Machine translation (MT) concerns the automatic translation of natural language sentences from a first language (e.g., French) into another language (e.g., English). Systems that perform MT techniques are said to “decode” the source language into the target language.
One type of MT decoder is the statistical MT decoder. A statistical MT decoder that translates French sentences into English may include a language model (LM) that assigns a probability P(e) to any English string, a translation model (TM) that assigns a probability P(f|e) to any pair of English and French strings, and a decoder. The decoder may take a previously unseen sentence f and try to find the e that maximizes P(e|f), or equivalently maximizes P(e)·P(f|e).
A TM may not model structural or syntactic aspects of a language. Such a TM may perform adequately for a structurally similar language pair (e.g., English and French), but may not adequately model a language pair with very different word order conventions (e.g., English and Japanese).
A statistical translation model (TM) may receive a parse tree in a source language as an input and separately output a string in a target language. The TM may perform channel operations on the parse tree using model parameters stored in probability tables. The channel operations may include reordering child nodes, inserting extra words at each node (e.g., NULL words), translating leaf words, and reading off leaf words to generate the string in the target language. The TM may assign a translation probability to the string in the target language.
The reordering operation may be based on a probability corresponding to a sequence of the child node labels. The insertion operation may determine which extra word to insert and an insert position relative to the node.
The TM may be trained using an Expectation Maximization (EM) algorithm.
The channel 105 accepts the parse tree as an input and performs operations on each node of the parse tree. As shown in
The reorder operation may model translation between languages with different word orders, such as SVO (Subject-Verb-Object)-languages (English or Chinese) and SOV-languages (Japanese or Turkish). The word-insertion operation may capture linguistic differences in specifying syntactic cases. For example, English and French use structural position to specify case, while Japanese and Korean use case-marker particles.
Child nodes on each internal node are stochastically reordered (block 315). A node with N children has N! possible reorderings. The probability of taking a specific reordering may be given by an r-table 405, as shown in
Next, an extra word may be stochastically inserted at each node (block 320). The word may be inserted either to the left of the node, to the right of the node, or nowhere. The word may be a NULL word 230. In a TM model, a NULL word may be an invisible word in the input sentence that generates output words distributed into random positions. NULL words may be function words, such as “ha” and “no” in Japanese. The position may be decided on the basis of the nodes of the input parse tree.
The insertion probability may be determined by an n-table. The n-table may be split into two tables: a table 410 for insert positions and a table 415 for words to be inserted. The node's label and its parent's label may be used to index the table for insert positions. For example, the PRP node has parent VB 205, thus (parent=VB, node=PRP) is the conditioning index. Using this label pair captures, for example, the regularity of inserting case-marker particles. In an embodiment, no conditioning variable is used when deciding which word to insert. That is, a function word like “ha” is just as likely to be inserted in one place as any other.
In
The total probability of the reorder, insert, and translate operations may then be calculated. In this example, the probability is 0.484·3.498e−9·0.0108=1.828e−11. Note that there are many other combinations of such operations that yield the same Japanese sentence. Therefore, the probability of the Japanese sentence given the English parse tree is the sum of all these probabilities.
The channel operations may be modeled mathematically. Assume that an English parse tree is transformed into a French sentence f. Let the English parse tree ε, consist of nodes ε1, ε2, . . . , εn, and let the output French sentence consist of French words f1, f2, . . . , fm. Three random variables, N, R, and T, are channel operations applied to each node. Insertion N is an operation that inserts a French word just before or after the node. The insertion can be none, left, or right. Insertion N may also decide what French word to insert. Reorder R is an operation that changes the order of the children of the node. If a node has three children, there are 3!=6 ways to reorder them. This operation may apply only to non-terminal nodes in the tree. Translation T is an operation that translates a terminal English leaf word into a French word. This operation applies only to terminal nodes. Note that an English word can be translated into a French NULL word.
