or trans-anethole, or chrysanthemate ester.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise benzyl alcohol, or tetrahydrofurfuryl alcohol, or PD 98059, or trans-anethole, or pyrethrum. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol, or tetrahydrofurfuryl alcohol, or PD 98059, or trans-anethole, or pyrethrum. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise benzyl alcohol, or tetrahydrofurfuryl alcohol, or PD 98059, or trans-anethole, or pyrethrum.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise eugenol, or phenylethyl propionate, or menthyl salicylate. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise eugenol, or phenylethyl propionate, or menthyl salicylate. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise eugenol, or phenylethyl propionate, or menthyl salicylate.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise phenylethyl alcohol, or alpha-terpineol, or benzyl alcohol. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise phenylethyl alcohol, or alpha-terpineol, or benzyl alcohol. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise phenylethyl alcohol, or alpha-terpineol, or benzyl alcohol.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise phenylethyl alcohol, or alpha-terpineol, or benzyl alcohol, or phenylethyl propionate. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise phenylethyl alcohol, or alpha-terpineol, or benzyl alcohol, or phenylethyl propionate. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise phenylethyl alcohol, or alpha-terpineol, or benzyl alcohol, or phenylethyl propionate.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise phenylethyl alcohol, or alpha-terpineol, or benzyl alcohol, or phenylethyl propionate, or eugenol. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise phenylethyl alcohol, or alpha-terpineol, or benzyl alcohol, or phenylethyl propionate, or eugenol. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise phenylethyl alcohol, or alpha-terpineol, or benzyl alcohol, or phenylethyl propionate, or eugenol.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise tamoxifen or forskolin. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise tamoxifen or forskolin. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise tamoxifen or forskolin.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol or benzyl alcohol. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol or benzyl alcohol. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol or benzyl alcohol.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or citronellal, or chrysanthemate ester. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or citronellal, or chrysanthemate ester. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or, citronellal, or chrysanthemate ester.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or citronellal, or chrysanthemic acid. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or citronellal, or chrysanthemic acid. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or, citronellal, or chrysanthemic acid.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or citronellal, or chrysanthemyl alcohol. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or citronellal, or chrysanthemyl alcohol. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or, citronellal, or chrysanthemyl alcohol.
In addition, embodiments are specifically contemplated in which any of the ingredients of the above lists are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or citronellal, or cis-jasmone. Furthermore, embodiments are specifically contemplated in which any of the ingredients listed in Table 1 are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or citronellal, or cis-jasmone. Moreover, embodiments are specifically contemplated in which any of the ingredients listed in any one of Blends 1-142 of Table 1 are combined, with the proviso that the ingredients do not comprise thymol, or eugenol, or trans-anethole, or alpha-terpineol, or, citronellal, or cis-jasmone.
In certain embodiments wherein the composition includes Lilac Flower Oil (LFO), one or more of the following compounds can be substituted for the LFO: Tetrahydrolinalool, Ethyl Linalool, Heliotropine, Hedion, Hercolyn D, and Triethyl Citrate. In certain embodiments wherein the composition includes LFO, a blend of the following compounds can be substituted for the LFO: Isopropyl myristate, Tetrahydrolinalool FCC, Linalool, Geraniol Fine FCC, Piperonal (aldehyde), and Vanillin. In certain embodiments wherein the composition includes LFO, a blend of the following compounds can be substituted for the LFO: Isopropyl myristate, Tetrahydrolinalool, Linalool, Geraniol, Piperonal (aldehyde), Vanillin, Methyl Salicylate, and D-limonene.
In certain embodiments wherein the composition includes Black Seed Oil (BSO), one or more of the following compounds can be substituted for the BSO: alpha-thujene: alpha-pinene; beta-pinene; p-cymene; limonene; and tert-butyl-p-benzoquinone.
In certain exemplary embodiments wherein the composition includes Thyme Oil, one or more of the following compounds can be substituted for the Thyme Oil: thymol, α-thujone; α-pinene, camphene, β-pinene, p-cymene, α-terpinene, linalool, borneol, β-caryophyllene, and carvacrol. Compounds used to prepare the exemplary compositions of the present invention can be obtained, for example, from the following sources: Millennium Chemicals, Inc. (Jacksonville, Fla.), Ungerer Company (Lincoln Park, N.J.), SAFC (Milwaukee, Wis.), and IFF Inc. (Hazlet, N.J.).
In some embodiments of the compositions, it can be desirable to include compounds each having a purity of about 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%. For example, in some embodiments of the compositions that include geraniol, it can be desirable to include a geraniol that is at least about 60%, 85% or 95% pure. In some embodiments, it can be desirable to include a specific type of geraniol. For example, in some embodiments, the compositions can include: geraniol 60, geraniol 85, or geraniol 95. When geraniol is obtained as geraniol 60, geraniol 85, or geraniol 95, then forty percent, fifteen percent, or five percent of the oil can be Nerol. Nerol is a monoterpene (C10H18O), that can be extracted from attar of roses, oil of orange blossoms and oil of lavender. Embodiments of the present invention can include art-recognised ingredients normally used in such formulations. These ingredients can include, for example, antifoaming agents, anti-microbial agents, anti-oxidants, anti-redeposition agents, bleaches, colorants, emulsifiers, enzymes, fats, fluorescent materials, fungicides, hydrotropes, moisturizers, optical brighteners, perfume carriers, perfume, preservatives, proteins, silicones, soil release agents, solubilisers, sugar derivatives, sun screens, surfactants, vitamins waxes, and the like.
In certain embodiments, embodiments of the present invention can also contain other adjuvants or modifiers such as one or more therapeutically or cosmetically active ingredients. Exemplary therapeutic or cosmetically active ingredients useful in the compositions of the invention can include, for example, fungicides, sunscreening agents, sunblocking agents, vitamins, tanning agents, plant extracts, anti-inflammatory agents, anti-oxidants, radical scavenging agents, retinoids, alpha-hydroxy acids, emollients, antiseptics, antibiotics, antibacterial agents, antihistamines, and the like, and can be present in an amount effective for achieving the therapeutic or cosmetic result desired.
In some embodiments, compositions of this invention can include one or more materials that can function as an antioxidant, such as reducing agents and free radical scavengers. Suitable materials that can function as an antioxidant can include, for example: acetyl cysteine, ascorbic acid, t-butyl hydroquinone, cysteine, diamylhydroquinone, erythorbic acid, ferulic acid, hydroquinone, p-hydroxyanisole, hydroxylamine sulfate, magnesium ascorbate, magnesium ascorbyl phosphate, octocrylene, phloroglucinol, potassium ascorbyl tocopheryl phosphate, potassium sulfite, rutin, sodium ascorbate, sodium sulfite, sodium thloglycolate, thiodiglycol, thiodiglycolamide, thioglycolic acid, thiosalicylic acid, tocopherol, tocopheryl acetate, tocopheryl linoleate, tris(nonylphenyl)phosphite, and the like.
Embodiments of the invention can also include one or more materials that can function as a chelating agent to complex with metallic ions. This action can help to inactivate the metallic ions for the purpose of preventing their adverse effects on the stability or appearance of a formulated composition. Chelating agents suitable for use in an embodiment of this invention can include, for example, aminotrimethylene phosphonic acid, beta-alanine diacetic acid, calcium disodium EDTA, citric acid, cyclodextrin, cyclohexanediamine tetraacetic acid, diammonium citrate, diammonium EDTA, dipotassium EDTA, disodium azacycloheptane diphosphonate, disodium EDTA, disodium pyrophosphate, EDTA (ethylene diamine tetra acetic acid), gluconic acid, HEDTA (hydroxyethyl ethylene diamine triacetic acid), methyl cyclodextrin, pentapotassium triphosphate, pentasodium aminotrimethylene phosphonate, pentasodium triphosphate, pentetic acid, phytic acid, potassium citrate, potassium gluconate, sodium citrate, sodium diethylenetriamine pentamethylene phosphonate, sodium dihydroxyethylglycinate, sodium gluconate, sodium metaphosphate, sodium metasilicate, sodium phytate, triethanolamine (“TEA”)-EDTA, TEA-polyphosphate, tetrahydroxypropyl ethylenediamine, tetrapotassium pyrophosphate, tetrasodium EDTA, tetrasodium pyrophosphate, tripotassium EDTA, trisodium EDTA, trisodium HEDTA, trisodium phosphate, and the like.
Embodiments of the invention can also include one or more materials that can function as a humectant. A humectant is added to a composition to retard moisture loss during use, which effect is accomplished, in general, by the presence therein of hygroscopic materials.
The following table (table 2) provides exemplary compositions of embodiments of the invention:
In some other embodiments, each compound can make up between about 1% to about 99%, by weight (wt/wt %) or by volume (vol/vol %), of the composition. For example, one composition of the present invention comprises about 2% alpha-Pinene and about 98% D-limonene. As used herein, percent amounts, by weight or by volume, of compounds are to be understood as referring to relative amounts of the compounds. As such, for example, a composition including 7% linalool, 35% thymol, 4% alpha-pinene, 30% para-cymene, and 24% soy bean oil (vol/vol %) can be said to include a ratio of 7 to 35 to 4 to 30 to 24 linalool, thymol, alpha-pinene, para-cymene, and soy bean oil, respectively (by volume). As such, if one compound is removed from the composition, or additional compounds or other ingredients are added to the composition, it is contemplated that the remaining compounds can be provided in the same relative amounts. For example, if soy bean oil were removed from the exemplary composition, the resulting composition would include 7 to 35 to 4 to 40 linalool, thymol, alpha-pinene, and para-cymene, respectively (by volume). This resulting composition would include 9.21% linalool, 46.05% thymol, 5.26% alpha-pinene, and 39.48% para-cymene (vol/vol %). For another example, if safflower oil were added to the original composition to yield a final composition containing 40% (vol/vol) safflower oil, then the resulting composition would include 4.2% linalool, 21% thymol, 2.4% alpha-pinene, 18% para-cymene, 14.4% soy bean oil, and 40% safflower oil (vol/vol %). One having ordinary skill in the art would understand that volume percentages are easily converted to weight percentages based the known or measured specific gravity of the substance.
In certain embodiments, it can be desirable to include a naturally-occurring version or a synthetic version of a compound. For example, in certain embodiments it can be desirable to include Blend 61, a synthetic lime oil that can be obtained, for example, from Millennium Chemicals, Inc. In certain exemplary compositions, it can be desirable to include a compound that is designated as meeting Food Chemical Codex (FCC), for example, Geraniol Fine FCC or Tetrahydrolinalool FCC, which compounds can be obtained, for example, from Millennium Chemicals, Inc.
In certain embodiments, it can be desirable to combine an insect control blend as described herein with a synthetic insecticide such as pyrethroid compound, a nitroguanidine compound or a chloronicotinyl compound. For example, in certain embodiments it can be desirable to combine a blend with delatamethrin, clothianidin or imidacloprid, or a combination thereof. Delatamethrin is available for example from AgrEvo Environmental Health, Inc., of Montvale, N.J. Clothianidin and imidacloprid are available from Bayer CropScience LP of Research Triangle Park, N.C.
In embodiments of the invention that include at least one blend of compounds of a plant origin, the compounds of plant origin can be tested for their precise chemical composition using, for example, High-Pressure Liquid Chromatography (HPLC), Mass Spectrometry (MS), gas chromatography, or the like.
The term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system, i.e., the degree of precision required for a particular purpose, such as a pharmaceutical formulation. For example, “about” can mean within 1 or more than 1 standard deviations, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated the term “about” meaning within an acceptable error range for the particular value should be assumed.
The term “substantially,” as used herein, means at least about 80%, preferably at least about 90%, more preferably at least about 99%, for example at least about 99.9%. In some embodiments, the term “substantially” can mean completely, or about 100%.
Embodiments of the invention can include at least one oil, such as, for example, “Superior oil,” highly-refined oils, and the like.
In the case of an animal, human or non-human, the host can also be treated directly by using a formulation of a composition that is delivered orally. For example, a composition can be enclosed within a liquid capsule and ingested.
An area can be treated with a composition of the present invention, for example, by using a spray formulation, such as an aerosol or a pump spray, or a burning formulation, such as a candle or a piece of incense containing the composition. Of course, various treatment methods can be used without departing from the spirit and scope of the present invention. For example, compositions can be comprised in household products such as: air fresheners (including heated air fresheners in which insect repellent substances are released upon heating, e.g., electrically, or by burning); hard surface cleaners; or laundry products (e.g., laundry detergent-containing compositions, conditioners).
Surprisingly, by blending certain compounds in certain relative amounts, the resulting composition demonstrates a repellant or pesticidal effect that exceeds the repellant or pesticidal effect of any component of the composition. As used herein, “component of a composition” refers to a compound, or a subset of compounds included in a composition, e.g., the complete composition minus at least one compound. As used herein, “repellant effect” is an effect wherein more insects are repelled away from a host or area that has been treated with the composition than a control host or area that has not been treated with the composition. In some embodiments, repellant effect is an effect wherein at least about 75% of insects are repelled away from a host or area that has been treated with the composition. In some embodiments, repellant effect is an effect wherein at least about 90% of insects are repelled away from a host or area that has been treated with the composition. As used herein, “pesticidal effect” is an effect wherein treatment with a composition causes at least about 1% of the insects to die. In this regard, when a first effect and a second effect are compared, the first effect can indicate a greater pesticidal or repellant efficacy if it exceeds the second effect. For example, when the effect being measured is a % killing of target insects, a greater % killing is a pesticidal effect that exceeds a lesser % killing. Effects that can be measured include, but are not limited to: time to kill a given percentage of a target insect, or repellency as to a given percentage of a target insect.
Surprisingly, by combining certain insect control chemicals, and compounds or blends of the present invention, insect control activity of the resulting compositions can be enhanced, i.e., a synergistic effect on insect control activity is achieved when a certain chemical or chemicals, and a certain compound or compounds are combined. In other words, the compositions including certain combinations of at least one chemical, and at least one compound or at least one blend of compounds can have an enhanced ability to control target pests, as compared to each of the chemicals or compounds taken alone.
In embodiments of the present invention, “synergy” can refer to any substantial enhancement, in a combination of at least two ingredients, of a measurable effect, when compared with the effect of one active ingredient alone, or when compared with the effect of the complete combination minus at least one ingredient. Synergy is a specific feature of a combination of ingredients, and is above any background level of enhancement that would be due solely to, e.g., additive effects of any random combination of ingredients. Effects include but are not limited to: repellant effect of the composition; pesticidal effect of the composition; perturbation of a cell message or cell signal such as, e.g., calcium, cyclic-AMP, and the like; and diminution of activity or downstream effects of a molecular target.
As used herein, “synergy” and “synergistic effect” can refer to any substantial enhancement, in a composition of at least two compounds, of a measurable effect, e.g., an anti-parasitic effect, when compared with the effect of a component of the composition, e.g., one active compound alone, or the complete blend of compounds minus at least one compound. Synergy is a specific feature of a blend of compounds, and is above any background level of enhancement that would be due solely to, e.g., additive effects of any random combination of ingredients.
In some embodiments, a substantial enhancement of a measurable effect can be expressed as a coefficient of synergy. A coefficient of synergy is an expression of a comparison between measured effects of a composition and measured effects of a comparison composition. The comparison composition can be a component of the composition. In some embodiments, the synergy coefficient can be adjusted for differences in concentration of the complete blend and the comparison composition.
Synergy coefficients can be calculated as follows. An activity ratio (R) can be calculated by dividing the % effect of the composition (AB) by the % effect of the comparison composition (Xn), as follows:
R=A
B
/X
n Formula 1
A concentration adjustment factor (F) can be calculated based on the concentration (Cn), i.e., % (wt/wt) or % (vol/vol), of the comparison composition in the composition, as follows:
F=100/Cn Formula 2
The synergy coefficient (S) can then be calculated by multiplying the activity ratio (R) and the concentration adjustment factor (F), as follows:
S=(R)(F) Formula 3
As such, the synergy coefficient (S) can also by calculated, as follows:
S=[(AB/Xn)(100)]/Cn Formula 4
In Formula 4, AB is expressed as % effect of the blend, Xn is expressed as % effect of the comparison composition (Xn), and Cn is expressed as % (wt/wt) or % (vol/vol) concentration of the comparison composition in the blend.
In some embodiments, a coefficient of synergy of about 1.1, 1.2, 1.3, 1.4, or 1.5 can be substantial and commercially desirable. In other embodiments, the coefficient of synergy can be from about 1.6 to about 5, including but not limited to about 1.8, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5. In other embodiments, the coefficient of synergy can be from about 5 to 50, including but not limited to about 10, 15, 20, 25, 30, 35, 40, and 45. In other embodiments, the coefficient of synergy can be from about 50 to about 500, or more, including but not limited to about 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, and 450. Any coefficient of synergy above 500 is also contemplated within embodiments of the compositions.
Given that a broad range of synergies can be found in various embodiments described herein, it is expressly noted that a coefficient of synergy can be described as being “greater than” a given number and therefore not necessarily limited to being within the bounds of a range having a lower and an upper numerical limit. Likewise, in some embodiments described herein, certain low synergy coefficients, or lower ends of ranges, are expressly excluded. Accordingly, in some embodiments, synergy can be expressed as being “greater than” a given number that constitutes a lower limit of synergy for such an embodiment. For example, in some embodiments, the synergy coefficient is equal to or greater than 25; in such an embodiment, all synergy coefficients below 25, even though substantial, are expressly excluded.
In some embodiments, synergy or synergistic effect associated with a composition can be determined using calculations similar to those described in Colby, S. R., “Calculating Synergistic and Antagonistic Responses of Herbicide Combinations,” Weeds, 1967 15:1, pp. 20-22, which is incorporated herein by reference. In this regard, the following formula can be used to express percent effect (E) of a composition including two compounds, Compound X and Compound Y:
E=X+Y−(X*Y/100) Formula 5
In Formula 5, X is the measured actual percent effect of Compound X in the composition, and Y is the measured actual percent effect of Compound Y in the composition. The expected percent effect (E) of the composition is then compared to a measured actual percent effect (A) of the composition. If the actual percent effect (A) that is measured differs from the expected percent effect (E) as calculated by the formula, then the difference is due to an interaction of the compounds. Thus, the composition has synergy (a positive interaction of the compounds) when A>E. Further, there is a negative interaction (antagonism) when A<E.
Formula 5 can be extended to account for any number of compounds in a composition; however it becomes more complex as it is expanded, as is illustrated by the following formula for a composition including three compounds, Compound X, Compound Y, and Compound Z:
E=X+Y+Z−((XY+XZ+YZ)/100)+(X*Y*Z/1000) Formula 6
An easy-to-use formula that accommodates compositions with any number of compounds can be provided by modifying Formulas 5 and 6. Such a modification of the formula will now be described. When using Formulas 5 and 6, an untreated control value (untreated with composition or compound) is set at 100%, e.g., if the effect being measured is the amount of target insects killed, the control value would be set at 100% survival of the target insect. In this regard, if treatment with compound A results in 80% killing of the target insect, then the treatment with compound A can be said to result in a 20% survival, or 20% of the control value. The relationship between values expressed as a percent effect and values expressed as a percent-of-control are set forth in the following formulas, where E′ is the expected percent of control of the composition, Xn is the measured actual % effect of an individual compound (Compound Xn) of the composition, Xn′ is the percent of control of an individual compound of the composition, and A′ is the actual measured percent of control of the composition.
