This invention lies within the general field of chemistry and refers in particular to a synergistic surfactant composition.
“Wetting agents” are substances that lower the surface tension of water and “superwetting agents” are those substances that reduce surface tension of water below a value of 25 mN/m.
Currently, surfactants are widely used in most industries (cosmetics, agriculture, pharmaceuticals, et.) as described in U.S. Pat. No. 6,653,288 and in patent application CN102440250.
However, despite the large number of compounds that act as surfactants, reducing surface tension below 25 mN/m is very complicated with substances that are not organosilicones.
There is therefore a need to provide a composition that has a “superwetting” effect and that can lower surface tension to below 25 mN/m.
This invention solves the problems of the state of the art since it provides a composition with which a surface tension can be achieved with values of around 20 mN/m by taking advantage of the synergy of three components.
Thus, in a first aspect this invention refers to a synergistic composition of surfactants (hereinafter, the composition of this invention), featuring glycerine, glycol and organosilicone.
In a preferred embodiment, the glycerine in the composition of this invention is glycerine from the synthesis of bio Diesel.
In a preferred embodiment, the glycol in the composition of this invention is monopropyleneglycol.
In a preferred embodiment, the composition of this invention comprises:
In another aspect, this invention refers to the use of the composition of this invention as a superwetting agent.
In this invention, superwetting is understood to refer to those substances that lower the surface tension of water below a value of 25 mN/m.
In another aspect, this invention refers to the use of this invention in compositions for insecticides, herbicides, fungicides, food, bio stimulants and fertilisers.
To prepare the composition of this invention, unrefined glycerine from the synthesis of bio Diesel was used and was mixed with organosilicone and monopropyleneglycol (MPG). The mixing was produced by simple addition and homogenising of the three components, the preparation of the product being independent of the order in which they are added.
To check the synergistic effect, the surface tension was measured of each individual component, combined two by two and finally the three components of the product together.
The surface tension was measured by preparing the appropriate solutions with mains water and measuring the surface tension value at room temperature (25±2° C.) in a Kruss K9ET plate tensiometer (Wilhelmy platinum plate method). This method is based on measuring the maximum force needed in the vertical direction on a plate in contact with the surface of a liquid in the measuring container so that the liquid separates from the surface. This plate is connected to electronic scales to determine the surface tension value.
The measurement process involves the following steps:
The results are shown in the following tables.
As can be seen in Tables 1-3, the effect of the organosilicone prevails over the other individual components at equal concentrations. Even so, an additional reduction of surface tension is achieved to reach 20.3 mN/m, taking advantage of the synergistic effect of the mixture of the three components. Note that it is necessary to use a combination of three components to achieve an additional reduction of surface tension of approximately 10%, compared to organosilicone alone.
To confirm the effect of the reduction of surface tension of composition B and that this effect is maintained in the presence of the three components, two different compositions for the product were tested and the effect of these new formulas (B1 and B2) measured.
Surface tension at 0.2% p/p:
B: 20.3 mN/m
B1: 20.2 mN/m
B2: 20.6 mN/m
At this point it can be seen that composition B is the optimal one, taking into account the compromise between the synergistic effect seen (lowering of surface tension) and the amount of organosilicone to be used.
The composition of this invention (composition B) was then compared with other compositions (composition A and composition C) containing organosilicone mixed with other non-ionic surfactants. In fact, it is known that these substances can improve the effectiveness of organosilicone but from the point of view of reducing the dose.
Table 5 shows that the composition of this invention not only improves the effectiveness in the sense of reducing the dose but also improves it in the sense of achieving a reduction in the surface tension of water, in absolute value terms, attaining a lower surface tension value than that achieved with organosilicone alone or using other potentially synergistic substances in the general sense.
It is thus shown that the new superwetting and synergistic effect is due to the mix of the three compounds of this invention.
Composition A, containing 60% organosilicone, 30% monoethylenglycol and 10% sodium lauryl sulphate.
The composition of this invention, containing 56% glycerine, 34% monopropyleneglycol and 10% organosilicone.
Composition C consisted of 90% canola oil and 10% organosilicone.
As shown by the results in Tables 4 and 5, the composition of this invention (composition B) shows the best reduction of surface tension. Composition B generates lower surface tension values than combination A, although it contains a sixth less of the same organosilicone.
When diluted in water with the same dose (0.2%), composition B generates the same range of water surface tension reduction as composition A. It is important to note that at surface tension levels approaching 20 mN/m, achieving a reduction of 0.5 mN/m is really complicated even though the difference in absolute value may appear small, but it must be remembered that it is not since this is very close to the cancellation of the dosage effect. The same occurs when composition B is compared with composition C.
Extending the range of concentrations comparing composition B and composition A and the same composition B compared to composition C, it can be seen that:
It should be noted that with composition A, water surface tension values below 20.5 mN/m are never generated. On the other hand, all the values generated by composition B are below this value.
Number | Date | Country | Kind |
---|---|---|---|
P201430782 | May 2014 | ES | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ES2015/070388 | 5/15/2015 | WO | 00 |