The notation θ=<ν,p,τ> stands for a set of values of <N, R, T>. θ1=<ν1, pi,τ1> is a set of values of random variables associatds with εi, and θ=θ1, θ2, . . . , θn is a set of all random variables associated with a parse tree ε=ε1, ε2, . . . , εn.
The probability of getting a French sentence f given an English parse tree ε is
where Str(θ(ε)) is the sequence of leaf words of a tree transformed by θ from ε.
The probability of having a particular set of values of random variables in a parse tree is
P(θ|ε)=P(θ1,θ2, . . . , θn|ε1,ε2, . . . , εn)
Assuming a transform operation is independent from other transform operations, and the random variables of each node are determined only by the node itself, then
P(θ|ε)=P(θ1,θ2, . . . , θn|ε1,ε2, . . . , εn)
The random variables θ1=<ν1,pi,τ1> are assumed to be independent of each other. It is also assumed that they are dependent on particular features of the node ε1. Then,
P(θ1|ε1)=P(νi,ρi,τ1|ε1)
=P(ν1|ε1)P(ρi|εi)P(τ1|ε1)
=P(ν1|N(ε1))P(ρi|R(ε1))P(τ1|T(εi))
=n(νi|N(εi))r(ρi|R(εi))t(τi|T(εi))
where N, R, and T are the relevant features of N, R, and T, respectively. For example, the parent node label and the node label were used for N, and the syntactic category sequence of children was used for R. The last line in the above formula introduces a change in notation, meaning that those probabilities are the model parameters n(ν|N), r(ρ|R), and t(τ|T), where N, R, and T are the possible values for N, R and T, respectively.
In summary, the probability of getting a French sentence f given an English parse tree ε is
where ε=ε1, ε2, . . . , εn and θ=θ1, θ2, . . . , θn=<ν1, ρ1, τ1>,<ν2, ρ2, τ2>, . . . , <νn, ρn, τn>.
The model parameters n(ν|N), r(ρ|R), and t(τ|T), that is, the probabilities P(ν|N), P(ρ|R), and P(τ|T), decide the behavior of the translation model. These probabilities may be estimated from a training corpus.
An Expectation Maximization (EM) algorithm may be used to estimate the model parameters (see, e.g., A. Dempster, N. Laird, and D. Rubin. 1977. Maximum likelihood from incomplete data via the em algorithm). The algorithm iteratively updates the model parameters to maximize the likelihood of the training corpus. First, the model parameters are initialized. A uniform distribution may be used or a distribution may be taken from other models. For each iteration, the number of events are counted and weighted by the probabilities of the events. The probabilities of events are calculated from the current model parameters. The model parameters are re-estimated based on the counts, and used for the next iteration. In this case, an event is a pair of a value of random variable (such as ν, ρ, or τ) and a feature value (such as N, R, or T) A separate counter is used for each event. Therefore, the same number of counters c(ν|N), c(ρ|R), and c(τ|T), as the number of entries in the probability tables, n(ν|N), r(ρ|R), and t(τ|T), are needed.
An exemplary training procedure is the following:
1. Initialize all probability tables: n(v|N), r(ρ|R), and t(τ|τ).
2. Reset all counters: c(v,N), c(ρ,R), and c(τ|τ).
3. For each pair <ε,f> in the training corpus,
4. For each <v,N,>, <p,R>, and <τ,τ>,
n(v|N)=c(v,N)/Σvc(v,N)
r(ρ|R)=c(ρ,R)/Σpc(ρ,R)
t(τ|τ)=c(τ,τ)/Στc(τ,τ)
5. Repeat steps 2-4 for several iterations.
An EM algorithm for the translation model may implement a graph structure 500 of a pair <ε,f>, as shown in
Let fkl=fk . . . fk+(l−1) be a substring of f from the word fk with length l. A subtree εi is a subtree of ε below εi. Assume that a subtree ε1 is ε.