E=100−E′ Formula 7
X
n=100−Xn′ Formula 8
A=100−A′ Formula 9
By substituting the percent-of-control values for the percent effect values of Formulas 5 and 6, and making modifications to accommodate any number (n) of compounds, the following formula is provided for calculating the expected % of control (E′) of the composition:
According to Formula 10, the expected % of control (E′) for the composition is calculated by dividing the product of the measured actual % of control values (Xn′) for each compound of the composition by 100n-1. The expected % of control (E′) of the composition is then compared to the measured actual % of control (A′) of the composition. If the actual % of control (A′) that is measured differs from the expected % of control (E′) as calculated by the Formula 10, then the difference is due to an interaction of the compounds. Thus, the composition has synergy (a positive interaction of the compounds) when A′<E′. Further, there is a negative interaction (antagonism) when A′>E′.
Compositions containing two or more compounds in certain ratios or relative amounts can be tested for a synergistic effect by comparing the pesticidal effect of a particular composition of compounds to the pesticidal effect of a component of the composition. Additional information related to making a synergy determination can be found in the examples set forth in this document. While synergy has been described in terms of a coefficient of synergy and in terms of the Colby synergy calculations, it is noted that synergy by other measures or determinations known in the art is, in some embodiments, also within the meaning of synergy as described and claimed herein.
Exemplary methods that can be used to determine the synergistic effect of a particular composition are set forth in the following applications, each of which is incorporated in its entirety herein by reference: U.S. application Ser. No. 10/832,022, entitled COMPOSITIONS AND METHODS FOR CONTROLLING INSECTS; U.S. application Ser. No. 11/086,615, entitled COMPOSITIONS AND METHODS FOR CONTROLLING INSECTS RELATED TO THE OCTOPAMINE RECEPTOR; U.S. application Ser. No. 11/365,426, entitled COMPOSITIONS AND METHODS FOR CONTROLLING INSECTS INVOLVING THE TYRAMINE RECEPTOR; and U.S. application Ser. No. 11/870,385, entitled COMPOSITIONS AND METHODS FOR CONTROLLING INSECTS.
In some embodiments of the invention, the screening method for pest control potential can target a molecule of an insect olfactory receptor protein. In some embodiments of the invention, the screening method for pest control potential can target an insect olfactory receptor protein. The insect olfactory system includes more than 60 identified olfactory receptors. These receptors are generally members of a large family of G protein coupled receptors (GPCRs).
As used herein, a “receptor” is an entity on the cell membrane or within the cell, cytoplasm, or cell nucleus that can bind to a specific molecule (a ligand), such as, for example, a neurotransmitter, hormone, or the like, and initiates the cellular response to the ligand. Ligand-induced changes in the behavior of receptor proteins can result in physiological changes that constitute the biological actions of the ligands.
In accordance with the present disclosure, receptors such as G protein-coupled receptors may be classified on the basis of binding affinity of the receptor to an active ingredient. This may also be expressed as the binding affinity of the active ingredient for the receptor. The binding affinity of an active ingredient for a receptor, or the binding affinity of a receptor for an active ingredient, may be measured in accordance with methods disclosed herein or methods known to those of skill in the art. As used in the present disclosure, a “low” affinity indicates that a high concentration of the active ingredient relative to the receptor is required to maximally occupy the binding site of the receptor and trigger a physiological response, while a “high” affinity indicates that that a low concentration of the active ingredient relative to the receptor is adequate to maximally occupy the binding site of the receptor and trigger a physiological response. A “high” affinity may correspond to, for example, an active ingredient concentration of two or more orders of magnitude less than the concentration of the receptor that is effective to trigger the physiological response, while a “low” affinity may correspond to an active ingredient concentration of one or more orders of magnitude greater than the concentration of the receptor that is effective to trigger the physiological response.
Any insect cell or cell line can be used for the screening assay. Exemplary insect cell lines include but are not limited to SF9, SF21, T.ni, Drosophila S2 cells, and the like. Methods of culturing the insect cells are known in the art, and are described, for example, in Lynn et al., J. Insect Sci. 2002; 2: 9, incorporated herein by reference in its entirety. Methods of starting a new insect cell culture from a desired insect cell are described, for example, in Lynn et al. Cytotechnology. 1996; 20:3-1 1, which is incorporated herein by reference in its entirety.
Further discussion of various approaches to screening, preparing, evaluating, and using insect control formulations are disclosed in the following applications, each of which is incorporated by reference in its entirety: U.S. application Ser. No. 10/832,022, entitled COMPOSITIONS AND METHODS FOR CONTROLLING INSECTS; U.S. application Ser. No. 11/086,615, entitled COMPOSITIONS AND METHODS FOR CONTROLLING INSECTS RELATED TO THE OCTOPAMINE RECEPTOR; U.S. application Ser. No. 11/365,426, entitled COMPOSITIONS AND METHODS FOR CONTROLLING INSECTS INVOLVING THE TYRAMINE RECEPTOR; U.S. Provisional Application 60/807,600, entitled COMPOSITIONS AND METHODS FOR CONTROLLING INSECTS; U.S. Provisional Application 60/805,963, entitled COMPOSITIONS FOR TREATING PARASITIC INFECTIONS AND METHODS OF SCREENING FOR SAME; U.S. Provisional Application 60/718,570, entitled COMPOSITIONS HAVING INSECT CONTROL ACTIVITY AND METHODS FOR USE THEREOF.
In embodiments of the present invention, a Drosophila Schneider 2 (S2) cell line is stably transfected with a G protein-coupled receptor that is amplified from Drosophila melanogaster head cDNA phage library. The cell line can be used to screen potential active ingredients, as described below.
Receptor binding can result in cellular changes down stream to the receptor. The subsequent cellular changes may include altered intracellular cAMP levels, calcium levels or both.
In some embodiments of the invention, the screening method for insect control activity can target an insect olfactory receptor protein. The insect olfactory system includes more than 60 identified olfactory receptors. These receptors are generally members of a large family of G protein coupled receptors (GPCRs).
In Drosophila melanogaster, the olfactory receptors are located in two pairs of appendages located on the head of the fly. The family of Drosophila chemoreceptors includes approximately 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of approximately 60 Or and 60 Gr genes through alternative splicing. Some of these receptor proteins have been functionally characterized, while others have been identified by sequence homology to other sequences but have not been fully characterized. Other insects have similar olfactory receptor proteins.
In certain embodiments, the insect olfactory receptor protein targeted by the screening or insect control method of the invention is the tyramine receptor (tyrR). In additional embodiments, the insect olfactory receptor protein is the insect olfactory receptor protein Or83b or Or43a. In additional embodiments, the targeted protein can be any of the insect olfactory protein receptors.
Additionally, other components of the insect olfactory receptor cascade can be targeted using the method of the invention in order to identify useful insect control compounds. Exemplary insect olfactory cascade components that can be targeted by methods of the invention include but are not limited to serotonin receptor, Or22a, Or22b, Gr5a, Gr21a, Gr61a, beta-arrestin receptor, GRK2 receptor, and tyramine beta-hydroxylase receptor, and the like.
With reference to
In some embodiments of the invention, isolated cell membranes expressing the receptor of interest can be used in competitive binding assays. Whole cells can be used to study changes in signaling down-stream to the receptor, in response to treatment with a test composition.
Embodiments of the invention can utilize prokaryotic and eukaryotic cells including, for example, bacterial cells, yeast cells, fungal cells, insect cells, nematode cells, plant cells, animal cells, and the like. Suitable animal cells can include, for example, HEK cells, HeLa cells, COS cells, U20S cells, CHO-K1 cells, various primary mammalian cells, and the like. An animal model expressing one or more conjugates of an arrestin and a marker molecule, for example, throughout its tissues, within a particular organ or tissue type, or the like, can be used.
The potential for insect control activity can be identified by measuring the affinity of the test compositions for the receptor in the cell lines expressing a TyrR, Or83b, and/or Or43a. The potential for insect control activity can also be identified by measuring the change in intracellular cAMP and/or Ca2+ in the cell lines expressing TyrR, Or83b, and/or Or43a following treatment with the test compositions. The gene sequences of the TyrR, the Or 83b receptor and the Or 43a receptor have substantial similarity between various insect species. As such, the Drosophila Schneider cell lines expressing these receptors can be used to screen for compositions having insect control activity in various insect species.
The methods of embodiments of the invention can used to control any type of target pest, such as an insect. Exemplary insects that can be controlled include but are not limited to beetles, cockroaches, flies, ants, insect larvae, bees, lice, fleas, mosquitoes, moths, and the like. Exemplary insect orders can include but are not limited to orders Acari, Anoplura, Araneae, Blattodea, Coleoptera, Collembola, Diptera, Grylloptera, Heteroptera, Homoptera, Hymenoptera, Isopoda, Isoptera, Lepidoptera, Mantodea, Mallophaga, Neuroptera, Odonata, Orthoptera, Psocoptera, Siphonaptera, Symphyla, Thysanura, and Thysanoptera and the like.
Embodiments of the present invention can be used to control, for example, the insects set forth in the following table (Table 3), or the like.
Abgrallaspis ithacae (Ferris)
Acalitus essigi (Hassan)
Acalitus rudis (Can.)
Acalitus vaccinii (Keif.)
Acalymma vittatum (F.)
Acantholyda erythrocephala (L.)
Acantholyda zappei (Roh.)
Acanthomyops interjectus (Mayr)
Acanthoscelides obtectus (Say)
Acarus siro L.
Aceria campestricola (Frauen.)
Aceria dispar (Nal.)
Aceria elongatus (Hodg.)
Aceria fraxiniflora (Felt)
Aceria parapopuli (Keif.)
Aceria tosichella Keif.
Acericecis ocellaris (O.S.)
Achaearanea tepidariorum (Koch)
Acheta domesticus (L.)
Achyra rantalis (Gn.)
Acleris chalybeana (Fern.)
Acleris comariana (Zell.)
Acleris fuscana (B. & Bsk.)
Acleris gloverana (Wlsm.)
Acleris logiana (Cl.)
Acleris minuta (Rob.)
Acleris variana (Fern.)
Acossus centerensis (Lint.)
Acossus populi (Wlk.)
Acrobasis betulella Hulst
Acrobasis caryae Grt.
Acrobasis comptoniella Hulst
Acrobasis juglandis (LeB.)
Acrobasis rubrifasciella Pack.
Acrobasis sylviella Ely
Acrobasis vaccinii Riley
Acronicta americana (Harr.)
Acronicta dactylina Grt.
Acronicta fragilis (Gn.)
Acronicta funeralis G. & R.
Acronicta furcifera Gn.
Acronicta grisea Wlk.
Acronicta hasta Gn.
Acronicta impressa Wlk.
Acronicta innotata Gn.
Acronicta leporina (L.)
Acronicta lepusculina Gn.
Acronicta oblinita (J. E. Smith)
Acronicta tristis Sm.
Acronicta vinnula (Grt.)
Actebia fennica (Tausch.)
Actias luna (L.)
Aculops lycopersici (Tryon)
Aculus fockeui (Nal. & Tr.)
Aculus schlechtendali (Nal.)
Acyrthosiphon caraganae
Acyrthosiphon pisum (Harr.)
Adalia bipunctata (L.)
Adelges abietis (L.)
Adelges cooleyi (Gill.)
Adelges lariciatus (Patch)
Adelges laricis Vallot
Adelges piceae (Ratz.)
Adelges tsugae Ann.
Adelphocoris lineolatus (Goeze)
Adelphocoris rapidus (Say)
Adelphocoris superbus (Uhl.)
Aedes aegypti (L.)
Aellopos titan (Cram.)
Aeshna canadensis Wlk.
Aeshna umbrosa Wlk.
Aglais milberti (Godt.)
Agrilus anxius Gory
Agrilus aurichalceus Redt.
Agrilus bilineatus (Weber)
Agrilus liragus B. & B.
Agrilus politus (Say)
Agrilus ruficollis (F.)
Agriopodes fallax (H.-S.)
Agriotes limosus (LeC.)
Agriotes lineatus (L.)
Agriotes mancus (Say)
Agriotes obscurus (L.)
Agriotes sparsus LeC.
Agriphila vulgivagella (Clem.)
Agrius cingulata (F.)
Agromyza aristata Malloch
Agromyza frontella (Rond.)
Agromyza melampyga (Loew)
Agrotis gladiaria Morr.
Agrotis ipsilon (Hufn.)
Agrotis orthogonia Morr.
Ahasverus advena (Waltl)
Alabama argillacea (Hbn.)
Alaus myops (F.)
Alaus oculatus (L.)
Aleuroglyphus ovatus (Troup.)
Allantus cinctus (L.)
Alniphagus aspericollis (LeC.)
Alphitobius diaperinus (Panz.)
Alphitobius laevigatus (F.)
Alphitophagus bifasciatus (Say)
Alsophila pometaria (Harr.)
Altica ambiens LeC.
Altica canadensis Gent.
Altica chalybaea Ill.
Altica prasina LeC.
Altica rosae Woods
Altica sylvia Malloch
Altica ulmi Woods
Alypia langtoni Couper
Alypia octomaculata (F.)
Amblyscirtes vialis (Edw.)
Amphibolips confluenta (Harr.)
Amphibolips quercusinanis (O.S.)
Amphicerus bicaudatus (Say)
Amphimallon majalis (Raz.)
Amphion floridensis B. P. Clark
Amphipoea interoceanica (Sm.)
Amphipyra pyramidoides Gn.
Amphipyra pyramidoides Gn.
Amplicephalus inimicus (Say)
Anabrus simplex Hald.
Anacampsis innocuella (Zell.)
Anacampsis niveopulvella (Cham.)
Anagrapha falcifera (Kby.)
Anaphothrips obscurus (Mull.)
Anarsia lineatella Zell.
Anasa tristis (DeG.)
Anathix puta (G. & R.)
Anatis labiculata (Say)
Anatis mali (Say)
Ancistronycha bilineata (Say)
Ancylis burgessiana (Zell.)
Ancylis comptana (Fro.)
Ancylis discigerana (Wlk.)
Anelaphus parallelus (Newm.)
Anelaphus villosus (F.)
Anisota finlaysoni Riotte
Anisota senatoria (J. E. Smith)
Anisota stigma (F.)
Anisota virginiensis (Drury)
Anobium punctatum (DeG.)
Anomoea laticlavia (Forst.)
Anoplonyx canadensis Hgtn.
Anoplonyx luteipes (Cress.)
Antheraea polyphemus (Cram.)
Anthonomus musculus Say
Anthonomus quadrigibbus (Say)
Anthonomus signatus Say
Anthonomus signatus Say
Anthophylax attenuatus (Hald.)
Anthrenus flavipes LeC.
Anthrenus museorum (L.)
Anthrenus scrophulariae (L.)
Anthrenus verbasci (L.)
Antispila nysaefoliella Clem.
Apamea amputatrix (Fitch)
Apamea devastator (Brace)
Aphis craccivora Koch
Aphis fabae Scop.
Aphis fabae Scop.
Aphis gossypii Glov.
Aphis maculatae Oestl.
Aphis nasturtii Kltb.
Aphis pomi DeG.
Aphis rubicola Oest.
Aphomia gularis (Zell.)
Aphrophora cribrata (Wlk.)
Aphrophora fulva Doering
Aphrophora parallela (Say)
Aphrophora permutata Uhl.
Aphrophora saratogensis (Fitch)
Apion longirostre Oliv.
Apion nigrum Hbst.
Apion simile Kby.
Apis mellifera L.
Apotomis dextrana (McD.)
Aradus kormileri Heiss
Araecerus fasciculatus (DeG.)
Araneus trifolium (Hentz)
Archips argyrospila (Wlk.)
Archips cerasivorana (Fitch)
Archips fervidana (Clem.)
Archips mortuana Kft.
Archips negundana (Dyar)
Archips packardiana (Fern.)
Archips purpurana (Clem.)
Archips rosana (L.)
Archips semiferana (Wlk.)
Arctia caja (L.)
Argas persicus (Oken)
Argyresthia conjugella Zell.
Argyresthia laricella Kft.
Argyresthia oreasella Clem.
Argyresthia thuiella (Pack.)
Argyrotaenia citrana (Fern.)
Argyrotaenia mariana (Fern.)
Argyrotaenia occultana Free.
Argyrotaenia pinatubana (Kft.)
Argyrotaenia quadrifasciana
Argyrotaenia quercifoliana (Fitch)
Argyrotaenia tabulana Free.
Argyrotaenia velutinana (Wlk.)
Arhopalus foveicollis (Hald.)
Arhopalus productus (LeC.)
Armadillidium vulgare (Latr.)
Aroga trialbamaculella (Cham.)
Arrhenodes minutus (Drury)
Asemum striatum (L.)
Aspidiotus nerii Bouch,
Asterodiapsis variolosa (Ratz.)
Asynapta hopkinsi Felt
Asynonychus cervinus (Boh.)
Attagenus pellio (L.)
Attagenus unicolor (Brahm)
Aulacaspis rosae (Bouch,)
Aulacorthum solani (Kltb.)
Aulocara elliotti (Thos.)
Autographa biloba (Steph.)
Autographa californica (Speyer)
Automeris io (F.)
Bactrocera oleae (Gmel.)
Baliosus nervosus (Panz.)
Banasa dimiata (Say)
Barbara colfaxiana (Kft.)
Battus philenor (L.)
Bemisia tabaci (Genn.)
Biston betularia cognataria (Gn.)
Blastobasis glandulella (Riley)
Blatta orientalis L.
Blattella germanica (L.)
Blissus l. leucopterus (Say)
Blissus leucopterus hirtus Montd.
Blissus occiduus Barber
Boisea rubrolineata (Barber)
Boisea trivittata (Say)
Boloria bellona (F.)
Boloria eunomia (Esp.)
Boloria selene (D. & S.)
Bombyx mori (L.)
Bomolocha deceptalis (Wlk.)
Bourletiella hortensis (Fitch)
Bovicola bovis (L.)
Bovicola caprae (Gurlt)
Bovicola equi (Denny)
Bovicola ovis (Schr.)
Brachycaudus persicae (Pass.)
Brachycoynella asparagi (Mord.)
Brevicoryne brassicae (L.)
Brochymena quadripustulata (F.)
Bromius obscurus (L.)
Bruchophagus platypterus (Wlk.)
Bruchophagus roddi (Guss.)
Bruchus brachialis Fahr.
Bruchus pisorum (L.)
Bruchus rufimanus Boh.
Bryobia praetiosa Koch
Bryobia rubrioculus (Scheut.)
Bucculatrix ainsliella Murt.
Bucculatrix canadensisella Cham.
Buprestis aurulenta L.
Buprestis maculativentris Say
Byturus unicolor Say
Cacopsylla buxi (L.)
Cacopsylla mali (Schmdb.)
Cacopsylla negundinis Mally
Cacopsylla pyricola Forst.
Cadra cautella (Wlk.)
Cadra figulilella (Greg.)
Caenurgina crassiuscula (Haw.)
Caliroa cerasi (L.)
Caliroa cerasi (L.)
Caliroa fasciata (Nort.)
Caliroa fasciata (Nort.)
Callidium antennatum hesperum
Calligrapha alni Schaeff.
Calligrapha philadelphica (L.)
Calligrapha scalaris (LeC.)
Callirhytis cornigera (O.S.)
Callirhytis quercuspunctata
Callosamia promethea (Drury)
Calocoris norvegicus Gmel.