A major node ν(εl,fkl) is a pair of a subtree and a substring fkl. The root of the graph is ν(εl,fkl), where L is the length of f. Each major-node connects to several ν-subnodes 510 v(ν;ε1; fkl), showing which value of ν is selected. The arc between ν(ε1,fkl) and v(ν;ε1; fkl) has weight P(ν|ε).
A ν-subnode v(ν;ε1; fkl) connects to a final-node with weight P(τ|ε1) if ε1 is a terminal node in ε. If εi is a non-terminal node, a ν-subnode connects to several ρ-subnodes v(ρ;ν;ε1; fkl) 515, showing a selection of a value ρ. The weight of the arc is P(ρ|εi).
A ρ-subnode 515 is then connected to π-subnodes v(π;ρ;ν;ε1; fkl) 520. The partition variable, π, shows a particular way of partitioning fkl.
A π-subnode v(π;ρ;ν;ε1; fkl) is then connected to major-nodes which correspond to the children of εi and the substring of fkl, decided by <ν, p, τ>. A major-node can be connected from different π-subnodes. The arc weights between ρ-subnodes and major nodes are always 1.0.
This graph structure makes it easy to obtain P(Θ|ε) for a particular Θ and Σθ:Str(θ(ε))=f P(Θ|ε). A trace starting from the graph root, selecting one of the arcs from major-nodes, ν-subnodes, and ρ-subnodes, and all the arcs from the π-subnodes, corresponds to a particular Θ, and the product of the weight on the trace corresponds to P(Θ|ε). Note that a trace forms a tree, making branches at the π-subnodes.
We define an alpha probability and a beta probability for each major-node, in analogy with the measures used in the inside-outside algorithm for probabilistic context free grammars. The alpha probability (outside probability) is a path probability from the graph root to the node and the side branches of the node. The beta probability (inside probability) is a path probability below the node.
The alpha probability for the graph root, α(ε1,f1L), is 1.0. For other major-nodes,
α(ν)=Σ α(ParentM(s))·{P(ν|ε)Pρ|ε)Πβ(ν′)}
The beta probability is defined as
β(ν)=β(εi,fkl) if εi is a terminal
non-terminal,
where εj is a child of εi and fk′l′is a proper partition of fkl.
The counts c(ν, N), c(ρ, R), and c(τ, τ) for each pair <ε, f> are,
From these definitions,
Σθ:Str(θ(ε))=fP(Θ|ε)=β(ε1,f1L).
The counts c(ν|N), c(ρ|R), and c(τ|T) for each pair <ε, f> are also in
The graph structure is generated by expanding the root node ν(ε1,flL). The beta probability for each node is first calculated bottom-up, then the alpha probability for each node is calculated top-down. Once the alpha and beta probabilities for each node are obtained, the counts are calculated as above and used for updating the parameters.
The complexity of this training algorithm is O(n3|ν∥ρ∥π|). The cube comes from the number of parse tree nodes (n) and the number of possible French substrings (n2).
In an experiment, 2121 translation sentence pairs were extracted from a Japanese-English dictionary. These sentences were mostly short ones. The average sentence length was 6.9 for English and 9.7 for Japanese. However, many rare words were used, which made the task difficult. The vocabulary size was 3463 tokens for English, and 3983 tokens for Japanese, with 2029 tokens for English and 2507 tokens for Japanese occurring only once in the corpus.
A POS tagger (described in E. Brill, Transformation-based error-driven learning and natural language processing: A case study in part of speech tagging. Computational Linguistics, 21(4), 1995) and a parser (described in M. Collins. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University of Pennsylvania, 1999.) were used to obtain parse trees for the English side of the corpus. The output of the parser was modified in the following way. First, to reduce the number of parameters in the model, each node was re-labeled with the POS of the node's head word, and some POS labels were collapsed. For example, labels for different verb endings (such as VBD for -ed and VBG for -ing) were changed to the same label VB. There were then 30 different node labels, and 474 unique child label sequences.