Calopteryx maculata (Beauv.)
Caloptilia alnivorella (Cham.)
Caloptilia invariabilis (Braun)
Caloptilia negundella (Cham.)
Caloptilia syringella (F.)
Calosoma calidum (F.)
Calvia quatuordecimguttata (L.)
Cameraria aceriella (Clem.)
Cameraria betulivora (Wlsm.)
Cameraria cincinnatiella (Cham.)
Cameraria hamadryadella (Clem.)
Camnula pellucida (Scudd.)
Campaea perlata (Gn.)
Camponotus ferrugineus (F.)
Camponotus herculeanus (L.)
Camponotus pennsylvanicus
Campylomma verbasci (Meyer)
Canarsia ulmiarrosorella (Clem.)
Caripeta angustiorata Wlk.
Caripeta divisata Wlk.
Carpoglyphus lactis (L.)
Carpophilus hemipterus (L.)
Carterocephalus palaemon
Cartodere constricta (Gyll.)
Carulaspis juniperi (Bouch,)
Catastega aceriella Clem.
Catocala blandula Hulst
Catocala briseis Edw.
Catocala cerogama Gn.
Catocala concumbens Wlk.
Catocala gracilis Edw.
Catocala habilis Grt.
Catocala ilia (Cram.)
Catocala relicta Wlk.
Catocala sordida Grt.
Catocala ultronia (Hbn.)
Catocala unijuga Wlk.
Caulocampus acericaulis (MacG.)
Cavariella aegopodii (Scop.)
Cecidomyia pellex O.S.
Cecidomyia piniinopis O.S.
Cecidomyia resinicola (O.S.)
Cecidomyia verrucicola O.S.
Cecidophyopsis ribis (Westw.)
Cecidophyopsis ribis (Westw.)
Celastrina argiolus (Cram.)
Cephalcia fascipennis (Cress.)
Cephalcia marginata Middk.
Cephaloon lepturoides Newm.
Cephus cinctus Nort.
Cephus pygmaeus (L.)
Cerapteryx graminis L.
Ceratomia amyntor (Gey.)
Ceratomia undulosa (Wlk.)
Ceratophyllus gallinae (Schr.)
Ceratophyllus niger Fox
Cercyonis pegala (F.)
Cerotoma trifurcata (Forst.)
Ceutorhynchus assimilis (Payk.)
Ceutorhynchus rapae Gyll.
Chaetocnema pulicaria Melsh.
Chaetophloeus heterodoxus
Chaetosiphon fragaefolii (Ckll.)
Chaitophorus populicola Thos.
Chalcophora virginiensis (Drury)
Charidotella sexpunctata bicolor
Charidryas harrisii (Scudd.)
Charidryas nycteis (Dbly.)
Cheimophila salicella (Hbn.)
Chelopistes meleagridis (L.)
Chelymorpha cassidea (F.)
Chilocorus stigma (Say)
Chionaspis americana Johns.
Chionaspis corni Cooley
Chionaspis furfura (Fitch)
Chionaspis lintneri Comst.
Chionaspis pinifoliae (Fitch)
Chionaspis salicisnigrae (Walsh)
Chionodes formosella (Murt.)
Chionodes obscurusella (Cham.)
Chlorochlamys chloroleucaria
Chlorochroa sayi (Stal)
Choreutis pariana (Cl.)
Chorioptes bovis (Gerl.)
Choristoneura biennis Free.
Choristoneura conflictana (Wlk.)
Choristoneura fractvittana (Clem.)
Choristoneura fumiferana (Clem.)
Choristoneura occidentalis Free.
Choristoneura p. pinus Free.
Choristoneura parallela (Rob.)
Choristoneura rosaceana (Harr.)
Chortippus c. curtipennis (Harr.)
Chromatomyia syngenesiae Hdy.
Chrysobothris femorata (Oliv.)
Chrysochus auratus (F.)
Chrysomela crotchi Brown
Chrysomela scripta F.
Chrysomela walshi Brown
Chrysopa oculata Say
Chrysoperla carnea (Steph.)
Chrysoteuchia topiaria (Zell.)
Cimbex americana Leach
Cimex lectularius L.
Cimex pilosellus (Horv.)
Cinara banksiana P. & T.
Cinara curvipes (Patch)
Cinara fornacula Hottes
Cinara laricifex (Fitch)
Cinara laricis (Htg.)
Cinara pinea (Mord.)
Cinara strobi (Fitch)
Cingilia catenaria (Drury)
Circulifer tenellus (Baker)
Citheronia regalis (F.)
Citheronia regalis (F.)
Clastoptera obtusa (Say)
Clastoptera proteus Fitch
Clepsis persicana (Fitch)
Clossiana titania grandis (B. &
Clostera albosigma Fitch
Clostera apicalis (Wlk.)
Clostera inclusa (Hbn.)
Cnephasia longana (Haw.)
Coccinella novemnotata Hbst.
Coccinella septempunctata L.
Coccinella transversoguttata
richardsoni Brown
Coccinella undecimpunctata L.
Cochliomyia macellaria (F.)
Coenonympha inornata Edw.
Coleophora laricella (Hbn.)
Coleophora laticornella Clem.
Coleophora limosipennella (Dup.)
Coleophora malivorella Riley
Coleophora pruniella Clem.
Coleophora serratella (L.)
Coleophora serratella (L.)
Coleotechnites apicitripunctella
Coleotechnites canusella (Free.)
Coleotechnites laricis (Free.)
Coleotechnites macleodi (Free.)
Coleotechnites milleri (Bsk.)
Coleotechnites piceaella (Kft.)
Coleotechnites resinosae (Free.)
Coleotechnites thujaella (Kft.)
Colias eurytheme Bdv.
Colias interior Scudd.
Colias philodice Godt.
Colomerus vitis (Pgst.)
Colopha ulmicola (Fitch)
Coloradia pandora Blake
Conophthorus coniperda (Schw.)
Conophthorus ponderosae Hopk.
Conophthorus ponderosae Hopk.
Conophthorus resinosae Hopk.
Conotrachelus juglandis LeC.
Conotrachelus nenuphar (Hbst.)
Contarinia baeri (Prell)
Contarinia bromicola (M. & A.)
Contarinia canadensis Felt
Contarinia johnsoni Felt
Contarinia negundifolia Felt
Contarinia negundinis (Gill.)
Contarinia oregonensis Foote
Contarinia pyrivora (Riley)
Contarinia schulzi Gagn,
Contarinia virginianae (Felt)
Contarinia washingtonensis Johns.
Corcyra cephalonica (Staint.)
Corthylus punctatissimus (Zimm.)
Corydalus cornutus (L.)
Corydalus cornutus (L.)
Corythucha arcuata (Say)
Corythucha ciliata (Say)
Corythucha elegans Drake
Corythucha heidemanni Drake
Corythucha juglandis (Fitch)
Corythucha pallipes Parsh.
Corythucha ulmi O. & D.
Cotalpa lanigera (L.)
Craponius inaequalis (Say)
Creophilus maxillosus (L.)
Crepidodera nana (Say)
Crioceris asparagi (L.)
Crioceris duodecimpunctata (L.)
Crocigrapha normani (Grt.)
Croesia curvalana (Kft.)
Croesia semipurpurana (Kft.)
Croesus latitarsus Nort.
Cryptocala acadiensis (Bethune)
Cryptococcus fagisuga Lind.
Cryptolestes ferrugineus (Steph.)
Cryptolestes pusillus (Schonh.)
Cryptolestes turcicus (Grouv.)
Cryptomyzus ribis (L.)
Cryptophagus varus W. & C.
Cryptorhynchus lapathi (L.)
Ctenicera aeripennis (Kby.)
Ctenicera destructor (Brown)
Ctenicera propola propola LeC.
Ctenicera pruinina (Horn)
Ctenicera r. resplendens (Esch.)
Ctenicera triundulata (Rand.)
Ctenocephalides canis (Curt.)
Ctenocephalides felis (Bouch,)
Cucullia intermedia Speyer
Culex pipiens L.
Curculio uniformis (LeC.)
Cuterebra tenebrosa Coq.
Cydia caryana (Fitch)
Cydia latiferreana (Wlsm.)
Cydia nigricana (F.)
Cydia piperana Kft.
Cydia pomonella (L.)
Cydia strobilella (L.)
Cydia toreuta (Grt.)
Cynaeus angustus (LeC.)
Cytodites nudus (Vizioli)
Daktulosphaira vitifoliae (Fitch)
Danaus plexippus (L.)
Darapsa myron (Cram.)
Darapsa versicolor (Harr.)
Dasineura balsamicola (Lint.)
Dasineura communis Felt
Dasineura gleditchiae O.S.
Dasineura leguminicola (Lint.)
Dasineura mali (Keif.)
Dasineura rhodophaga (Coq.)
Dasineura swainei (Felt)
Dasychira dorsipennata (B. &
Dasychira pinicola (Dyar)
Dasychira plagiata (Wlk.)
Dasylophia thyatiroides (Wlk.)
Datana integerrima G. & R.
Datana ministra (Drury)
Deidamia inscripta (Harr.)
Delia antiqua (Meig.)
Delia floralis (Fall.)
Delia platura (Meig.)
Delia radicum (L.)
Demodex bovis Stiles
Demodex cati M, gn.
Demodex equi Raill.
Demodex ovis Raill.
Demodex phylloides Csokor
Dendroctonus brevicomis LeC.
Dendroctonus frontalis Zimm.
Dendroctonus murrayanae Hopk.
Dendroctonus ponderosae Hopk.
Dendroctonus pseudotsugae Hopk.
Dendroctonus punctatus LeC.
Dendroctonus rufipennis (Kby.)
Dendroctonus simplex LeC.
Dendroctonus valens LeC.
Depressaria pastinacella (Dup.)
Dermacentor albipictus (Pack.)
Dermacentor andersoni Stiles
Dermacentor variabilis (Say)
Dermanyssus gallinae (DeG.)
Dermatophagoides farinae Hughes
Dermatophagoides pteronyssinus
Dermestes ater DeG.
Dermestes lardarius L.
Dermestes maculatus DeG.
Desmia funeralis (Hbn.)
Desmocerus palliatus (Forst.)
Diabrotica barberi S. & L.
Diabrotica undecimpunctata
howardi Barber
Diabrotica v. virgifera LeC.
Diapheromera femorata (Say)
Diaspidiotus ancylus (Putn.)
Dicerca divaricata (Say)
Dicerca tenebrica (Kby.)
Dicerca tenebrosa (Kby.)
Dichelonyx backii (Kby.)
Dichomeris ligulella Hbn.
Dichomeris marginella (F.)
Dimorphopteryx melanognathus
Dioryctria abietivorella (Grt.)
Dioryctria auranticella (Grt.)
Dioryctria disclusa Heinr.
Dioryctria reniculelloides Mut. &
Dioryctria resinosella Mut.
Dioryctria zimmermani (Grt.)
Diplolepis radicum (O.S.)
Diplolepis rosae (L.)
Diprion similis (Htg.)
Diptacus gigantorhynchus (Nal.)
Discestra trifolii (Hufn.)
Disonycha alternata (Ill.)
Disonycha triangularis (Say)
Disonycha xanthomelas (Dalm.)
Dissosteira carolina (L.)
Diuraphis noxia (Mordv.)
Diuraphis tritici (Gill.)
Dolichovespula arenaria (F.)
Dolichovespula maculata (L.)
Drepana arcuata Wlk.
Drepana bilineata (Pack.)
Drepanaphis acerifoliae (Thos.)
Dryocampa rubicunda (F.)
Dryocoetes betulae Hopk.
Dryocoetes confusus Swaine
Dysaphis plantaginea (Pass.)
Dysstroma citrata (L.)
Eacles imperialis pini Mich.
Earomyia abietum McAlp.
Ecdytolopha insiticiana Zell.
Ectoedemia lindquisti (Free.)
Ectropis crepuscularia (D. & S.)
Eilema bicolor (Grt.)
Elaphria versicolor (Grt.)
Elasmostethus cruciatus Say
Elatobium abietinum (Wlk.)
Empoasca fabae (Harr.)
Empoasca maligna (Walsh)
Enargia decolor (Wlk.)
Enchenopa binotata (Say)
Endelomyia aethiops (F.)
Endopiza viteana Clem.
Endothenia albolineana (Kft.)
Endrosis sarcitrella (L.)
Ennomos magnaria Gn.
Ennomos subsignaria (Hbn.)
Enodia anthedon Clark
Entomoscelis americana Brown
Epargyreus clarus (Cram.)
Ephestia elutella (Hbn.)
Ephestia kuehniella Zell.
Epicauta fabricii (LeC.)
Epicauta maculata (Say)
Epicauta murina (LeC.)
Epicauta pennsylvanica (DeG.)
Epicauta pestifera Werner
Epicauta subglabra (Fall)
Epicauta vittata (F.)
Epilachna varivestis Muls.
Epinotia meritana Heinr.
Epinotia nanana (Treit.)
Epinotia nisella (Cl.)
Epinotia radicana (Heinr.)
Epinotia solandriana (L.)
Epinotia solicitana (Wlk.)
Epinotia timidella (Clem.)
Epinotia tsugana Free.
Epirrita autumnata henshawi
Epitrimerus pyri (Nal.)
Epitrix cucumeris (Harr.)
Epitrix hirtipennis (Melsh.)
Epitrix subcrinita (LeC.)
Epitrix tuberis Gent.
Erannis tiliaria (Harr.)
Erannis tiliaria vancouverensis
Ergates spiculatus (LeC.)
Eriocampa juglandis (Fitch)
Eriocampa ovata (L.)
Eriophyes betulae (Nal.)
Eriophyes pyri (Pgst.)
Eriosoma americanum (Riley)
Eriosoma crataegi (Oestl.)
Eriosoma lanigerum (Hausm.)
Eristalis tenax (L.)
Eristalis tenax (L.)
Erynnis icelus (Scudd. & Burg.)
Erynnis juvenalis (F.)
Erythroneura comes (Say)
Erythroneura tricincta Fitch
Erythroneura vitis (Harr.)
Erythroneura ziczac Walsh
Estigmene acrea (Drury)
Euceraphis punctipennis (Zett.)
Euchaetes egle (Drury)
Euclea delphinii (Bdv.)
Eucosma gloriola Heinr.
Eucosma monitorana Heinr.
Eucosma recissoriana Heinr.
Eucosma siskiyouana (Kft.)
Eucosma sonomana Kft.
Eucosma tocullionana Heinr.
Eudryas grata (F.)
Eudryas unio (Hbn.)
Eulachnus agilis (Kltb.)
Eulithis diversilineata (Hbn.)
Eumerus strigatus (Fall.)
Eumerus tuberculatus Rond.
Eumorpha achemon (Drury)
Eumorpha pandorus (Hbn.)
Eupareophora parca (Cress.)
Euparthenos nubilis (Hbn.)
Euphoria inda (L.)
Euphranta canadensis (Loew)
Euphydryas phaeton (Drury)
Euphyes vestris (Bdv.)
Eupithecia filmata Pears.
Eupithecia luteata Pack.
Eupithecia mutata Pears.
Eupithecia palpata Pack.
Eupithecia spermaphaga (Dyar)
Eupithecia transcanadata MacK.
Euproctis chrysorrhoea (L.)
Eupsilia tristigmata (Grt.)
Euptoieta claudia (Cram.)
Eurema lisa Bdv. & LeC.
Eurema nicippe (Cram.)
Euschistus tristigmus (Say)
Euschistus variolarius (P. de B.)
Eutrapela clemataria (J. E. Smith)
Eutrombidium trigonum (Herm.)
Euura atra (Jur.)
Euxoa auxiliaris (Grt.)
Euxoa detersa (Wlk.)
Euxoa messoria (Harr.)
Euxoa ochrogaster (Gn.)
Euxoa scandens (Riley)
Euxoa tessellata (Harr.)
Euxoa tristicula (Morr.)
Euzophera semifuneralis (Wlk.)
Everes amyntula (Bdv.)
Everes comyntas (Godt.)
Evergestis pallidata (Hufn.)
Evergestis rimosalis (Gn.)
Evora hemidesma (Zell.)
Exoteleia dodecella (L.)
Exoteleia nepheos Free.
Fannia canicularis (L.)
Fannia scalaris (F.)
Faronta diffusa (Wlk.)
Felicola subrostratus (Burm.)
Feltia jaculifera (Gn.)
Feniseca tarquinius (F.)
Fenusa dohrnii (Tisch.)
Fenusa pusilla (Lep.)
Fidia viticida Walsh
Fishia discors (Grt.)
Forficula auricularia L.
Formica exsectoides Forel
Formica fusca L.
Formica obscuripes Forel
Frankliniella occidentalis (Perg.)
Frankliniella tritici (Fitch)
Frankliniella vaccinii Morg.
Galeruca browni Blake
Galerucella nymphaeae (L.)
Galleria mellonella (L.)
Galleria mellonella (L.)
Gargaphia tiliae (Walsh)
Gasterophilus haemorrhoidalis
Gasterophilus intestinalis (DeG.)
Gasterophilus nasalis (L.)
Gilpinia frutetorum (F.)
Gilpinia hercyniae (Htg.)
Givira lotta B.& McD.
Glaucopsyche lygdamus (Dbly.)
Glischrochilus quadrisignatus
Glycobius speciosus (Say)
Glyphipteryx linneella (Cl.)
Glyptoscelis pubescens (F.)
Gnatocerus cornutus (F.)
Goes tesselatus (Hald.)
Gonioctena americana (Schaeff.)
Goniodes gigas (Tasch.)
Gossyparia spuria (Mod.)
Grammia virguncula (Kby.)
Grapholita interstinctana (Clem.)
Grapholita molesta (Bsk.)
Grapholita packardi Zell.
Grapholita prunivora (Walsh)
Gretchena delicatana Heinr.
Grylloprociphilus imbricator
Gryllus pennsylvanicus Burm.
Gryllus veletis (Alex. & Big.)
Gypsonoma haimbachiana (Kft.)
Haemaphysalis chordeilis (Pack.)
Haemaphysalis leporispalustris
Haematobia irritans (L.)
Haematopinus asini (L.)
Haematopinus eurysternus (Nitz.)
Haematopinus suis (L.)
Haemodipsus ventricosus (Denny)
Halysidota harrisii Walsh
Halysidota tessellaris (J. E. Smith)
Hamamelistes spinosus Shimer
Haploa confusa (Lyman)
Haploa lecontei (G.-M.)
Haplothrips leucanthemi Schr.
Harkenclenus titus (F.)
Harrisimemna trisignata (Wlk.)
Hedya nubiferana (Haw.)
Helicoverpa zea (Boddie)
Helicoverpa zea (Boddie)
Heliothis ononis (D. & S.)
Heliothis virescens (F.)
Heliothrips haemorrhoidalis
Hemaris diffinis (Bdv.)
Hemaris thysbe (F.)
Hemichroa crocea (Geoff.)
Henricus fuscodorsanus (Kft.)
Hepialus gracilis Grt.
Hercinothrips femoralis (Reut.)
Herculia thymetusalis (Wlk.)
Hesperia comma
borealis Linds.
Hesperia comma
laurentina
Heterarthrus nemoratus (Fall.)
Heterocampa guttivitta (Wlk.)
Hippodamia convergens G.-M.
Hippodamia tredecimpunctata
tibialis (Say)
Hofmannophila pseudospretella
Homadaula anisocentra Meyr.