Second, a subtree was flattened if the node's head word was the same as the parent's head word. For example, (NN1 (VB NN2)) was flattened to (NN1 VB NN2) if the VB was a head word for both NN1 and NN2. This flattening was motivated by various word orders in different languages. An English SVO structure is translated into SOV in Japanese, or into VSO in Arabic. These differences are easily modeled by the flattened subtree (NN1 VB NN2), rather than (NN1 (VB NN2)).
The training procedure resulted in tables of estimated model parameters.
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application claims priority to U.S. Provisional Application Ser. No. 60/302,915, filed on Jul. 3, 2001.
The research and development described in this application were supported by DARPA-ITO under grant number N66001-00-1-8914. The U.S. Government may have certain rights in the claimed inventions.
Number | Name | Date | Kind |
---|---|---|---|
4502128 | Okajima et al. | Feb 1985 | A |
4599691 | Sakaki et al. | Jul 1986 | A |
4615002 | Innes | Sep 1986 | A |
4661924 | Okamoto et al. | Apr 1987 | A |
4787038 | Doi et al. | Nov 1988 | A |
4791587 | Doi | Dec 1988 | A |
4800522 | Miyao et al. | Jan 1989 | A |
4814987 | Miyao et al. | Mar 1989 | A |
4942526 | Okajima et al. | Jul 1990 | A |
4980829 | Okajima et al. | Dec 1990 | A |
5020112 | Chou | May 1991 | A |
5088038 | Tanaka et al. | Feb 1992 | A |
5091876 | Kumano et al. | Feb 1992 | A |
5146405 | Church | Sep 1992 | A |
5167504 | Mann | Dec 1992 | A |
5181163 | Nakajima et al. | Jan 1993 | A |
5212730 | Wheatley et al. | May 1993 | A |
5218537 | Hemphill et al. | Jun 1993 | A |
5220503 | Suzuki et al. | Jun 1993 | A |
5267156 | Nomiyama | Nov 1993 | A |
5268839 | Kaji | Dec 1993 | A |
5295068 | Nishino et al. | Mar 1994 | A |
5311429 | Tominaga | May 1994 | A |
5387104 | Corder | Feb 1995 | A |
5432948 | Davis et al. | Jul 1995 | A |
5442546 | Kaji et al. | Aug 1995 | A |
5477450 | Takeda et al. | Dec 1995 | A |
5477451 | Brown et al. | Dec 1995 | A |
5495413 | Kutsumi et al. | Feb 1996 | A |
5497319 | Chong et al. | Mar 1996 | A |
5510981 | Berger et al. | Apr 1996 | A |
5528491 | Kuno et al. | Jun 1996 | A |
5535120 | Chong et al. | Jul 1996 | A |
5541836 | Church et al. | Jul 1996 | A |
5541837 | Fushimoto | Jul 1996 | A |
5548508 | Nagami | Aug 1996 | A |
5644774 | Fukumochi et al. | Jul 1997 | A |
5675815 | Yamauchi et al. | Oct 1997 | A |
5687383 | Nakayama et al. | Nov 1997 | A |
5696980 | Brew | Dec 1997 | A |
5724593 | Hargrave, III et al. | Mar 1998 | A |
5752052 | Richardson et al. | May 1998 | A |
5754972 | Baker et al. | May 1998 | A |
5761631 | Nasukawa | Jun 1998 | A |