Homoeosoma electellum (Hulst)
Homoglaea hircina Morr.
Homohadena badistriga (Grt.)
Hoplocampa halcyon (Nort.)
Hoplocampa testudinea (Klug)
Hyalophora cecropia (L.)
Hyalophora columbia (S. I. Smith)
Hyalophora columbia (S. I. Smith)
Hyalopterus pruni (Geoff.)
Hydraecia immanis Gn.
Hydraecia micacea (Esp.)
Hydria prunivorata (Fgn.)
Hydriomena divisaria (Wlk.)
Hylastinus obscurus (Marsh.)
Hyles gallii (Rott.)
Hyles lineata (F.)
Hylesinus aculeatus Say
Hylesinus californicus (Swaine)
Hyllolycaena hyllus (Cram.)
Hylobius congener D.T., S. & M.
Hylobius pales (Hbst.)
Hylobius piceus (DeG.)
Hylobius pinicola (Couper)
Hylobius radicis Buch.
Hylobius warreni Wood
Hylotrupes bajulus (L.)
Hylurgopinus rufipes (Eichh.)
Hypagyrtis unipunctata (Haw.)
Hypena scabra (F.)
Hypera meles (F.)
Hypera nigrirostris (F.)
Hypera postica (Gyll.)
Hypera punctata (F.)
Hyphantria cunea (Drury)
Hypnoidus abbreviatus (Say)
Hypoderma bovis (L.)
Hypoderma lineatum (DeVill.)
Hypoderma tarandi (L.)
Hypogastrura nivicola (Fitch)
Hypoprepia fucosa Hbn.
Hypoprepia miniata (Kby.)
Hyppa xylinoides (Gn.)
Incisalia augustinus (Westw.)
Incisalia henrici (G. & R.)
Incisalia irus (Godt.)
Incisalia lanoraieensis Shep.
Incisalia niphon clarki Free.
Incisalia polia C. & W.
Ipimorpha pleonectusa Grt.
Ips borealis Swaine
Ips calligraphus (Germ.)
Ips grandicollis (Eichh.)
Ips perturbatus (Eichh.)
Ips pini (Say)
Isochnus rufipes (LeC.)
Itame loricaria (Evers.)
Itame pustularia (Gn.)
Itame ribearia (Fitch)
Ithycerus noveboracensis (Forst.)
Ixodes pacificus Cooley & Kohls
Janus abbreviatus (Say)
Janus integer (Nort.)
Junonia coenia (Hbn.)
Kaliofenusa ulmi (Sund.)
Kaltenbachiella ulmifusa (W. & R.)
Kaltenbachiola canadensis (Felt)
Kaltenbachiola rachiphaga (Tripp)
Keiferia lycopersicella (Wlsm.)
Kleidocerys resedae geminatus
Labidomera clivicollis (Kby.)
Labops hesperius Uhl.
Lacinipolia meditata (Grt.)
Lacinipolia renigera (Steph.)
Lambdina f. fiscellaria (Gn.)
Lambdina fiscellaria lugubrosa
Lambdina fiscellaria somniaria
Lampronia rubiella (Bjerk.)
Laothoe juglandis (J. E. Smith)
Lapara bombycoides Wlk.
Lasioderma serricorne (F.)
Latheticus oryzae Waterh.
Lathridius minutus (L.)
Latrodectus variolus Walck.
Lema t. trilinea White
Lepidosaphes ulmi (L.)
Lepisma saccharina L.
Leptinotarsa decemlineata (Say)
Leptoglossus occidentalis Heid.
Leptopterna dolabrata (L.)
Lepyrus nordenskioeldi canadensis
Lethocerus americanus (Leidy)
Leucoma salicis (L.)
Ligyrus gibbosus (DeG.)
Lilioceris lilii (Scop.)
Limenitis a. arthemis (Drury)
Limenitis archippus (Cram.)
Limenitis arthemis astyanax (F.)
Limonius agonus (Say)
Limonius californicus (Man.)
Limonius canus LeC.
Limonius infuscatus Mots.
Limothrips denticornis Hal.
Linognathus ovillus (Nm.)
Linognathus pedalis (Osb.)
Linognathus setosus (Olf.)
Linognathus stenopsis (Burm.)
Linognathus vituli (L.)
Linsleya sphaericollis (Say)
Lipaphis erysimi (Kltb.)
Lipeurus caponis (L.)
Liriomyza sativae Blanch.
Listronotus oregonensis (LeC.)
Lithophane antennata (Wlk.)
Lixus concavus Say
Lobophora nivigerata Wlk.
Lochmaeus bilineata (Pack.)
Lochmaeus manteo Dbly.
Lomographa semiclarata (Wlk.)
Lophocampa caryae Harr.
Lophocampa maculata Harr.
Loxostege cereralis (Zell.)
Loxostege sticticalis (L.)
Lucilia sericata (Meig.)
Lycaeides idas (L.)
Lycaena dorcas (Kby.)
Lycaena epixanthe (Bdv. & LeC.)
Lycaena phlaeas americana Harr.
Lycia ursaria (Wlk.)
Lyctus linearis (Goeze)
Lyctus planicollis LeC.
Lygidea mendax Reut.
Lygocoris caryae (Knight)
Lygocoris communis (Knight)
Lygocoris communis (Knight)
Lygocoris quercalbae (Knight)
Lygus elisus Van D.
Lygus elisus Van D.
Lygus hesperus Knight
Lygus lineolaris (P. de B.)
Lymantria dispar (L.)
Lytta nuttalli Say
Macrodactylus subspinosus (F.)
Macronoctua onusta Grt.
Macropsis trimaculata (Fitch)
Macrosiphoniella sanborni (Gill.)
Macrosiphum euphorbiae (Thos.)
Macrosiphum rosae (L.)
Macrosteles quadrilineatus Fbs.
Magdalis armicollis (Say)
Magdalis barbita (Say)
Magicicada septendecim (L.)
Malacosoma americanum (F.)
Malacosoma californicum
lutescens (N. & D.)
Malacosoma californicum pluviale
Malacosoma disstria Hbn.
Mamestra configurata Wlk.
Manduca quinquemaculata (Haw.)
Manduca sexta (L.)
Mantis religiosa L.
Mantis religiosa L.
Marmara elotella (Bsk.)
Marmara fasciella (Cham.)
Marmara pomonella Bsk.
Matsucoccus macrocicatrices
Matsucoccus resinosae B. & God.
Mayetiola carpophaga (Tripp)
Mayetiola destructor (Say)
Mayetiola piceae (Felt)
Mayetiola thujae (Hed.)
Mecas confusa C. & L.
Megachile rotundata (F.)
Megacyllene robiniae (Forst.)
Megastigmus atedius Wlk.
Megastigmus laricis Marc.
Megastigmus pinus Parf.
Megastigmus specularis Walley
Megastigmus spermotrophus
Megisto cymela (Cram.)
Melanchra picta (Harr.)
Melanolophia canadaria (Gn.)
Melanolophia imitata (Wlk.)
Melanophila acuminata (DeG.)
Melanoplus bivittatus (Say)
Melanoplus borealis (Fieb.)
Melanoplus femurrubrum (DeG.)
Melanoplus packardii Scudd.
Melanoplus sanguinipes (F.)
Melanoplus spretus (Walsh)
Melittia cucurbitae (Harr.)
Meloe americanus Leach
Melophagus ovinus (L.)
Menacanthus stramineus (Nitz.)
Menopon gallinae (L.)
Merhynchites bicolor (F.)
Merodon equestris (F.)
Meromyza americana Fitch
Meroptera pravella (Grt.)
Mesolecanium nigrofasciatum
Messa nana (Klug)
Messa populifoliella (Towns.)
Metopolophium dirhodum (Wlk.)
Micrurapteryx salicifoliella
Mindarus abietinus Koch
Monochamus marmorator Kby.
Monochamus mutator LeC.
Monochamus notatus (Drury)
Monochamus s. scutellatus (Say)
Monochamus scutellatus
oregonensis (LeC.)
Monochroa fragariae (Bsk.)
Monoctenus fulvus (Nort.)
Monoctenus suffusus (Cress.)
Monomorium minimum (Buckl.)
Monomorium pharaonis (L.)
Mononychus vulpeculus (F.)
Monophadnoides geniculatus
Mordwilkoja vagabunda (Walsh)
Mulsantina picta (Rand.)
Murgantia histrionica (Hahn)
Musca autumnalis DeG.
Neodiprion pratti banksianae Roh.
Neodiprion rugifrons Midd.
Neodiprion sertifer (Geoff.)
Neodiprion swainei Midd.
Neodiprion tsugae Midd.
Neohydatothrips tiliae (Hood)
Neophasia menapia (C. & R.F.)
Nephelodes minians Gn.
Nephopterix subcaesiella (Clem.)
Nephopterix subfuscella (Rag.)
Nepytia canosaria (Wlk.)
Nepytia freemani Mun.
Nepytia phantasmaria (Stkr.)
Neurotoma inconspicua (Nort.)
Niptus hololeucus (Fald.)
Nites betulella (Bsk.)
Nites grotella (Rob.)
Nodonota puncticollis (Say)
Nomia melanderi Ckll.
Nomius pygmaeus (Dej.)
Nomophila nearctica Mun.
Nosopsyllus fasciatus (Bosc)
Nymphalis antiopa (L.)
Nymphalis antiopa (L.)
Nymphalis californica (Bdv.)
Nymphalis vau-album (D. & S.)
Nysius niger Baker
Oberea bimaculata (Oliv.)
Oberea schaumii LeC.
Obolodiplosis robiniae (Hald.)
Obrussa ochrefasciella (Cham.)
Odontopus calceatus (Say)
Odontota dorsalis (Thunb.)
Oecanthus fultoni T. J. Wlk.
Oecanthus nigricornis Wlk.
Oecanthus quadripunctatus Beut.
Oeciacus vicarius Horv.
Oeneis chryxus (Dbly. & Hew.)
Oeneis jutta (Hbn.)
Oeneis macounii (Edw.)
Oeneis polixenes (F.)
Oeneis taygete Gey.
Oenensis melissa (F.)
Oestrus ovis L.
Olethreutes permundana (Clem.)
Oligocentria lignicolor (Wlk.)
Oligonychus pratensis (Banks)
Oligonychus ununguis (Jac.)
Omanodus floralis (L.)
Omias saccatus (LeC.)
Oncideres cingulata (Say)
Oncopeltus fasciatus (Dall.)
Operophtera bruceata (Hulst)
Operophtera brumata (L.)
Orgyia antiqua (L.)
Orgyia leucostigma (J. E. Smith)
Orgyia pseudotsugata (McD.)
Ornithonyssus bacoti (Hirst)
Ornithonyssus sylviarum (C. & F.)
Ortholepis pasadamia (Dyar)
Orthosia hibisci (Gn.)
Orthosia revicta (Morr.)
Oryzaephilus mercator (Fauvel)
Oryzaephilus surinamensis (L.)
Oscinella frit (L.)
Ostrinia nubilalis (Hbn.)
Ostrinia obumbratalis (Led.)
Otiorhynchus ligustici (L.)
Otiorhynchus ovatus (L.)
Otiorhynchus rugosostriatus
Otiorhynchus sulcatus (F.)
Otobius megnini (Duges)
Otodectes cynotis (Her.)
Oulema melanopus (L.)
Pachypsylla celtidismamma
Pachyrhinus ferrugineus (Casey)
Pachysphinx modesta (Harr.)
Paleacrita vernata (Peck)
Palorus ratzeburgii (Wissm.)
Palorus subdepressus (Woll.)
Palpita magniferalis (Wlk.)
Palthis angulalis (Hbn.)
Pamphilius ochreipes (Cress.)
Pandemis canadana Kft.
Pandemis limitata (Rob.)
Panonychus ulmi (Koch)
Panthea acronyctoides (Wlk.)
Panthea furcilla (Pack.)
Paonias excaecatus (J. E. Smith)
Paonias myops (J. E. Smith)
Papaipema cataphracta (Grt.)
Papaipema nebris (Gn.)
Papilio brevicauda Saund.
Papilio canadensis (R. & J.)
Papilio cresphontes Cram.
Papilio cresphontes Cram.
Papilio glaucus L.
Papilio polyxenes asterias Stoll
Papilio polyxenes asterias Stoll
Papilio polyxenes asterias Stoll
Papilio troilus L.
Paraclemensia acerifoliella (Fitch)
Paradiplosis tumifex Gagn,
Paraleucoptera albella (Cham.)
Parandra brunnea brunnea (F.)
Paraphytomyza populicola (Wlk.)
Paraprociphilus tessellatus (Fitch)
Paratrioza cockerelli (Sulc)
Paratrioza cockerelli (Sulc)
Parcoblatta pennsylvanica (DeG.)
Parectopa robiniella Clem.
Paria fragariae Wilcox
Parornix geminatella Pack.
Parthenolecanium corni (Bouch.)
Parthenolecanium persicae (F.)
Parthenolecanium quercifex
Pediculus humanus capitis DeG.
Pediculus humanus humanus L.
Pegomya hyoscyami (Panz.)
Pegomya rubivora (Coq.)
Pegomya spp.
Pemphigus bursarius (L.)
Pemphigus populitransversus Riley
Pemphigus populivenae Fitch
Pennisetia marginata (Harr.)
Peranabrus scabricollis (Thos.)
Peridroma saucia (Hbn.)
Perillus bioculatus (F.)
Periphyllus lyropictus (Kess.)
Periphyllus negundinis (Thos.)
Periplaneta americana (L.)
Periplaneta australasiae (F.)
Periplaneta brunnea Burm.
Petrobia latens (Mull.)
Petrova albicapitana (Bsk.)
Petrova comstockiana (Fern.)
Phenacoccus aceris (Sign.)
Phenacoccus gossypii T. & C.
Pheosia rimosa Pack.
Phigalia titea (Cram.)
Philaenus spumarius (L.)
Phloeosinus canadensis Swaine
Phloeosinus punctatus LeC.
Phloeotribus liminaris (Harr.)
Phobetron pithecium (J. E. Smith)
Pholisora catullus (F.)
Phormia regina (Meig.)
Phorodon humuli (Schr.)
Phragmatobia assimilans Wlk.
Phragmatobia fuliginosa rubricosa
Phratora p. purpurea Brown
Phthorimaea operculella (Zell.)
Phyciodes batesii (Reak.)
Phyciodes selenis (Kby.)
Phyllobius intrusus Kono
Phyllobius oblongus (L.)
Phyllocnistis populiella Cham.
Phyllocolpa bozemani (Cooley)
Phyllocolpa popuella (Ross)
Phyllodesma americana (Harr.)
Phyllonorycter apparella (H.-S.)
Phyllonorycter blancardella (F.)
Phyllonorycter crataegella (Clem.)
Phyllonorycter lucetiella (Clem.)
Phyllonorycter lucidicostella
Phyllonorycter nipigon (Free.)
Phyllonorycter populiella (Cham.)
Phyllonorycter propinquinella
Phyllonorycter salicifoliella
Phyllonorycter tiliacella (Cham.)
Phyllonorycter tremuloidiella
Phyllophaga fusca (Fro.)
Phyllophaga futilis (LeC.)
Phyllophaga rugosa (Melsh.)
Phyllotreta albionica (LeC.)
Phyllotreta armoraciae (Koch)
Phyllotreta cruciferae (Goeze)
Phyllotreta pusilla Horn
Phyllotreta robusta LeC.
Phyllotreta striolata (F.)
Physokermes piceae (Schr.)
Phytobia amelanchieris (Greene)
Phytobia betulivora Spencer
Phytobia setosa (Loew)
Phytomyza ilicis Curt.
Phytonemus pallidus (Banks)
Pieris napi (L.)
Pieris rapae (L.)
Pieris rapae (L.)
Pieris virginiensis (Edw.)
Pikonema alaskensis (Roh.)
Pikonema dimmockii (Cress.)
Pineus floccus (Patch)
Pineus pinifoliae (Fitch)
Pineus similis (Gill.)
Pineus strobi (Htg.)
Piophila casei (L.)
Pissodes nemorensis Germ.
Pissodes rotundatus LeC.
Pissodes striatulus (F.)
Pissodes strobi (Peck)
Pissodes terminalis Hopping
Pityokteines sparsus (LeC.)
Plagiodera versicolora (Laich.)
Plagiognathus obscurus Uhl.
Planococcus citri (Risso)
Platycotis vittata (F.)
Plebejus saepiolus (Bdv.)
Pleroneura brunneicornis Roh.
Plodia interpunctella (Hbn.)
Plutella xylostella (L.)
Pnyxia scabiei (Hopk.)
Poanes hobomok (Harr.)
Poanes viator (Edw.)
Pococera aplastella (Hulst)
Pococera asperatella (Clem.)
Pococera expandens (Wlk.)
Pococera militella (Zell.)
Pococera robustella (Zell.)
Podapion gallicola Riley
Podisus maculiventris (Say)
Podosesia syringae (Harr.)
Podosesia syringae (Harr.)
Poecilocapsus lineatus (F.)
Pogonomyrmex occidentalis
Polites mystic (Edw.)
Polites peckius (Kby.)
Polites themistocles (Latr.)
Pollenia rudis (F.)
Polychrysia moneta (F.)
Polydrusus impressifrons (Gyll.)
Polygonia comma (Harr.)
Polygonia faunus (Edw.)
Polygonia gracilis (G. & R.)
Polygonia interrogationis (F.)
Polygonia progne (Cram.)
Polygonia satyrus (Edw.)
Polygraphus rufipennis (Kby.)
Polyphylla decemlineata (Say)
Pontania proxima (Lep.)
Pontania s-pomum (Walsh)
Pontia occidentalis (Reak.)
Pontia occidentalis (Reak.)
Pontia protodice (Bdv. & LeC.)
Popillia japonica Newm.
Prionoxystus macmurtrei (Guer.)
Prionoxystus robiniae (Peck)
Prionus laticollis (Drury)
Pristiphora erichsonii (Htg.)
Pristiphora geniculata (Htg.)
Pristiphora lena Kinc.
Probole amicaria (H.-S.)
Prochoerodes transversata
Prodiplosis morrisi Gagn,
Profenusa canadensis (Marl.)
Profenusa lucifex (Ross)
Profenusa thomsoni (Konow)
Proserpinus flavofasciata (Wlk.)
Proteoteras aesculana Riley
Proteoteras moffatiana Fern.
Proteoteras willingana (Kft.)
Protoboarmia porcelaria
indicataria (Wlk.)
Protophormia terraenovae (Rob.-
Pseudaletia unipuncta (Haw.)
Pseudexentera cressoniana
Pseudexentera mali Free.
Pseudococcus comstocki (Kuw.)
Pseudococcus longispinus (Targ.)
Pseudococcus maritimus (Ehrh.)
Pseudopityophthorus minutissimus
Pseudopityophthorus pubipennis
Pseudosciaphila duplex (Wlsm.)
Psila rosae (F.)
Psilocorsis cryptolechiella
Psilocorsis quercicella Clem.
Psilocorsis reflexella Clem.
Psinidia f. fenestralis (Aud.-Serv.)
Psoroptes equi (Rasp.)
Psoroptes ovis (Her.)
Psorosina hammondi (Riley)
Psylla striata Patch
Psylliodes punctulata Melsh.
Pterocomma smithiae (Monell)
Pthirus pubis (L.)
Ptinus clavipes Panz.
Ptinus fur (L.)
Ptinus ocellus Brown
Ptinus raptor Sturm
Ptinus villiger (Reitter)
Ptycholoma peritana (Clem.)
Pulex irritans (L.)
Pulvinaria amygdali Ckll.
Pulvinaria innumerabilis (Rathv.)
Puto cupressi (Colm.)
Puto sandini Wash.
Pyemotes tritici (L.-F. & M.)
Pyralis farinalis L.
Pyrgus centaureae (Rambur)
Pyrrharctia isabella (J. E. Smith)
Pyrrhia umbra (Hufn.)
Quadraspidiotus juglandsregiae
Quadraspidiotus ostreaeformis
Quadraspidiotus perniciosus
Rabdophaga rigidae (O.S.)
Rabdophaga salicisbatatas (O.S.)
Rabdophaga salicisbrassicoides
Rabdophaga strobiloides (O.S.)
Raphia frater Grt.
Recurvaria nanella (D. & S.)
Reduvius personatus (L.)
Reticulitermes flavipes (Koll.)
Reticulitermes hesperus Banks
Rhabdopterus picipes (Oliv.)
Rhagoletis cingulata (Loew)
Rhagoletis cingulata (Loew)
Rhagoletis completa Cress.
Rhagoletis completa Cress.
Rhagoletis fausta (O.S.)
Rhagoletis indifferens Curran
Rhagoletis mendax Curran
Rhagoletis pomonella (Walsh)
Rhaxonycha carolina (F.)
Rheumaptera hastata (L.)
Rhipicephalus sanguineus (Latr.)
Rhizoglyphus echinopus (F. & R.)
Rhopalomyia chrysanthemi (Ahlb.)
Rhopalosiphum fitchii (Sand.)
Rhopalosiphum maidis (Fitch)
Rhopalosiphum padi (L.)
Rhopobota naevana (Hbn.)
Rhyacionia buoliana (D. & S.)
Rhyacionia busckana Heinr.
Rhyacionia frustrana (Comst.)
Rhyacionia granti Miller
Rhyacionia rigidana (Fern.)
Rhyacionia sonia Miller
Rhynchaenus pallicornis (Say)
Rhynchaenus testaceus (Mull.)
Rhyzopertha dominica (F.)
Ribautiana tenerrima (H.-S.)
Saissetia coffeae (Wlk.)
Saperda calcarata Say
Saperda candida F.
Saperda candida F.
Saperda tridentata Oliv.
Saperda vestita Say
Sarcophaga aldrichi Park.
Sarcoptes scabiei (DeG.)
Satyrium acadicum (Edw.)
Satyrium calanus (Hbn.)
Satyrium caryaevorum (McD.)
Satyrium edwardsii (G. & R.)
Satyrium liparops (LeC.)
Satyrodes eurydice (Johan.)
Schinia florida (Gn.)
Schizaphis graminum (Rond.)
Schizolachnus piniradiatae (Dav.)
Schizura concinna (J. E. Smith)
Schizura ipomoeae Dbly.
Schizura unicorns (J. E. Smith)
Sciopithes obscurus Horn
Scoliopteryx libatrix (L.)
Scolytus mali (Bech.)
Scolytus multistriatus (Marsh.)
Scolytus quadrispinosus Say
Scolytus rugulosus (Mull.)
Scolytus tsugae (Swaine)
Scolytus unispinosus LeC.
Scolytus ventralis LeC.
Scudderia furcata B. von W.
Scutigerella immaculata (Newp.)
Semanotus ligneus (F.)
Semanotus litigiosus (Casey)
Semiothisa granitata (Gn.)
Semiothisa ocellinata (Gn.)
Semiothisa sexmaculata (Pack.)
Semiothisa signaria dispuncta
Sesia tibialis (Harr.)
Setoptus jonesi (Keif.)
Sicya macularia (Harr.)
Simulium arcticum Malloch
Simulium venustum Say
Simulium vittatum Zett.
Sinea diadema (F.)
Sirex cyaneus F.
Sirex juvencus juvencus (L.)
Sitobion avenae (F.)
Sitodiplosis mosellana (Gehin)
Sitona cylindricollis (Fahr.)
Sitona hispidulus (F.)
Sitona lineatus (L.)
Sitophilus granarius (L.)
Sitophilus oryzae (L.)
Sitotroga cerealella (Oliv.)
Smerinthus cerisyi Kby.
Smerinthus jamaicensis (Drury)
Solenopsis molesta (Say)
Solenoptes capillatus End.
Spaelotis clandestina (Harr.)
Spaelotis havilae (Grt.)
Sparganothis acerivorana MacK.
Sparganothis directana (Wlk.)
Sparganothis pettitana (Rob.)
Speyeria aphrodite (F.)
Speyeria atlantis (Edw.)
Speyeria cybele (F.)
Sphaerolecanium prunastri
Spharagemon collare (Scudd.)
Sphinx canadensis Bdv.
Sphinx chersis (Hbn.)
Sphinx drupiferarum J. E. Smith
Sphinx drupiferarum J. E. Smith
Sphinx eremitus (Hbn.)
Sphinx gordius Cram.
Sphinx kalmiae J. E. Smith
Sphinx luscitiosa Clem.
Sphinx vashti Stkr.
Spilonota ocellana (D. & S.)
Spilosoma virginica (F.)
Spodoptera exigua (Hbn.)
Spodoptera frugiperda (J. E. Smith)
Spodoptera ornithogalli (Gn.)
Spodoptera praefica (Grt.)
Stegobium paniceum (L.)
Stenolophus lecontei (Chaud.)
Steremnius carinatus (Boh.)
Stethophyma lineatum (Scudd.)
Sthenopis argenteomaculatus
Stictocephala bisonia K. & Y.
Stictoleptura canadensis Oliv.
Stilbosis ostryaeella (Cham.)
Stomoxys calcitrans (L.)
Strauzia longipennis (Wied.)
Strobilomyia appalachensis
Strobilomyia laricis Michelsen
Strobilomyia neanthracina
Strobilomyia varia (Huckett)
Strymon melinus Hbn.
Supella longipalpa (F.)
Symmerista albifrons (J. E. Smith)
Symmerista canicosta Franc.
Symmerista leucitys Franc.
Symydobius americanus Baker
Synanthedon acerni (Clem.)
Synanthedon albicornis (Hy.Edw.)
Synanthedon bibionipennis (Bdv.)
Synanthedon decipiens (Hy.Edw.)
Synanthedon exitiosa (Say)
Synanthedon pictipes (G. & R.)
Synanthedon pini (Kell.)
Synanthedon pyri (Harr.)
Synanthedon scitula (Harr.)
Synanthedon sequoiae (Hy.Edw.)
Synanthedon tipuliformis (Cl.)
Syneta ferruginea (Germ.)
Syngrapha alias (Ottol.)
Syngrapha rectangula (Kby.)
Syngrapha selecta (Wlk.)
Systena blanda (Melsh.)
Systena frontalis (F.)
Tabanus lineola F.
Tachycines asynamorus Adel.
Taeniothrips inconsequens (Uzel)
Tapinoma sessile (Say)
Tarsonemus granarius Lindquist
Telamona tremulata Ball
Tenebrio molitor L.
Tenebrio obscurus F.
Tenebroides mauritanicus (L.)
Tenodera aridifolia sinensis Sauss.
Tetanops myopaeformis (Roder)
Tethida cordigera (Beauv.)
Tetramesa hordei (Harr.)
Tetramesa secale (Fitch)
Tetramesa tritici (Fitch)
Tetranychus canadensis (McG.)
Tetranychus mcdanieli McG.
Tetranychus urticae Koch
Tetraopes tetrophthalmus (Forst.)
Tetropium cinnamopterum Kby.
Tetropium parvulum Casey
Tetropium velutinum LeC.
Tetyra bipunctata (H.-S.)
Thecodiplosis piniresinosae
Therioaphis riehmi (Borner)
Thermobia domestica (Pack.)
Thorybes pylades (Scudd.)
Thrips nigropilosus Uzel
Thrips simplex (Mor.)
Thrips tabaci Lind.
Thylodrias contractus Mots.
Thymelicus lineola (Ochs.)
Thyridopteryx ephemeraeformis
Tibicen pruinosa (Say)
Tinea pellionella L.
Tineola bisselliella (Hum.)
Tipula paludosa Meig.
Tischeria malifoliella Clem.
Tischeria quercitella Clem.
Tolype laricis (Fitch)
Tolype velleda (Stoll)
Tomostethus multicinctus (Roh.)
Torymus varians (Wlk.)
Toumeyella liriodendri (Gmel.)
Toumeyella parvicornis (Ckll.)
Trachykele blondeli Marseul
Tremex columba (L.)
Trialeurodes vaporariorum
Tribolium audax Halst.
Tribolium castaneum (Hbst.)
Tribolium confusum Duv.
Tribolium destructor Uytt.
Tribolium madens (Charp.)
Trichiocampus simplicicornis
Trichiocampus viminalis (Fall.)
Trichiosoma triangulum Kby.
Trichobaris trinotata (Say)
Trichodectes canis (DeG.)
Trichogramma minutum Riley
Tricholochmaea d. decora (Say)
Tricholochmaea decora carbo
Tricholochmaea vaccinii (Fall)
Trichophaga tapetzella (L.)
Trichoplusia ni (Hbn.)
Trichordestra legitima (Grt.)
Trigonogenius globulus Sol.
Trisetacus ehmanni Keif.
Trisetacus grosmanni Keif.
Trisetacus grosmanni Keif.
Trogium pulsatorium (L.)
Trogium pulsatorium (L.)
Trogoderma granarium Everts
Trogoderma inclusum LeC.
Trogoderma variabile Ballion
Tropidosteptes amoenus Reut.
Trypodendron betulae Swaine
Trypodendron lineatum (Oliv.)
Trypodendron retusum (LeC.)
Tuberolachnus salignus (Gmel.)
Tychius picirostris (F.)
Tychius stephensi Schonh.
Typhaea stercorea (L.)
Typhlocyba froggatti Baker
Typhlocyba pomaria McA.
Tyria jacobaeae (L.)
Tyrolichus casei Oud.
Tyrophagus putrescentiae (Schr.)
Udea rubigalis (Gn.)
Udea rubigalis (Gn.)
Unaspis euonymi (Comst.)
Upis ceramboides (L.)
Urocerus albicornis (F.)
Urocerus cressoni Nort.
Urocerus gigas flavicornis (F.)
Utetheisa bella (L.)
Vanessa atalanta (L.)
Vanessa cardui (L.)
Vanessa virginiensis (Drury)
Vasates quadripedes Shimer
Vespa crabro germana Christ
Vespa crabro germana Christ
Vespula germanica (F.)
Vespula maculifrons (Buys.)
Vespula pensylvanica (Sauss.)
Wohlfahrtia vigil (Wlk.)
Wyeomyia smithii (Coq.)
Xanthia togata (Esp.)
Xanthogaleruca luteola (Mull.)
Xanthonia decemnotata (Say)
Xanthoteras quercusforticorne
Xanthotype sospeta (Drury)
Xenopsylla cheopis (Roths.)
Xestia perquiritata (Morr.)
Xestia spp.
Xestobium rufovillosum (DeG.)
Xestobium rufovillosum (DeG.)
Xyela minor Nort.
Xylotrechus aceris Fisher
Xylotrechus colonus (F.)
Xylotrechus obliteratus LeC.
Xylotrechus undulatus (Say)
Yponomeuta cognatella Hbn.
Yponomeuta malinella Zell.
Ypsolopha dentella (F.)
Zale helata (Sm.)
Zale lunifera (Hbn.)
Zale metatoides McD.
Zale minerea (Gn.)
Zale undularis (Drury)
Zaraea inflata Nort.
Zeiraphera canadensis Mut. &
Zeiraphera fortunana (Kft.)
Zeiraphera improbana (Wlk.)
Zeiraphera unfortunana Powell
Zelleria haimbachi Bsk.
Zeugophora scutellaris Suffr.
Zeuzera pyrina (L.)
Zonosemata electa (Say)
Zootermopsis angusticollis
Zophodia grossulariella (Hbn.)
Zygogramma exclamationis (F.)
For purposes of simplicity, the term “insect” shall be used through out this application; however, it should be understood that the term “insect” refers, not only to insects, but also to arachnids, larvae, and like invertebrates. Also for purposes of this application, the term “insect control” shall refer to having a repellant effect, a pesticidal effect, or both.
“Target pest” refers to the organism that is the subject of the insect control effort.
“Repellant effect” is an effect wherein more insects are repelled away from a host or area that has been treated with the composition than a control host or area that has not been treated with the composition. In some embodiments, repellant effect is an effect wherein at least about 75% of insects are repelled away from a host or area that has been treated with the composition. In some embodiments, repellant effect is an effect wherein at least about 90% of insects are repelled away from a host or area that has been treated with the composition.
“Pesticidal effect” is an effect wherein treatment with a composition causes at least about 1% of the insects to die. In this regard, an LC1 to LC100 (lethal concentration) or an LD1 to LD100 (lethal dose) of a composition will cause a pesticidal effect. In some embodiments, the pesticidal effect is an effect wherein treatment with a composition causes at least about 5% of the exposed insects to die. In some embodiments, the pesticidal effect is an effect wherein treatment with a composition causes at least about 10% of the exposed insects to die. In some embodiments, the pesticidal effect is an effect wherein treatment with a composition causes at least about 25% of the insects to die. In some embodiments the pesticidal effect is an effect wherein treatment with a composition causes at least about 50% of the exposed insects to die. In some embodiments the pesticidal effect is an effect wherein treatment with a composition causes at least about 75% of the exposed insects to die. In some embodiments the pesticidal effect is an effect wherein treatment with a composition causes at least about 90% of the exposed insects to die.
“Disablement” is an effect wherein insects are mobility-impaired such that their mobility is reduced as compared to insects that have not been exposed to the composition. In some embodiments, disablement is an effect wherein at least about 75% of insects are mobility-impaired such that their mobility is reduced as compared to insects that have not been exposed to the composition. In some embodiments, disablement is an effect wherein at least about 90% of insects are mobility-impaired such that their mobility is reduced as compared to insects that have not been exposed to the composition. In some embodiments, disablement can be caused by a disabling effect at the cellular or whole-organism level.
Embodiments of the invention can be used to control parasites. As used herein, the term “parasite” includes parasites, such as but not limited to, protozoa, including intestinal protozoa, tissue protozoa, and blood protozoa. Examples of intestinal protozoa include, but are not limited to: Entamoeba hystolytica, Giardia lamblia, Cryptosporidium muris, and Cryptosporidium parvum. Examples of tissue protozoa include, but are not limited to: Trypanosomatida gambiense, Trypanosomatida rhodesiense, Trypanosomatida crusi, Leishmania mexicana, Leishmania braziliensis, Leishmania tropica, Leishmania donovani, Toxoplasma gondii, and Trichomonas vaginalis. Examples of blood protozoa include, but are not limited to Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium falciparum. Histomonas meleagridis is yet another example of a protozoan parasite.
As used herein, the term “parasite” further includes, but is not limited to: helminthes or parasitic worms, including nematodes (round worms) and platyhelminthes (flat worms). Examples of nematodes include, but are not limited to: animal and plant nematodes of the adenophorea class, such as the intestinal nematode Trichuris trichiura (whipworm) and the plant nematode Trichodorus obtusus (stubby-root nematode); intestinal nematodes of the secementea class, such as Ascaris lumbricoides, Enterobius vermicularis (pinworm), Ancylostoma duodenale (hookworm), Necator americanus (hookworm), and Strongyloides stercoralis; and tissue nematodes of the secementea class, such as Wuchereria bancrofti (Filaria bancrofti) and Dracunculus medinensis (Guinea worm). Examples of plathyeminthes include, but are not limited to: Trematodes (flukes), including blood flukes, such as Schistosoma mansoni (intestinal Schistosomiasis), Schistosoma haematobium, and Schistosoma japonicum; liver flukes, such as Fasciola hepatica, and Fasciola gigantica; intestinal flukes, such as Heterophyes heterophyes; and lung flukes such as Paragonimus westermani. Examples of platheminthes further include, but are not limited to: Cestodes (tapeworms), including Taenia solium, Taenia saginata, Hymenolepis nana, and Echinococcus granulosus.
Furthermore, the term “parasite” further includes, but is not limited to those organisms and classes of organisms listed in the following table:
Entamoeba
coli
dispar
histolytica
gingivalis
Balantidium
coli
Giardia
intenstinalis
lamblia
Trichomonas
vaginalis
Histomonas
meleagridis
Heterakis
Trypanosoma
avium
brucei
cruzi
equiperdum
evansi
vivax
Eimeria
acervulina
brunetti
jemezi
maxima
nextrix
tenella
stiedae
meleagridis
Isospora
belli
felis
canis
Cyclospora
cayetanensis
Cryptosporidium
parvum
hominis
canis
felis
hominis
meleagridis
muris
Sarcocystis
cruzi
hominis
muris
Toxoplasma
gondii
Neospora
caninum
Babesia
major
microti
divergens
duncani
gibsoni
Plasmodium
falciparum
vivax
ovale
malariae
knowlesi
gigliolii
Leishmania
aethiopica
donovani
major
mexicana
tropica
braziliensis
Fasciola
hepatica
magna
gigantica
jacksoni
Dicrocoelium
dendriticum
Schistosoma
mansoni
japonicum
mekongi
intercalatum
haematobium
Taenia
crassiceps
pisiformis
saginata
solium
Dipylidium
caninum
Echinococcus
granulosus
multilocularis
shiquicus
Aphelenchoides
fragariae
ritzemabosi
besseyi.
Heterodera
Globodera
solanacearum
virginiae
tabacum
Nacobbus
dorsalis
Pratylenchus
brachurus
penetrans
Ditylenchus
dipsaci
Xiphinema
americanum
Longidorus
sylphus
Paratrichodorus
minor
Dioctophyma
renale
Meloidogyne
hapla
incognita
javanica
Trichostrongylus
tenius
Ostertagia
Nematodirus
Haemonchus
Cooperia
Trichuris
Ascaris
Parascaris
Oxyuris
Toxascaris
Toxocara
T. catti, refs back to non-migratory Toxascaris
Trichinella
Oesophagostomum
Chabertia
Cyathostomes
Strongylus
vulgaris
Bunostomum
Uncinaria
Ancylostoma
Dictyocaulus
Metastrongylus
Parafilaria
Dirofialria
Cercospora
zeae-maydis
Ustilago
maydis
Magnaporthe
grisea
Bipolaris
oryzae
Psoroptes ovis,
Chorioptes
Sarcoptes,
Knemidocoptes
Demodex,
Trombicula,
Cheyletiella
Dermanyssus,
Ornithonyssus
Ixodes ricinus
Linognathus and
Haematopinus sp.
Trichodectes and
Felicola
Lipeurus,
Cuclotogaster,
Menopon
Ctenocephalides
felis and C. canis
Ceratophyllus and
Echidnophaga
Haematobia and
Stomoxys
Melophagus ovinus
Culicoides midges
Phlebotomus sand
Lucilia cuprina
Hypoderma bovis
Gasterophilus and
Oestrus bots
Embodiments of the invention can be used to prevent or treat the following parasite hosts:
Alternaria brassicae, Alternaria brassicicola
Alternaria japonica = Alternaria raphani
Colletotrichum gloeosporioides, Glomerella cingulata
Colletotrichum higginsianum
Leptosphaeria maculans
Phoma lingam [anamorph]
Rhizopus stolonifer
Aphanomyces raphani
Rhizoctonia solani
Thanatephorus cucumeris [teleomorph]
Cercospora leaf spot
Cercospora brassicicola
Plasmodiophora brassicae
Peronospora parasitica
Fusarium wilt
Fusarium oxysporum f.sp. conglutinans
Botrytis cinerea
Botryotinia fuckeliana [teleomorph]
Rhizoctonia solani
Thanatephorus cucumeris [teleomorph]
Alternaria alternata
Ascochyta spp.