5761689 | Rayson et al. | Jun 1998 | A |
5768603 | Brown et al. | Jun 1998 | A |
5779486 | Ho et al. | Jul 1998 | A |
5781884 | Pereira et al. | Jul 1998 | A |
5794178 | Caid et al. | Aug 1998 | A |
5805832 | Brown et al. | Sep 1998 | A |
5806032 | Sproat | Sep 1998 | A |
5819265 | Ravin et al. | Oct 1998 | A |
5826219 | Kutsumi | Oct 1998 | A |
5826220 | Takeda et al. | Oct 1998 | A |
5845143 | Yamauchi et al. | Dec 1998 | A |
5848385 | Poznanski et al. | Dec 1998 | A |
5848386 | Motoyama | Dec 1998 | A |
5855015 | Shoham | Dec 1998 | A |
5864788 | Kutsumi | Jan 1999 | A |
5867811 | O'Donoghue | Feb 1999 | A |
5870706 | Alshawi | Feb 1999 | A |
5893134 | O'Donoghue et al. | Apr 1999 | A |
5903858 | Saraki | May 1999 | A |
5907821 | Kaji et al. | May 1999 | A |
5909681 | Passera et al. | Jun 1999 | A |
5966685 | Flanagan et al. | Oct 1999 | A |
5983169 | Kozma | Nov 1999 | A |
5987402 | Murata et al. | Nov 1999 | A |
5987404 | Della Pietra et al. | Nov 1999 | A |
5991710 | Papineni et al. | Nov 1999 | A |
5995922 | Penteroudakis et al. | Nov 1999 | A |
6018617 | Sweitzer et al. | Jan 2000 | A |
6031984 | Walser | Feb 2000 | A |
6032111 | Mohri | Feb 2000 | A |
6064819 | Franssen et al. | May 2000 | A |
6064951 | Park et al. | May 2000 | A |
6073143 | Nishikawa et al. | Jun 2000 | A |
6077085 | Parry et al. | Jun 2000 | A |
6092034 | McCarley et al. | Jul 2000 | A |
6119077 | Shinozaki | Sep 2000 | A |
6131082 | Hargrave, III et al. | Oct 2000 | A |
6161082 | Goldberg et al. | Dec 2000 | A |
6182014 | Kenyon et al. | Jan 2001 | B1 |
6182027 | Nasukawa et al. | Jan 2001 | B1 |
6205456 | Nakao | Mar 2001 | B1 |
6223150 | Duan et al. | Apr 2001 | B1 |
6233544 | Alshawi | May 2001 | B1 |
6233545 | Datig | May 2001 | B1 |
6233546 | Datig | May 2001 | B1 |
6236958 | Lange et al. | May 2001 | B1 |
6269351 | Black | Jul 2001 | B1 |
6275789 | Moser et al. | Aug 2001 | B1 |
6278967 | Akers et al. | Aug 2001 | B1 |
6278969 | King et al. | Aug 2001 | B1 |
6285978 | Bernth et al. | Sep 2001 | B1 |
6289302 | Kuo | Sep 2001 | B1 |
6304841 | Berger et al. | Oct 2001 | B1 |
6311152 | Bai et al. | Oct 2001 | B1 |
6317708 | Witbrock et al. | Nov 2001 | B1 |
6327568 | Joost | Dec 2001 | B1 |
6330529 | Ito | Dec 2001 | B1 |
6330530 | Horiguchi et al. | Dec 2001 | B1 |
6356864 | Foltz et al. | Mar 2002 | B1 |
6360196 | Poznanski et al. | Mar 2002 | B1 |
6389387 | Poznanski et al. | May 2002 | B1 |
6393388 | Franz et al. | May 2002 | B1 |
6393389 | Chanod et al. | May 2002 | B1 |
6415250 | van den Akker | Jul 2002 | B1 |
6460015 | Hetherington et al. | Oct 2002 | B1 |
6470306 | Pringle et al. | Oct 2002 | B1 |
6473729 | Gastaldo et al. | Oct 2002 | B1 |