Pyrenopeziza brassicae
Cylindrosporium concentricum [anamorph]
Alternaria alternata
Cladosporium spp.
Erysiphe polygoni
Erysiphe cruciferarum
Mycosphaerella brassicicola
Asteromella brassicae [anamorph]
Alternaria alternata
Fusarium spp.
Macrophomina phaseolina
Phymatotrichopsis omnivora
Phytophthora megasperma
Pythium debaryanum
Pythium irregulare
Rhizoctonia solani
Thanatephorus cucumeris [teleomorph]
Sclerotium rolfsii
Athelia rolfsii [teleomorph]
Sclerotinia stem rot
Sclerotinia sclerotiorum
Alternaria spp.
Fusarium spp.
Gliocladium roseum
Nectria ochroleuca [teleomorph]
Pythium spp.
Rhizoctonia solani
Thanatephorus cucumeris [teleomorph]
Rhizopus stolonifer
Sclerotium rolfsii
Urocystis brassicae
Sclerotium rolfsii
Verticillium wilt
Verticillium longisporum
Rhizoctonia solani
Thanatephorus cucumeris [teleomorph]
Pseudocercosporella capsellae =
Cercosporella brassicae
Mycosphaerella capsellae [teleomorph]
Albugo candida =
Albugo cruciferarum
Fusarium oxysporum
Besnoitia sp. (oocysts)
Isospora felis
Isospora rivolta
Sarcocystis gigantea (sporocysts)
Sarcocystis hirsuta (sporocysts)
Sarcocystis medusijormis (sporocysts)
Sarcocystis muris (sporocysts)
Sarcocystis sp. (sporocysts)
Toxoplasma gondii (cysts)
Toxoplasma gondii (oocysts
Giardia intestinalis
Hammondia heydorni (oocysts)
Isospora canis
Isospora ohicensis
Neospora caninum
Sarcocystis arieticanis (sporocysts)
Sarcocystis capracanis (sporocysts)
Sarcocystis cruzi (sporocysts)
Sarcocystis tenella (sporocysts)
Sarcocystis sp. (sporocy sts)
Toxoplasma gondii (cysts)
Giardia intestinalis
Cvptosporidiurn sp.
Eimeria alijevi
Eimeria apsheronica
Eimeria arloingi
Eimeria capralis
Eimeria caprina
Eimeria caprovina
Eimeria charlestoni
Eimeria christenseni
Eimeria hirci
Eimeria jolchejevi
Eimeria masseyensis
Eimeria ninakohlyakimovae
Eimeria punctata
Eimeria tunisiensis
Sarcocystis capracanis (cysts)
Toxoplasma gondii (cysts)
Giardia sp.
Eimeria leuckarti
Klossiella equi
Sarcocystis sp. (cysts)
Ciyptosporidium sp.
Isospora hominis*
Plasmodium sp.*
Toxoplasma gondii (cysts)
Chilomastix mesnili
Dientamoeba fragilis
Endolimax nana
Entamoeba coli
Entamoeba hartmanni
Entamoeba histolytica
Giardia intestinalis
Iodamoeba buetschlii
Leishmania donovani*
Trichomonas hominis
Trichomonas vaginalis
Colletotrichum graminicola
Glomerella graminicola
Glomerella tucumanensis
Glomerella falcatum
Aspergillus flavus
Rhizoctonia solani = Rhizoctonia
microsclerotia
Thanatephorus cucumeris
Acremonium strictum = Cephalosporium
acremonium
Lasiodiplodia theobromae = Botryodiplodia
theobromae
Marasmiellus sp.
Physoderma maydis
Cephalosporium kernel rot
Acremonium strictum = Cephalosporium
acremonium
Macrophomina phaseolina
Corticium ear rot
Thanatephorus cucumeris = Corticium sasakii
Curvularia leaf spot
Curvularia clavata
C. eragrostidis = C. maculans
Cochliobolus eragrostidis
Curvularia inaequalis
C. intermedia
Cochliobolus intermedius
Curvularia lunata
Cochliobolus lunatus
Curvularia pallescens Cochliobolus pallescens
Curvularia senegalensis
C. tuberculata
Cochliobolus tuberculatus
Didymella leaf spot
Didymella exitalis
Diplodia ear rot and stalk rot
Diplodia frumenti
Botryosphaeria festucae
Diplodia ear rot
Diplodia maydis
Diplodia leaf spot or leaf streak
Stenocarpella macrospora = Diplodia
macrospora
Sclerophthora rayssiae
Sclerophthora macrospora = Sclerospora
macrospora
Sclerospora graminicola
Graminicola downy mildew
Peronosclerospora maydis = Sclerospora
maydis
Peronosclerospora philippinensis =
Sclerospora philippinensis
Sorghum downy mildew
Peronosclerospora sorghi = Sclerospora sorghi
Peronosclerospora spontanea = Sclerospora
spontanea
Peronosclerospora sacchari = Sclerospora
sacchari
Nigrospora oryzae
Khuskia oryzae
Alternaria alternata = A. tenuis
Aspergillus glaucus
A. niger
Aspergillus spp.
Botrytis cinerea
Botryotinia fuckeliana
Cunninghamella sp.
Curvularia pallescens
Doratomyces stemonitis = Cephalotrichum
stemonitis
Fusarium culmorum
Gonatobotrys simplex
Pithomyces maydicus
Rhizopus microsporus
R. stolonifer = R. nigricans
Scopulariopsis brumptii
Claviceps gigantea
Sphacelia sp.
Aureobasidium zeae = Kabatiella zeae
Fusarium ear and stalk rot
Fusarium subglutinans = F. moniliforme
Fusarium kernel, root and stalk rot, seed rot
Fusarium moniliforme
Gibberella fujikuroi
Fusarium stalk rot
Fusarium avenaceum
Gibberella avenacea
Gibberella ear and stalk rot
Gibberella zeae
Fusarium graminearum
Botryosphaeria zeae = Physalospora zeae
Macrophoma zeae
Cercospora sorghi = C. sorghi
Cercospora leaf spot
C. zeae-maydis
Helminthosporium root rot
Exserohilum pedicellatum = Helminthosporium
pedicellatum
Setosphaeria pedicellata
Hormodendrum ear rot
Cladosporium cladosporioides =
Cladosporium rot
Hormodendrum cladosporioides
C. herbarum
Mycosphaerella tassiana
Hyalothyridium leaf spot
Hyalothyridium maydis
Cephalosporium maydis
Alternaria alternata
A. tritici
A. zeicola
Bipolaris victoriae = Helminthosporium
victoriae
Cochliobolus victoriae
C. sativus
Bipolaris sorokiniana = H. sorokinianum = H. sativum
Epicoccum nigrum
Exserohilum prolatum = Drechslera prolata
Setosphaeria prolata
Graphium penicillioides
Leptosphaeria maydis
Leptothyrium zeae
Ophiosphaerella herpotricha
Scolecosporiella sp.
Paraphaeosphaeria michotii
Phoma sp.
Septoria zeae
S. zeicola
S. zeina
Setosphaeria turcica
Exserohilum turcicum = Helminthosporium
turcicum
Cochliobolus carbonum
Helminthosporium ear rot (race 1)
Bipolaris zeicola = Helminthosporium
carbonum
Penicillium ear rot
Penicillium spp.
P. chrysogenum
P. expansum
P. oxalicum
Phaeocytostroma stalk rot and root rot
Phaeocytostroma ambiguum =
Phaeocytosporella zeae
Phaeosphaeria leaf spot
Phaeosphaeria maydis = Sphaerulina maydis
Physalospora ear rot
Botryosphaeria festucae = Physalospora
Botryosphaeria ear rot
zeicola
Diplodia frumenti
Pyrenochaeta stalk rot and root rot
Phoma terrestris = Pyrenochaeta terrestris
Pythium root rot
Pythium spp.
P. arrhenomanes
P. graminicola
Pythium stalk rot
Pythium aphanidermatum = P. butleri
Epicoccum nigrum
Rhizoctonia ear rot
Rhizoctonia zeae
Sclerotial rot
Waitea circinata
Rhizoctonia root rot and stalk rot
Rhizoctonia solani
R. zeae
Alternaria alternata
Cercospora sorghi
Dictochaeta fertilis
Fusarium acuminatum Gibberella acuminata
F. equiseti
G. intricans
F. oxysporum
F. pallidoroseum
F. poae
F. roseum
G. cyanogena
F. sulphureum
Microdochium bolleyi
Mucor sp.
Periconia circinata
Phytophthora cactorum
P. drechsleri
P. nicotianae
Rhizopus arrhizus
Setosphaeria rostrata = Helminthosporium
Helminthosporium leaf disease, ear and
rostratum
Puccinia sorghi
Puccinia polysora
Physopella pallescens
P. zeae = Angiopsora zeae
Sclerotium rolfsii
Athelia rolfsii
Bipolaris sorokiniana
B. zeicola = Helminthosporium carbonum
Diplodia maydis
Exserohilum pedicillatum
Exserohilum turcicum = Helminthosporium
turcicum
Fusarium avenaceum
F. moniliforme
Gibberella zeae
F. graminearum
Macrophomina phaseolina
Penicillium spp.
Phomopsis spp.
Pythium spp.
Rhizoctonia solani
Sclerotium rolfsii
Spicaria spp.
Selenophoma leaf spot
Selenophoma sp.
Gaeumannomyces graminis
Myrothecium gramineum
Monascus purpureus
M. ruber
Ustilago zeae = U. maydis
Ustilaginoidea virens
Sphacelotheca reiliana = Sporisorium holci-
sorghi
Cochliobolus heterostrophus
Bipolaris maydis = Helminthosporium maydis
Stenocarpella macrospora = Diplodia
macrospora
Cercospora sorghi
Fusarium episphaeria
F. merismoides
F. oxysporum
F. poae
F. roseum
F. solani
Nectria haematococca
F. tricinctum
Mariannaea elegans
Mucor spp.
Rhopographus zeae
Spicaria spp.
Aspergillus spp.
Penicillium spp. and other fungi
Phyllachora maydis
Trichoderma ear rot and root rot
Trichoderma viride = T. lignorum
Hypocrea sp.
Stenocarpella maydis = Diplodia zeae
Ascochyta ischaemi
Phyllosticta maydis
Mycosphaerella zeae-maydis
Gloeocercospora sorghi
Dolichodorus spp., D. heterocephalus
Ditylenchus dipsaci
Radopholus similis
Heterodera avenae
H. zeae
Punctodera chalcoensis
Xiphinema spp.
X. americanum X. mediterraneum
Nacobbus dorsalis
Hoplolaimus columbus
Hoplolaimus spp.
H. galeatus
Pratylenchus spp., P. brachyurus, P. crenatus, P. hexincisus, P. neglectus
P. penetrans, P. scribneri, P. thornei, P. zeae
Longidorus spp.
L. breviannulatus
Criconemella spp.
C. ornata
Meloidogyne spp.
M. chitwoodi
M. incognita
M. javanica
Helicotylenchus spp.
Belonolaimus spp.
B. longicaudatus
Paratrichodorus spp.
P. christiei
P. minor
Quinisulcius acutus
Trichodorus spp.
Tylenchorhynchus dubius
Hepatozoon musculi
Sarcocystis muris (cysts)
Giardia intestinalis
Giardia muris
Ctyptosporidium sp.
Eimeria alabamensis
Eimeria auburnensis
Eimeria bovis
Eimeria brasiliensis
Eimeria bukidnonensis
Eimeria canadensis
Eimeria cylindrica
Eimeria ellipsoidalis
Eimeria subspherica
Eimeria wyomingensis
Eimeria zurnii
Isospora sp.
Neospora caninum
Sarcocystis cruzi (cysts)
Sarcocystis hirsuta (cysts)
Theileria orientalis
Tritrichomonas foetus
Balantidium coli
Ctyptosporidium sp.
Eimeria cerdonis
Eimeria debliecki
Eimeria neodebliecki
Eimeria porci
Eimeria scabra
Eimeria suis
Isospora suis
Sarcocystis sp. (cysts)
Toxoplasma gondii (cysts)
Balantidium coli
Histomonas meleagridis
Hexamita meleagridis
Eimeria spp.
Ascaridia galli
Ascaridia dissimilis
Ascardidia columbae
Capillaria contorta
Capillaria obsingata
Capillaria caudinflata
Heterakis gallinarum
Heterakis isolonche
Syngamus trachea
Cnemidocoptes mutans
Cnemidocoptes gallinae
Dermanyssus gallinae
Lamiosioptes cysticola
Ornithonyssus slyvarium
Ceratophyllus gallinae
Echindnophaga gallinacea
Menacanthus stramineus
Eimeria jlavescens
Eimeria irresidua
Eimeria media
Eimeria petforans
Eimeria pyriformis
Eimeria stiedae
Hepatozoon cuniculi
Sarcocystis sp. (cysts)
Toxoplasma gondii (cysts)
Ceratobasidium oryzae-sativae
Rhizoctonia oryzae-sativae
Curvularia lunata
Cochliobolus lunatus
Pyricularia grisea =
Pyricularia oryzae
Magnaporthe grisea
Cochliobolus miyabeanus
Bipolaris oryzae
Gaeumannomyces graminis
Sclerophthora macrospora
Drechslera gigantea
Ustilaginoidea virens
Tilletia barclayana =
Neovossia horrida
Entyloma oryzae
Microdochium oryzae =
Rhynchosporium oryzae
Cercospora janseana =
Cercospora oryzae
Sphaerulina oryzina
Cochliobolus miyabeanus
Curvularia spp.
Fusarium spp.
Microdochium oryzae
Sarocladium oryzae
Fusarium spp.
Pythium spp.
Pythium dissotocum
Pythium spinosum
Cochliobolus miyabeanus
Curvularia spp.
Fusarium spp.
Rhizoctonia solani
Sclerotium rolfsii
Athelia rolfsii
Thanatephorus cucumeris
Rhizoctonia solani
Sarocladium oryzae =
Acrocylindrium oryzae
Rhizoctonia oryzae
Alternaria padwickii
Magnaporthe salvinii
Sclerotium oryzae
Achlya conspicua
Achlya klebsiana
Fusarium spp.
Pythium spp.
Pythium dissotocum
Pythium spinosum
Aphelenchoides besseyi
Meloidogyne spp.
Hirschmanniella oryzae
Ditylenchus angustus
Ctyptosporidium sp.
Eimeria ahsata
Eimeria crandallis
Eimeria faurei
Eimeria granulosa
Eimeria intricata
Eimeria ovinoidalis
Eimeria ovis
Eimeria pallida
Eimeria pama
Eimeria punctata
Eimeria weybridgensis
Sarcocystis arieticanis (cysts)
Sarcocystis gigantea (cysts)
Sarcocystis medusiformis (cysts)
Sarcocystis tenella (cysts)
Toxoplasma gondii (cysts)
Alternaria leaf spot
Alternaria spp.
Colletotrichum truncatum
Colletotrichum dematium f. truncatum
Glomerella glycines
Colletotrichum destructivum
Arkoola nigra
Thielaviopsis basicola
Chalara elegans [synanamorph]
Septoria glycines
Mycosphaerella usoenskajae
Phialophora gregata =
Cephalosporium gregatum
Macrophomina phaseolina
Choanephora leaf blight
Choanephora infundibulifera
Choanephora trispora
Rhizoctonia solani
Thanatephorus cucumeris
Pythium aphanidermatum
Pythium debaryanum
Pythium irregulare
Pythium myriotylum
Pythium ultimum
Peronospora manshurica
Drechslera blight
Drechslera glycines
Frogeye leaf spot
Cercospora sojina
Fusarium root rot
Fusarium spp.
Leptosphaerulina leaf spot
Leptosphaerulina trifolii
Mycoleptodiscus root rot
Mycoleptodiscus terrestris
Neocosmospora stem rot
Neocosmospora vasinfecta
Acremonium spp.
Phomopsis seed decay
Phomopsis spp.
Phytophthora root and stem rot
Phytophthora sojae
Phyllosticta leaf spot
Phyllosticta sojaecola
Phymatotrichum root rot = cotton root rot
Phymatotrichopsis omnivora =
Phymatotrichum omnivorum
Diaporthe phaseolorum
Phomopsis sojae
Microsphaera diffusa
Cercospora kikuchii
Pyrenochaeta leaf spot
Pyrenochaeta glycines
Pythium aphanidermatum
Pythium debaryanum
Pythium irregulare
Pythium myriotylum
Pythium ultimum
Cylindrocladium crotalariae
Calonectria crotalariae
Dactuliochaeta glycines =
Pyrenochaeta glycines
Dactuliophora glycines [synanamorph]
Rhizoctonia aerial blight
Rhizoctonia solani
Thanatephorus cucumeris
Rhizoctonia root and stem rot
Rhizoctonia solani
Phakopsora pachyrhizi
Spaceloma glycines
Sclerotinia stem rot
Sclerotinia sclerotiorum
Sclerotium rolfsii
Sclerotium blight
Athelia rolfsii
Diaporthe phaseolorum
Diaporthe phaseolorum var. caulivora
Phomopsis phaseoli
Stemphylium leaf blight
Stemphylium botryosum
Pleospora tarda
Fusarium solani f.sp. glycines
Corynespora cassiicola
Nematospora coryli
Hoplolaimus columbus
Hoplolaimus galeatus
Hoplolaimus magnistylus
Pratylenchus spp.
Paratylenchus projectus
Paratylenchus tenuicaudatus
Rotylenchulus reniformis
Criconemella ornata
Meloidogyne arenaria
Meloidogyne hapla
Meloidogyne incognita
Meloidogyne javanica
Hemicycliophora spp.
Heterodera glycines
Helicotylenchus spp.
Belonolainus gracilis
Belonolainus longicaudatus
Paratrichodorus minor
Quinisulcius acutus
Tylenchorhynchus spp.
Colletotrichum destructivum
Glomerella glycines
Cercospora nicotianae
Thielaviopsis basicola
Phytophthora nicotianae
Peronospora tabacina =
Peronospora hyoscyami f.sp. tabacina
Alternaria alternata
Macrophomina phaseolina
Sclerotinia sclerotiorum
Pythium spp.
Pythium
Pythium aphanidermatum
Pythium ultimum
Cercospora nicotianae
Fusarium wilt
Fusarium oxysporum
Botrytis cinerea
Botryotinia fuckeliana
Mycosphaerella
Mycosphaerella nicotianae
Olpidium
Olpidium brassicae
Phyllosticta leaf
Phyllosticta nicotiana
Erysiphe cichoracearum
Phoma exigua var. exigua =
Ascochyta phaseolorum
Hymenula affinis =
Fusarium affine
Rhizoctonia solani
Thanatephorus cucumeris
Sclerotium rolfsii
Athelia rolfsii
Pythium spp.