6480698 | Ho et al. | Nov 2002 | B2 |
6490549 | Ulicny et al. | Dec 2002 | B1 |
6498921 | Ho et al. | Dec 2002 | B1 |
6502064 | Miyahira et al. | Dec 2002 | B1 |
6529865 | Duan et al. | Mar 2003 | B1 |
6535842 | Roche et al. | Mar 2003 | B1 |
6587844 | Mohri | Jul 2003 | B1 |
6647364 | Yumura et al. | Nov 2003 | B1 |
6691279 | Yoden et al. | Feb 2004 | B2 |
6745161 | Arnold et al. | Jun 2004 | B1 |
6757646 | Marchisio | Jun 2004 | B2 |
6778949 | Duan et al. | Aug 2004 | B2 |
6782356 | Lopke | Aug 2004 | B1 |
6810374 | Kang | Oct 2004 | B2 |
6848080 | Lee et al. | Jan 2005 | B1 |
6857022 | Scanlan | Feb 2005 | B1 |
6885985 | Hull | Apr 2005 | B2 |
6901361 | Portilla | May 2005 | B1 |
6904402 | Wang et al. | Jun 2005 | B1 |
6952665 | Shimomura et al. | Oct 2005 | B1 |
6983239 | Epstein | Jan 2006 | B1 |
6996520 | Levin | Feb 2006 | B2 |
6999925 | Fischer et al. | Feb 2006 | B2 |
7013262 | Tokuda et al. | Mar 2006 | B2 |
7016827 | Ramaswamy et al. | Mar 2006 | B1 |
7016977 | Dunsmoir et al. | Mar 2006 | B1 |
7024351 | Wang | Apr 2006 | B2 |
7031911 | Zhou et al. | Apr 2006 | B2 |
7050964 | Menzes et al. | May 2006 | B2 |
7085708 | Manson | Aug 2006 | B2 |
7103531 | Moore | Sep 2006 | B2 |
7107204 | Liu et al. | Sep 2006 | B1 |
7107215 | Ghali | Sep 2006 | B2 |
7113903 | Riccardi et al. | Sep 2006 | B1 |
7143036 | Weise | Nov 2006 | B2 |
7146358 | Gravano et al. | Dec 2006 | B1 |
7149688 | Schalkwyk | Dec 2006 | B2 |
7174289 | Sukehiro | Feb 2007 | B2 |
7177792 | Knight et al. | Feb 2007 | B2 |
7191115 | Moore | Mar 2007 | B2 |
7197451 | Carter et al. | Mar 2007 | B1 |
7206736 | Moore | Apr 2007 | B2 |
7209875 | Quirk et al. | Apr 2007 | B2 |
7219051 | Moore | May 2007 | B2 |
7239998 | Xun | Jul 2007 | B2 |
7249012 | Moore | Jul 2007 | B2 |
7249013 | Al-Onaizan et al. | Jul 2007 | B2 |
7283950 | Pournasseh et al. | Oct 2007 | B2 |
7295962 | Marcu | Nov 2007 | B2 |
7302392 | Thenthiruperai et al. | Nov 2007 | B1 |
7319949 | Pinkham | Jan 2008 | B2 |
7340388 | Soricut et al. | Mar 2008 | B2 |
7346487 | Li | Mar 2008 | B2 |
7346493 | Ringger et al. | Mar 2008 | B2 |
7349839 | Moore | Mar 2008 | B2 |
7356457 | Pinkham et al. | Apr 2008 | B2 |
7373291 | Garst | May 2008 | B2 |
7383542 | Richardson et al. | Jun 2008 | B2 |
7389222 | Langmead et al. | Jun 2008 | B1 |
7389234 | Schmid et al. | Jun 2008 | B2 |
7409332 | Moore | Aug 2008 | B2 |
7447623 | Appleby | Nov 2008 | B2 |
7454326 | Marcu et al. | Nov 2008 | B2 |
7496497 | Liu | Feb 2009 | B2 |
7533013 | Marcu | May 2009 | B2 |
7536295 | Cancedda et al. | May 2009 | B2 |
7546235 | Brockett et al. | Jun 2009 | B2 |
7565281 | Appleby | Jul 2009 | B2 |
7574347 | Wang | Aug 2009 | B2 |