Rhizoctonia solani
Verticillium wilt
Verticillium albo-atrum
Verticillium dahliae
Ditylenchus dipsaci
Globodera solanacearum =
Globodera virginiae
Globodera tabacum
Xiphinema americanum
Aphelenchoides ritzemabosi
Pratylenchus brachyurus
Pratylenchus penetrans
Pratylenchus spp.
Rotylenchulus reniformis
Meloidogyne arenaria, Meloidogyne hapla,
Meloidogyne incognita, Meloidogyne javanica
Helicotylenchus spp.
Paratrichodorus spp.
Trichodorus spp.
Merlinius spp.
Tylenchorhynchus spp.
Alternaria leaf blight
Alternaria triticina
Colletotrichum graminicola
Glomerella graminicola
Ascochyta leaf spot
Ascochyta tritici
Aureobasidium decay
Microdochium bolleyi =
Aureobasidium bolleyi
Alternaria spp.
Cladosporium spp.
Epicoccum spp.
Sporobolomyces spp.
Stemphylium spp. and other genera
Cephalosporium stripe
Hymenula cerealis =
Cephalosporium gramineum
Tilletia tritici =
Tilletia caries
Tilletia laevis =
Tilletia foetida
Cochliobolus sativus
Bipolaris sorokiniana =
Helminthosporium sativum
Coprinus psychromorbidus
Fusarium spp.
Fusarium pseudograminearum
Gibberella zeae
Fusarium graminearum Group II
Gibberella avenacea
Fusarium avenaceum
Fusarium culmorum
Dilophospora leaf spot = twist
Dilophospora alopecuri
Sclerophthora macrospora
Tilletia controversa
Claviceps purpurea
Sphacelia segetum
Tapesia yallundae
Ramulispora herpotrichoides =
Pseudocercosporella herpotrichoides W-
T. acuformis
Ramulispora acuformis =
Pseudocercosporella herpotrichoides var.
acuformis R-pathoytpe
Gibellina cerealis
Urocystis agropyri
Fusarium spp.
Pseudoseptoria donacis =
Selenophoma donacis
Tilletia indica =
Neovossia indica
Puccinia triticina =
Puccinia recondita f.sp. tritici
Puccinia tritici-duri
Leptosphaeria leaf spot
Phaeosphaeria herpotrichoides =
Leptosphaeria herpotrichoides
Stagonospora sp.
Ustilago tritici =
Ustilago segetum var. tritici
Ustilago segetum var. nuda
Ustilago segetum var. avenae
Microscopica leaf spot
Phaeosphaeria microscopica =
Leptosphaeria microscopica
Phoma spot
Phoma spp.
Phoma glomerata
Phoma sorghina =
Phoma insidiosa
Microdochium nivale =
Fusarium nivale
Monographella nivalis
Platyspora leaf spot
Clathrospora pentamera =
Platyspora pentamera
Erysiphe graminis f.sp. tritici
Blumeria graminis =
Erysiphe graminis
Oidium monilioides
Pythium root rot
Pythium aphanidermatum
Pythium arrhenomanes
Pythium graminicola
Pythium myriotylum
Pythium volutum
Rhizoctonia root rot
Rhizoctonia solani
Thanatephorus cucumeris
Pyrenophora seminiperda =
Drechslera campanulata
Drechslera wirreganensis
Fusarium spp.
Gibberella zeae
Fusarium graminearum Group II
Gibberella avenacea
Fusarium avenaceum
Fusarium culmorum
Microdochium nivale =
Fusarium nivale
Monographella nivalis
Sclerotinia snow mold = snow scald
Myriosclerotinia borealis =
Sclerotinia borealis
Sclerotium wilt (see Southern blight)
Sclerotium rolfsii
Athelia rolfsii
Septoria blotch
Septoria tritici
Mycosphaerella graminicola
Rhizoctonia cerealis
Ceratobasidium cereale
Pythium spp.
Pythium aristosporum
Pythium iwayamae
Pythium okanoganense
Sclerotium rolfsii
Athelia rolfsii
Typhula idahoensis
Typhula blight
Typhula incarnata
Typhula ishikariensis
Typhula ishikariensis var. canadensis
Cochliobolus sativus
Bipolaris sorokiniana =
Helminthosporium sativum
Stagonospora blotch
Phaeosphaeria avenaria f.sp. triticae
Stagonospora avenae f.sp. triticae =
Septoria avenae f.sp. triticea
Phaeosphaeria nodorum
Stagonospora nodorum = Septoria nodorum
Puccinia graminis =
Puccinia graminis f.sp. tritici
Aspergillus spp.
Penicillium spp.
Puccinia striiformis
Uredo glumarum
Gaeumannomyces graminis var. tritici
Gaeumannomyces graminis var. avenae
Pyrenophora tritici-repentis
Drechslera tritici-repentis
Phyllachora graminis
Linochora graminis
Magnaporthe grisea
Lagena radicicola
Ligniera pilorum
Olpidium brassicae
Rhizophydium graminis
Embodiments of the invention can be used to treat crops in order to limit or prevent insect infestation. The types of crops that can be treated can include, for example, any of the following, or the like:
Musa textilis
Medicago sativa
Medicago sativa
Prunus dulcis
Pimpinella animus
Malus sylvestris
Prunus armeniaca
Areca (betel nut)
Areca catechu
Arracacia xanthorrhiza
Maranta arundinacea
Cynara scolymus
Asparagus officinalis
Persea americana
Pennisetum americanum
Vigna subterranea
Musa paradisiaca
Hordeum vulgare
Phaseolus vulgaris
Phaseolus and Vigna spp.
Beta vulgaris
Beta vulgaris
Beta vulgaris
Beta vulgaris
Beta vulgaris
Citrus bergamia
Areca catechu
Piper nigrum
Acacia mearnsii
Rubus spp.
Vaccinium spp.
Bertholletia excelsa
Artocarpus altilis
Vicia faba
Vicia faba
Brassica oleracea var. botrytis
Sorghum bicolor
Sorghum bicolor
Brassica oleracea var. gemmifera
Fagopyrum esculentum
Brassica oleracea var. capitata
Brassica chinensis
Brassica spp.
Theobroma cacao
Cucumis melo
Carum carvi
Elettaria cardamomum
Cynara cardunculus
Ceratonia siliqua
Daucus carota ssp. sativa
Daucus carota ssp. sativa
Anacardium occidentale
Manihot esculenta
Ricinus communis
Brassica oleracea var. botrytis
Apium graveolens var. rapaceum
Apium graveolens
Sechium edule
Prunus spp.
Castanea sativa
Cicer arietinum
Cichorium intybus
Cichorium intybus
Capsicum spp. (annuum)
Capsicum spp. (annuum)
Cinnamomum verum
Citrus medica
Cymbopogon citrates/Cymbopogon nar
Citrus reticulata
Eugenia aromatica (Syzygium
aromaticu
Trifolium spp.
Trifolium spp.
Theobroma cacao
Cocos nucifera
Colocasia esculenta
Coffea spp.
Cola acuminata
Brassica napus
Zea mays
Zea mays
Zea mays
Valerianella locusta
Gossypium spp.
Gossypium spp.
Vigna unguiculata
Vigna unguiculata
Vaccinium spp.
Lepidium sativum
Cucumis sativus
Ribes spp.
Annona reticulate
Colocasia esculenta
Phoenix dactylifera
Moringa oleifera
Sorghum bicolour
Triticum durum
Vigna subterranea
Xanthosoma spp.; Colocasia spp.
Solanum melongena
Cichorium endivia
Foeniculum vulgare
Trigonella foenum-graecum
Ficus carica
Corylus avellana
Furcraea macrophylla
Linum usitatissimum
Linum usitatissimum
Phormium tenax
Alium sativum
Alium sativum
Pelargonium spp.; Geranium spp.
Zingiber officinale
Ribes spp.
Lagenaria spp; Cucurbita spp.
Cicer arietinum
Vitis vinifera
Citrus paradisi
Vitis vinifera
Vitis vinifera
Vitis vinifera
Lygeum spartum
Dactylis glomerata
Sorghum bicolor var. sudanense
Arachis hypogaea
Psidium guajava
Sorghum bicolor
Corylus avellana
Cannabis sativa ssp. indica
Musa textilis
Crotalaria juncea
Cannabis sativa (marijuana)
Agave fourcroydes
Lawsonia inermis
Humulus lupulus
Vicia faba
Armoracia rusticana
Zea mays
Indigofera tinctoria
Jasminum spp.
Helianthus tuberosus
Sorghum bicolor
Corchorus spp. (over 30 sp.)
Brassica oleracea var. acephala
Ceiba pentandra
Hibiscus cannabinus
Brassica oleracea var. gongylodes
Lavandula spp. (over 15 sp.)
Alium ampeloprasum; Alium porrum
Citrus limon
Cymbopogon citratus
Lens culinaris
Lespedeza spp.
Lactuca sativa var. capitata
Citrus aurantifolia
Citrus limetta
Linum usitatissimum
Glycyrrhiza glabra
Litchi chinensis
Eriobotrya japonica
Lupinus spp.
Macadamia (Queensland nut)
Macadamia spp. ternifolia
Myristica fragrans
Agave atrovirens
Zea mays
Zea mays
Zea mays
Zea mays
Citrus reticulata
Beta vulgaris
Mangifera indica
Manihot esculenta
cereale
Mespilus germanica
Cucumis melo
Sorghum bicolor
Pennisetum americanum
Pennisetum americanum
Eleusine coracana
Setaria italica
Echinochloa esculenta
Pennisetum americanum
Panicum miliaceum
Mentha spp.
Morus spp.
Morus alba
Volvariela
Brassica nigra; Sinapis alba
Prunus persica var. nectarina
Phormium tenax
Guizotia abyssinica
Myristica fragrans
Avena spp. (about 30 sp.)
Avena spp. (about 30 sp.)
Elaeis guineensis
Abelmoschus esculentus
Olea europaea
Alium cepa
Alium cepa
Alium cepa
Papaver somniferum
Citrus sinensis
Citrus aurantium
Borassus flabellifer
Elaeis guineensis
Elaeis guineensis
Metroxylon sagu
Carica papaya
Pastinaca sativa
Pisum sativum
Pisum sativum
Prunus persica
Arachis hypogaea
Pyrus communis
Carya ilinoensis
Piper nigrum
Capsicum spp. (over 30 sp.)
Diospyros kaki; Diospyros virginiana
Cajanus cajan
Ananas comosus
Pistacia vera
Musa sapientum
Prunus domestica
Punica granatum
Citrus grandis
Papaver somniferum
Solamum tuberosum
Ipomoea batatas
Prunus domestica
Cucurbita spp. (over 25 sp.)
Cucurbita spp. (over 25 sp.)
Chrysanthemum cinerariaefolium
Aspidosperma spp. (more than 3 sp.)
Cydonia oblonga
Cinchona spp. (more than 6 sp.)
Chenopodium quinoa
Raphanus sativus (inc. Cochlearia
armoracia)
Boehmeria nivea
Brassica napus
Rubus spp. (over 360 sp.)
Beta vulgaris
Agrostis spp.
Boehmeria nivea
Rheum spp.
Oryza sativa; Oryza glaberrima
Rose spp.
Hevea brasiliensis
Brassica napus var. napobrassica
Secale cereale
Lolium spp. (about 20 sp.)
Carthamus tinctorius
Onobrychis vicifolia
Tragopogon porrifolius
Achras sapota
Citrus reticulata
Scorzonera - black salsify
Scorzonera hispanica
Sesamum indicum
Vitelaria paradoxa
Agave sisalana
Sorghum
Sorghum bicolor
Sorghum, broom
Sorghum bicolor
Sorghum, durra
Sorghum bicolor
Sorghum, Guinea corn
Sorghum bicolor
Sorghum, jowar
Sorghum bicolor
Sorghum, sweet
Sorghum bicolor
Glycine max
Glycine max
Triticum spelta
Spinacia oleracea
Cucurbita spp. (over 25 sp.)
Fragaria spp. (over 30 sp.)
Beta vulgaris
Beta vulgaris
Beta vulgaris
Saccharum officinarum
Saccharum officinarum
Saccharum officinarum
Helianthus annuus
Helianthus annuus
Crotalaria juncea
Brassica napus var. napobrassica
Brassica napus var. napobrassica
Zea mays
Citrus limetta
Capsicum annuum
Lopmoea batatas
Sorghum bicolor
Citrus reticulata
Xanthosoma sagittifolium
Manihot esculenta
Colocasia esculenta
Camelia sinensis
Eragrostis abyssinica
Phleum pratense
Nicotiana tabacum
Lycopersicon esculentum
cereale
Aleurites spp.; Fordii
Brassica rapa
Brassica rapa
Urena (Congo jute)
Urena lobata
Vanilla planifolia
Vicia sativa
Juglans spp. (over 20 sp.), ep. regia
Citrulus lanatus
Triticum aestivum
Dioscorea spp. (over 120 sp.)
Ilex paraguariensis
In certain embodiments of the invention, an area can be treated with a composition of the present invention, for example, by using a spray formulation, such as an aerosol or a pump spray, or a burning formulation, such as a candle or a piece of incense containing the composition, or the like. In certain embodiments of the invention, an area can be treated, for example, via aerial delivery, by truck-mounted equipment, or the like. Of course, various treatment methods can be used without departing from the spirit and scope of the present invention. For example, compositions can be comprised in household products, for example, hard surface cleaners, and the like.
An exemplary dispenser of a system of the present invention can deliver an pest control composition to the atmosphere in a continuous manner over a period of time. The exemplary dispenser can include a reservoir for holding a pest control composition, and a wick for drawing the composition from the reservoir and releasing the insect control composition into the atmosphere. The reservoir can be constructed from a material that is impermeable to the pest control composition, for example, appropriate glass, ceramic, or polymeric materials can be used. The reservoir can include an aperture, which can be sealed or unsealed, as desired. When the exemplary system of the present invention is not in use, the aperture can be sealed to prevent the release of the pest control composition into the atmosphere. It may be desirable, for example, to seal the aperture when the exemplary system is being stored or transported. When the system is in use, the aperture is unsealed, such that the wick can draw the pest control composition from the reservoir, and release the control composition through the aperture into the atmosphere.
In certain embodiments of the invention, the rate of release of the composition can be controlled, for example, by making adjustments to the wick of the dispenser. For example, the surface area of the wick that is exposed to the atmosphere can be altered. Generally, the greater the exposed surface area, the greater the rate of release of the pest control composition. In this regard, in certain embodiments, the dispenser can include multiple wicks and the reservoir can include multiple apertures through which the insect control composition can be released into the atmosphere. As another example, the wick can be constructed from a particular material that draws the pest control composition from the reservoir and releases it into the environment at a desired rate, such as, for example, a wick made of wood, a wick made of a synthetic fiber, or the like.
Another exemplary dispenser of a system of the present invention can deliver an insect control composition to a desired area. The dispenser can include a sealed pouch that can be constructed from a material that is impermeable to the insect control composition, for example, a metallic foil, a polymeric material, or the like. The pouch can define a volume for holding the insect control composition. The composition can be provided in a material disposed within the volume of the pouch, for example, a sponge, a cloth saturated with the material, or the like. When it becomes desirable to place the exemplary system into use, the pouch can be unsealed, exposing the composition for release into the atmosphere or for application to a desired area.
In certain embodiments the insect control composition is provided in a saturated cloth within the pouch, which can be used to apply the control composition a desired area. For example, a desired area can be an animal, such as a human, a domestic animal, surfaces within a dwelling, an outdoor living area, or the like.
In certain embodiments, the dispenser can further include a hook, allowing the pouch and exposed control composition to be hung in a desired location, such as in a closet or a pantry.
In certain embodiments, a method of the present invention can deliver insect an control composition to a desired area. In certain embodiments, a dispenser used with the method can be constructed from a substantially planar, integral piece of material, having a first side that is coated with control composition, and a second side that is not coated with control composition. The integral piece of material can be folded and sealed such that the side coated with the control composition is contained within the volume defined by the sealed pouch. When the pouch is unsealed, the side that is coated with control composition is exposed. The substantially planar piece of material can be placed in a desired location to deliver control composition to the atmosphere, or to crawling insects that walk across the material.
Another exemplary dispenser of a system of the present invention can deliver an insect control composition to a desired area. The control composition can be incorporated into an appropriate material. In certain embodiments, the composition-containing material can be a material that is capable of controlling the release rate of the control composition, i.e., controlled-release material, allowing the control composition to be released into the atmosphere at a desired rate that can be adjusted by providing controlled-release material having appropriate specifications. The controlled-release material can be constructed from an appropriate polymer. In other embodiments the composition-containing material does not allow the control composition to be released into the atmosphere, but rather retains the control composition. An optional casing that is impermeable to the insect control composition can be provided to hold the composition-containing material until the system is ready for use. When the system is ready for use, the casing can be peeled away, exposing the composition-containing material. The composition-containing material can be placed in a desired location to deliver control composition to crawling insects that walk across the material, or to deliver the control composition to the atmosphere when a controlled-release material is used, e.g., control flying insects.
In certain embodiments, the composition-containing material can have a substantially planar design, appropriate for positioning adjacent a mattress for controlling bed bugs, e.g., Cimex lectularius. A substantially planar design can also be used, for example, as or with a picnic table cloth. In certain embodiments, the composition-containing material can be used as ground cover for a garden bed or adjacent crop plants to control weeds. In certain embodiments, the composition-containing material can take the shape of a bag, and could be used for trash collection, while controlling insect commonly attracted to household garbage or other trash.
Another exemplary dispenser of a system of the present invention can be a substantially dry sheet containing the control composition, which control composition can be applied to a desired location upon exposing the cloth to water or an aqueous liquid, e.g., perspiration. In certain embodiments, the dry sheet containing the control composition can dissolve into a cream or gel when exposed to water or an aqueous liquid, which can then be applied to a desired area. For example, a desired area can be an animal, such as a human, a domestic animal, or another animal.
The present invention is further illustrated by the following examples.
Various exemplary compositions containing plant essential oils have been prepared and tested for efficacy against different targets including insects, spiders, and fungi. The following examples provide details of certain exemplary compositions. As disclosed herein, it is within the scope of the present invention to vary the concentrations of components of each composition within useful ranges. Accordingly, these specific compositions are merely representative of certain embodiments of the invention.
Five microliters of the oil or oil blend listed in the table below were applied to the sternum of a male German Cockroach, and the time to death was recorded (time keeping was stopped at one hour). Sample size N=60 for Blend 24 and N=40 for each of the oil components. Components were diluted with acetone.
Five microliters of the oil or oil blend listed in the table below were applied to the sternum of a male German Cockroach, and the time to death was recorded (time keeping was stopped at one hour). Sample size N=60 for Blend 41 and each of the oil components. Components were diluted with acetone.
The compositions were tested for efficacy against one or more of: flour beetle, Argentine ant, German cockroach, bedbug, darkling beetle, house spider, Indian meal moth, red fruit fly, Penicillium chrysotenum, and Aspergillus ochraceus; and/or for its function in one or more of: knockdown, kill, repellency, residual activity, oil-based versus water-based efficacy, speed of kill, efficacy on different surfaces, efficacy against different sexes of target organism, efficacy against different strains of target organism, and efficacy against different developmental stages of target. For testing purposes, one (1) gallon of the formulation was applied per 1000 ft2 of surface area and allowed to dry for two (2) hours. Insects were then introduced to the surface area. Data corresponding to one such test is provided in the table below. The table shows results for Blend 41 applied to a stainless steel surface.
Five microliters of the oil or oil blend listed in the table below were applied to the sternum of a male German Cockroach, and the time to death was recorded (time keeping was stopped at one hour). Sample size N=40 for Blend 41 and each of the oil components. Components were diluted with acetone. (No mortality was observed in acetone controls.)
Table 4-A shows the synergy of Blend 19 against Ascaris suum in culture media. LT100 was determined from the dose response ranging between 1-100 μg/ml. Ten hours was the selected length of time for the synergy study because it was the length of time that produced 100% kill (LT100) of treated Ascaris with 10 μg/ml. 10 worms were used per test.
Various insects were exposed to the essential oil blends indicated in the table below using the technique described in Example 2. For each blend, the table lists the insects whose observed mortality rates in the exposure test were above 80%.
Composition are prepared having the ingredients and ratios as specified in the following table:
Blend 50 is prepared as follows: Step 1—mix 50% LFO (supplied by IFF; LFO is free of diethyl phthalate) with 35% thyme oil and 15% black seed oil (BSO). This initial mix is then combined in Step 2, in a 30:70 ratio, with d-limonene, such that the final mixture is 70% d-limonene and 30% of the LFO/thyme oil/BSO mixture from Step 1. The values in parantheses indicate the calculation of the final concentration of the specified ingredient upon the dilution of the initial mix from Step 1 into d-limonene at Step 2.
The compositions are tested for efficacy against one or more of: flour beetle, Argentine ant, German cockroach, bedbug, darkling beetle, house spider, Indian meal moth, red fruit fly, Penicillium chrysotenum, and Aspergillus ochraceus; and/or for its function in one or more of: knockdown, kill, repellency, residual activity, oil-based versus water-based efficacy, speed of kill, efficacy on different surfaces, efficacy against different sexes of target organism, efficacy against different strains of target organism, and efficacy against different developmental stages of target. Testing showed high efficacy and synergy.
A blend of oils, denoted as Blend 41, is prepared and set aside. The composition of this blend in weight percent format is provided below:
Using proportions in the table below, a solution is prepared of Polyglycerol-4-oleate, Lecithin and water. Then Blend 41 is added slowly above surface to this solution with mild mixing at the interface to create a concentrate denoted as Blend 65.
Blend 65 from Blend 41
The Blend 65 concentrate is diluted with a mixture of potassium sorbate and xanthan gum in water in the following ratios to create the finished product Blend 66 according to proportions in the table below:
Blend 66 from Blend 65
The exploded and summarized formula for Blend 66, a finished product ready for spraying, is as follows in the following table.
This product is identical to Blend 66 except that the Wintergreen Oil is replaced with Methyl Salicylate.
A blend of oils, denoted as Blend 47, is prepared and set aside. The composition of this blend in weight percent format is provided in the table below. This product can be manufactured in the following way:
Blend 47 from Oils
Using the proportions in the table below, a solution is prepared of Polyglycerol-4-oleate, Lecithin and water. Then Blend 47 is added slowly above surface to this solution with mild mixing at the interface to create a concentrate denoted as Blend 77.
Blend 77 from Blend 47
The Blend 77 concentrate is diluted with a mixture of potassium sorbate and xanthan gum in water in the following ratios to create the finished product Blend 78 according to proportions in the following table.
Blend 78 from Blend 77
The exploded and summarized formula for Blend 78, a finished product ready for spraying, is as follows in the following table.
Total Composition of Blend 78 RTU Spray Product after Explosion and Summarization.
Blend 78 Exploded & Summarized PCT
This product can be manufactured in the following way: A blend of oils, denoted as Blend 18, is prepared and set aside. The composition of this blend in weight percent format is provided in the following table.
Blend 18 from Oils
Using the proportions in the table below, a solution is prepared of Polyglycerol-4-oleate, Lecithin and water. Then Blend 18 is added slowly above surface to this solution with mild mixing at the interface to create a concentrate denoted as Blend 69.
Blend 69 from Blend 18
The Blend 69 concentrate is diluted with a mixture of potassium sorbate and xanthan gum in water in the following ratios to create the finished product Blend 75 according to proportions in the following table.
Blend 75 from Blend 69
The exploded and summarized formula for Blend 75, a finished product that has high residual ready for spraying, is as follows in the table below. This product uses Blend 18, a mix which shows high residual efficacy.
Total Composition of Blend 75 RTU Spray Product after Explosion and Summarization.
Blend 75 Exploded & Summarized PCT
A stock solution of 10% Sodium Lauryl Sulfate in water, denoted as S-1002, is prepared according to weight percentages in the table below or the solution can be purchased.
S-1002 10% SLS Solution
The S-1002 solution is then added to Blend 41 according to weight percentages in the table below to create Blend 64, Blend 41 in 1% SLS.
Blend 64 (Blend 41 with 1% SLS & 10% water)
In some embodiments, a blend of LFO, D-Limonene, Thyme Oil White, and Blend 61 is preferred. Various embodiments are directed to variations on the blend. A preferred embodiment is:
In some embodiments, the LFO of Blend 7 can be replaced by its major components.
The formulation for manufacture of Blend 9, the insect repellent product containing a volumetric ratio of 4 parts LFO to 1 part BSO is provided below.
Blend 9 PCT
In some embodiments, a blend of Lilac Flower Oil and Black Seed Oil is preferred. Various embodiments are directed to variations on the blend. For example, in some embodiments, a ratio of approximately 1:1 is desirable. Where such a ratio is based upon volume measurements, the weight/weight ratio can be somewhat more or less than exactly 1:1, including a ratio of 2:1. In some embodiments, XL 101 1:1 can include the following ingredients:
In other embodiments, LFO is replaced by a combination of other oils found in LFO, such that a 1:1 formulation includes the following ingredients:
In still other embodiments, a ratio of 4:1 is desirable. Some embodiments of blends having this characteristic, with either LFO or LFO ingredient oils, include the ingredients found in the following three tables:
Blend 9:
Blend 3 with Lilac Flower Oil substituted with Lilac Flower Oil components:
Blend 42:
In some embodiments, a blend of Thyme Oil White, Wintergreen Oil, and Isopropyl myristate is preferred. Various embodiments are directed to variations on the blend. In some embodiments, Blend 18 can include the following ingredients:
Blend 18:
In other embodiments, Blend 18 is diluted to an 89% concentration through the addition of Polyglycerol-4-oleate, Lecithin, and water to form Blend 69:
Blend 69:
In some embodiments, a blend of Thyme Oil White, Wintergreen Oil, and Isopropyl myristate is preferred. Various embodiments are directed to variations on the blend. In some embodiments, Blend 41 can include the following ingredients:
Blend 41:
In other embodiments, synthetic Methyl salicylate is substituted for the Wintergreen Oil, resulting in Blend 47:
Blend 47:
In some embodiments, a blend of LFO, D-Limonene, Thyme Oil White, and Blend 61 is preferred. Various embodiments are directed to variations on the blend. A preferred embodiment is:
In some embodiments, the LFO of Blend 7 can be replaced by its major components, as indicated for Blend 3 in Example 13.
A blend is prepared and tested against a target organism. Likewise, each individual ingredient is also tested against the target organism. Both knockdown (KD) and kill are measured. The blends act more quickly than any individual ingredient. The ratio of time for the effect is the coefficient of synergy. For the “constant total AI amount” test, each individual ingredient was used in the same amount, as the total amount of all active ingredients within the blend. For the “constant ingredient amount” test, each ingredient was used in the same amount as that ingredient was present in the blend.
Thus, for example, if 15 mg/sq cm of the blend were applied to a test dish in each case, then for “constant total AI” 15 mg/sq cm of each individual active was also used, singly, in the comparison tests. In contrast, if chemical A was present as 10% of the blend, then in the constant ingredient amount test, chemical A was present at 1.5 mg/sq cm, 10% of the total amount of the blend administered.
A blend can is prepared and combined with a synthetic pyrethroid such as delatmetrhin. For example, Blend 41 was combined with deltamethrin (DM) and the efficacy of Blend 41 and DM individually were compared to the efficacy of Blend 41 and DM combined.
To test efficacy of the composition, a small amount of each test chemical is introduced to a separate jar. About 3 to 5 American cockroaches are introduced to each jar at different time intervals. Mortality and/or immobilization (knockdown, KD) data is recorded and compared. Such data is recorded as seconds (s) following introduction of the insect to the treated jar. The resulting data is contained in the following table.
Table 18-A shows the comparative results for Blend 41 alone, Deltamethrin alone (DM), and Blend 41+DM. The data is the average of 3 replicates, 5 roaches in each replicate.
A solution of 5% thyme crystals (TC) is prepared in acetone and about 2 ml of the solution is applied to the bottom of a glass jar. About 2 ml of six compositions (R1-R6), set forth in Table 19-A, are each applied to the bottom of a separate jar. Thyme Crystals (5%, by weight) are combined with the six compositions (R1-R6) to produce six formulations. About 2 ml of each formulation is applied to a separate jar.
Three American cockroaches are introduced to each jar about 1 hour after application of the thyme crystals, the compositions, or the formulations. Mortality is recorded about 24 hours after exposure. All jars are kept under room temperature and reused at subsequent time points to evaluate residual activity. Three American cockroaches are introduced to each jar at about 7 days, 14 days, 18 days and 21 days after application of the thyme crystals, the compositions, or the formulations to the jars. Mortality is recorded about 24 hours after each exposure. The residual activity, expressed based on mortality, is set forth in Table 19-B.
The thyme crystal stabilizer alone does not have residual activity when tested about 48 hours after application. The compositions alone exhibit residual insect control for about 2 to 18 hours, the insect control decreases after about 7 days, and is no longer present 14 days after application. The formulations exhibit increased residual insect control for about 2 or more weeks. Only formulation R6 did not demonstrate residual toxicity after 7 days. Formulation R6 consists of 10% of formulation R1, diluted in isopar M. The lower concentration of the “active” ingredient in Formulation R6, coupled with the shortened residual activity when compared to Formulation R1, indicate that a sufficient amount of “active” ingredient must be available to coat the surfaces of the stabilizer in order to increase residual activity.
In studies where treatment jars are reused at various time intervals, as described in Example 19, the materials in the jars are lost after each exposure due to contact with and transfer to the insect body, rather than via loss due to volatility of the material. As such, additional studies are conducted wherein a separate jar is prepared for each time period.
A solution of 5% thyme crystal (TC) is prepared in acetone and about 2 ml of the solution is applied to the bottom of five separate glass jars, one for each time point at which mortality is assessed. About 2 ml of six compositions (R1-R6), set forth above in Table 19-A, are each applied to the bottom of five separate jars. Thyme Crystals (5%, by weight) are combined with the six compositions (R1-R6) to produce six formulations. About 2 ml of each formulation is applied to five separate jars.
Three American cockroaches are introduced to a first set of jars about 1 hour after application of the thyme crystals, the compositions, or the formulations. Mortality is recorded about 24 hours after exposure. Three American cockroaches are introduced to the other sets of jars at about 7 days, 14 days, 18 days and 21 days after application of the thyme crystals, the compositions, or the formulations to the jars. Mortality is recorded about 24 hours after each exposure.
The thyme crystal stabilizer alone does not have residual activity when tested about 48 hours after application. The compositions alone are no longer present 14 days after application. The formulations exhibit increased residual insect control for about 2 to 5 or more weeks, with the exception of formulation R6.
Various test insect-control compositions are used to prepare water-based formulations. The following compositions are used:
The water-based formulations are prepared by mixing the composition with water containing about 10% (by weight) surfactant to give about 25% (by weight) concentration of the composition. The mixture is then mixed with solvent to yield a final concentration of about 12.5% (by weight) composition. Formulations without solvent and having the same final concentration of compositions were prepared for comparative testing purposes.
One to two ml of each water-based formulation is applied to the bottom of separate jars and each solvent-free formulation is applied to the bottom of separate jars. About 3 to 5 American cockroaches or about 5-20 carpenter ants are introduced to each jar at different time intervals. Mortality and/or immobilization (knockdown, KD) data is recorded and compared. Such data is recorded as seconds (s) following introduction of the insect to the treated jar. The resulting data is contained in the following table.
Various test insect-control compositions are used to prepare water-based formulations having residual efficacy. The following compositions are used:
The water-based formulations are prepared by mixing the composition with water containing about 10% surfactant to give about 25% concentration of the composition. The mixture is then mixed with solvent. Thyme crystals are provided as a stabilizer and mixed until no more crystals are dissolved, i.e., saturated solution. In another experiment, about 1-5% crystals are used. Each water-based formulation is applied to the bottom of multiple separate jars, a jar being prepared for each test time point. American cockroaches are introduced to each jar at certain test time points and mortality is recorded about 24 hours later. The resulting data is contained in the following table.
The effect of compositions on the mortality of insects is tested. Multiple plexiglass chambers are used, at least one as a treatment container that is sprayed (aerosol spray) evenly on all surfaces with the composition being tested, and the other as a non-treated control. Southern house mosquitoes, Culex quinquefasciatus, are obtained as test organisms. Multiple laboratory cultured, sucrose-fed female mosquitoes aged about 2-5 days are released into the glass chambers prior to the spraying of aerosol. The discharge rate (gm/second) of each can of aerosol to be tested is predetermined. Based on the dosage required, an estimated time of spray of aerosol is discharged into the glass chamber.
Knockdown of mosquitoes are observed at indicated intervals up to about 20 minutes. After about 20 minutes, all mosquitoes are collected and placed in cylindrical polyethylene containers with 10% sucrose pad. Mortality is observed 24 hours post-treatment. The mortality value is based on a combination of dead and moriband mosquitoes over the total number of mosquitoes initially released. The data from an exemplary study is shown in Table 22-A (Treatment) and Table B (Control), which study tests a composition comprising the following: lilac flower oil (City Chemical, Kentucky; containing no diethyl phthalate (DEP)) and black seed oil at a ratio of 2:1. As shown, the % mortality of the mosquitoes treated with the composition is 100%, compared to >2% in the non-treated control.
In another study, a composition was tested comprising the following: lilac flower oil (Alpine Chemicals, New Jersey; containing diethyl phthalate (DEP)) and black seed oil at a ratio of 2:1. The presence or absence of DEP in the lilac flower oil had no effect on the insect control activity of the composition. Because DEP may be toxic, it is generally desirable to use lilac flower oil that does not contain DEP.
The repellency of exemplary compositions of the present invention are compared to DEET and a non-treated control. Southern house mosquitoes, Culex quinquefasciatus, are obtained as test organisms. Multiple human evaluators test each treatment in a replicated experiment. Experimentation is conducted in a laboratory using multiple-chambered, plexiglass modules, each chamber stocked with about 2-10 day-old colony-reared female mosquitoes. The modules are equipped with sliding doors to expose the mosquitoes to the legs of three volunteers. Treatments are applied at about 28.6 μl to 12 cm2 rectangular sections of skin located directly beneath the chamber openings. Each volunteer conducts 2-minute biting counts for each treatment at five time intervals: 0, 1, 2, 4 & 6 hrs post-treatment. Each treatment and time interval combination is replicated multiple times and the entire experiment is repeated multiple times on separate days. New mosquitoes are stocked into the chamber for each time interval and day of testing. Ambient temperature and humidity data is recorded with a HOBO datalogger.
Data from this study is statistically analyzed and combined as appropriate so that the mean response (% repellency) for each product is based on about 30 observations per time exposure interval. Results are charted with error variance as average biting count per exposure interval and as % repellency compared to control means using the formula: Control−Treatment/Control×100.
The exemplary compositions tested are described in Table 22-C. The repellency data is set forth in Table 22-D and Table 22-E and is illustrated in a bar-graph shown in
In another study the repellency of an exemplary composition comprising about 66.6% (wt) lilac flower oil and about 33.3% (wt) black seed oil (“XL101”) is tested. The XL101 composition is combined with water in various ratios (1:1; 2:1; 3:1; 1:2) and compared with DEET. The repellency data is set forth in a bar-graph shown in
A composition of 20% BSO, 40% geranium oil, 20% piperonal, and 20% linalool was prepared by mixing by hand in a glass beaker. 10% (by weight) of this mixture was added to diatomaceous earth, then mixed thoroughly. The insect repellency properties of the formulation were tested as described.
A 36 cm×36 cm glass container was used for each test. The walls of the container were painted with Fluon to prevent insects from traveling along the side walls of the container. The container was divided into two equal halves, with one half left blank as a control surface. The other half of the container was treated with the formulation described above at an amount of 150 gm dust per m2. All of the treated test containers were kept uncovered and exposed to sunlight for time intervals of 24 hours or 10 days. Five insects per replicate were used, with one replicate used for each treatment. Controls were performed with untreated glass containers. One insect at a time was placed on the untreated side of the glass container, as far as possible from the treated side. After one minute, the time that the insect spent on each half of the container was measured up to 300 seconds. The percent repellency (% R) for each replicate was calculated as follows:
A composition of 20% BSO, 40% geranium oil, 20% piperonal, and 20% linalool was prepared by mixing in a glass beaker. 10% (by weight) of this mixture was added to diatomaceous earth. The insect repellency properties of the formulation were tested as follows: The insecticidal properties of the formulation were tested as described.
2.5 g portions of the formulation were exposed to sunlight for time intervals of 0, 24, and 240 hours. All samples (but for the 0 time point portions) were exposed to sunlight between 8 am and 2 pm. During the test period, the ambient temperature was between 70-85 F. For each replicate, 5 insects were weighed then held in a 1 quart glass jar, and sprinkled directly with 2.5 grams of the formulation using a 3-screen flour sieve. This treatment had a duration of approximately 4 seconds. The insects were immediately transferred out of the test jar. The weight of the 5 insects was determined post-treatment, and insects were transferred to a clean jar with a screened cap for post-treatment observation period. Post-treatment observations were recorded up to 24 hours. Controls were kept under the same conditions.
Like the testing described in Example 18, other insect control blends were combined with delatamethrin and responses to the combinations compared to response obtained with the blend alone or deltamethrin alone.
Table 24-A shows results in response to treatment of the German cockroach with Blend 13 in combination with deltamethrin (DM), and compared to the efficacy of deltamethrin alone and Blend 13 alone.
Insect control blends were combined with clothianidin and responses to the combinations compared to response obtained with the blend alone or clothianidin alone.
Insect control blends were combined with clothianidin and responses to the combinations compared to response obtained with the blend alone or imidacloprid alone.
For example, Table 25-A shows the cAMP response generated in cells treated with a combination of Blend 41 and imidacloprid.
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as reaction conditions, and so forth used in this document are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in this document are approximations that may vary depending upon the desired properties sought to be determined by the present invention.
It will be obvious to those skilled in the art that further modifications may be made to the embodiments described herein without departing from the spirit and scope of the present invention.
This application claims the benefit of U.S. Provisional Application Nos. 60/896,427, filed Mar. 22, 2007; 60/896,436, filed Mar. 22, 2007; 60/896,430, filed Mar. 22, 2007; 60/987,013, filed Nov. 9, 2007; 60/990,912, filed Nov. 28, 2007; and 61/023,425, filed Jan. 24, 2008.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/003722 | 3/21/2008 | WO | 00 | 5/3/2010 |
Number | Date | Country | |
---|---|---|---|
60896427 | Mar 2007 | US | |
60896436 | Mar 2007 | US | |
60896430 | Mar 2007 | US | |
60987013 | Nov 2007 | US | |
60990912 | Nov 2007 | US | |
61023425 | Jan 2008 | US |