7580830 | Al-Onaizan et al. | Aug 2009 | B2 |
7620538 | Marcu et al. | Nov 2009 | B2 |
7624005 | Koehn et al. | Nov 2009 | B2 |
7624020 | Yamada et al. | Nov 2009 | B2 |
7680646 | Lux-Pogodalla et al. | Mar 2010 | B2 |
7689405 | Marcu | Mar 2010 | B2 |
7698125 | Graehl et al. | Apr 2010 | B2 |
7707025 | Whitelock | Apr 2010 | B2 |
7711545 | Koehn | May 2010 | B2 |
7716037 | Precoda et al. | May 2010 | B2 |
7813918 | Muslea et al. | Oct 2010 | B2 |
7974833 | Soricut et al. | Jul 2011 | B2 |
20010009009 | Iizuka | Jul 2001 | A1 |
20010029455 | Chin et al. | Oct 2001 | A1 |
20020002451 | Sukehiro | Jan 2002 | A1 |
20020013693 | Fuji | Jan 2002 | A1 |
20020040292 | Marcu | Apr 2002 | A1 |
20020046018 | Marcu et al. | Apr 2002 | A1 |
20020046262 | Heilig et al. | Apr 2002 | A1 |
20020078091 | Vu et al. | Jun 2002 | A1 |
20020099744 | Coden et al. | Jul 2002 | A1 |
20020111788 | Kimpara | Aug 2002 | A1 |
20020111789 | Hull | Aug 2002 | A1 |
20020152063 | Tokieda et al. | Oct 2002 | A1 |
20020169592 | Aityan | Nov 2002 | A1 |
20020188438 | Knight et al. | Dec 2002 | A1 |
20020188439 | Marcu | Dec 2002 | A1 |
20020198699 | Greene et al. | Dec 2002 | A1 |
20020198701 | Moore | Dec 2002 | A1 |
20020198713 | Franz et al. | Dec 2002 | A1 |
20030009322 | Marcu | Jan 2003 | A1 |
20030144832 | Harris | Jul 2003 | A1 |
20030158723 | Masuichi et al. | Aug 2003 | A1 |
20030176995 | Sukehiro | Sep 2003 | A1 |
20030182102 | Corston-Oliver et al. | Sep 2003 | A1 |
20030191626 | Al-Onaizan et al. | Oct 2003 | A1 |
20030204400 | Marcu et al. | Oct 2003 | A1 |
20030217052 | Rubenczyk et al. | Nov 2003 | A1 |
20030233222 | Soricut et al. | Dec 2003 | A1 |
20040015342 | Garst | Jan 2004 | A1 |
20040024581 | Koehn et al. | Feb 2004 | A1 |
20040030551 | Marcu et al. | Feb 2004 | A1 |
20040035055 | Zhu et al. | Feb 2004 | A1 |
20040059708 | Dean et al. | Mar 2004 | A1 |
20040068411 | Scanlan | Apr 2004 | A1 |
20040098247 | Moore | May 2004 | A1 |
20040111253 | Luo et al. | Jun 2004 | A1 |
20040122656 | Abir | Jun 2004 | A1 |
20040167768 | Travieso et al. | Aug 2004 | A1 |
20040167784 | Travieso et al. | Aug 2004 | A1 |
20040193401 | Ringger et al. | Sep 2004 | A1 |
20040230418 | Kitamura | Nov 2004 | A1 |
20040237044 | Travieso et al. | Nov 2004 | A1 |
20040260532 | Richardson et al. | Dec 2004 | A1 |
20050021322 | Richardson et al. | Jan 2005 | A1 |
20050021517 | Marchisio | Jan 2005 | A1 |
20050026131 | Elzinga et al. | Feb 2005 | A1 |
20050033565 | Koehn | Feb 2005 | A1 |
20050038643 | Koehn | Feb 2005 | A1 |
20050060160 | Roh et al. | Mar 2005 | A1 |
20050075858 | Pournasseh et al. | Apr 2005 | A1 |
20050102130 | Quirk et al. | May 2005 | A1 |
20050125218 | Rajput et al. | Jun 2005 | A1 |
20050149315 | Flanagan et al. | Jul 2005 | A1 |
20050171757 | Appleby | Aug 2005 | A1 |
20050204002 | Friend | Sep 2005 | A1 |
20050228640 | Aue et al. | Oct 2005 | A1 |
20050228642 | Mau et al. | Oct 2005 | A1 |
20050228643 | Munteanu et al. | Oct 2005 | A1 |
20050234701 | Graehl et al. | Oct 2005 | A1 |
20060015320 | Och | Jan 2006 | A1 |
20060015323 | Udupa et al. | Jan 2006 | A1 |
20060018541 | Chelba et al. | Jan 2006 | A1 |
20060020448 | Chelba et al. | Jan 2006 | A1 |
20060095248 | Menezes et al. | May 2006 | A1 |
20060111891 | Menezes et al. | May 2006 | A1 |
20060111892 | Menezes et al. | May 2006 | A1 |
20060111896 | Menezes et al. | May 2006 | A1 |
20060129424 | Chan | Jun 2006 | A1 |
20060142995 | Knight et al. | Jun 2006 | A1 |
20060150069 | Chang | Jul 2006 | A1 |
20060190241 | Goutte et al. | Aug 2006 | A1 |
20070016400 | Soricutt et al. | Jan 2007 | A1 |
20070016401 | Ehsani et al. | Jan 2007 | A1 |
20070033001 | Muslea et al. | Feb 2007 | A1 |
20070094169 | Yamada et al. | Apr 2007 | A1 |
20070112553 | Jacobson | May 2007 | A1 |
20070112555 | Lavi et al. | May 2007 | A1 |
20070112556 | Lavi et al. | May 2007 | A1 |
20070122792 | Galley et al. | May 2007 | A1 |
20070168450 | Prajapat et al. | Jul 2007 | A1 |
20070180373 | Bauman et al. | Aug 2007 | A1 |
20070219774 | Quirk et al. | Sep 2007 | A1 |
20070250306 | Marcu et al. | Oct 2007 | A1 |
20070269775 | Andreev et al. | Nov 2007 | A1 |
20070294076 | Shore et al. | Dec 2007 | A1 |
20080052061 | Kim et al. | Feb 2008 | A1 |
20080114583 | Al-Onaizan et al. | May 2008 | A1 |
20080154581 | Lavi et al. | Jun 2008 | A1 |
20080183555 | Walk | Jul 2008 | A1 |
20080215418 | Kolve et al. | Sep 2008 | A1 |
20080249760 | Marcu et al. | Oct 2008 | A1 |
20080270109 | Och | Oct 2008 | A1 |
20080270112 | Shimohata | Oct 2008 | A1 |
20080281578 | Kumaran et al. | Nov 2008 | A1 |
20080307481 | Panje | Dec 2008 | A1 |
20090076792 | Lawson-Tancred | Mar 2009 | A1 |
20090083023 | Foster et al. | Mar 2009 | A1 |
20090119091 | Sarig | May 2009 | A1 |
20090326912 | Ueffing | Dec 2009 | A1 |
20100017293 | Lung et al. | Jan 2010 | A1 |
20100042398 | Marcu et al. | Feb 2010 | A1 |
20100174524 | Koehn | Jul 2010 | A1 |
20110029300 | Marcu et al. | Feb 2011 | A1 |
20110082684 | Soricut et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
0469884 | Feb 1992 | EP |
0715265 | Jun 1996 | EP |
0933712 | Aug 1999 | EP |
0933712 | Jan 2001 | EP |
07244666 | Sep 1995 | JP |
10011447 | Jan 1998 | JP |
11272672 | Oct 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20030023423 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
60302915 | Jul 2001 | US |