The present invention is a continuation in part of patent application Ser. No. 13/374,823, “Synthesis of authenticable halftone images with non-luminescent halftones illuminated by a luminescent emissive layer”, filed 17 Jan. 2012. The present invention is also related to U.S. Pat. No. 8,085,438 “Printing color images visible under UV light on security documents and valuable articles”, filed 23 Apr. 2007 to Hersch (also inventor in present application), Donzé and Chosson, hereinafter referenced as [Hersch et al. 2007] which teaches a method for printing full color images invisible under daylight and visible under UV illumination with fluorescent inks which may have emission colors different from red, green and blue. The presently disclosed invention comprises in addition to the luminescent emissive ink halftone image on the verso side of a print also a non-luminescent transmissive halftone image on the recto side of the print. The superposition of these luminescent and non-luminescent halftone image layers enables the creation of new effects comprising intensity variations as well as color variations providing additional security for the authentication of security documents and valuable items. The present invention is also related to patent application Ser. No. 12/805,872, Synthesis of authenticable luminescent color halftone images, filed Aug. 23, 2010, inventors RD. Hersch (also inventor in present application) and R. Rossier. That invention deals exclusively with combinations of daylight luminescent inks and classical inks printed on the same side of a substrate. Daylight luminescent inks differentiate themselves from the substantially invisible luminescent inks of the present invention by the fact that they absorb light in the visible wavelength range.
The present invention relates to the field of anti-counterfeiting and authentication methods and devices and, more particularly, to methods, security devices and apparatuses for authenticating documents and valuable products by luminescent backlit full color images composed of a non-luminescent transmissive color image on one side of a transmissive substrate (recto side) and a luminescent emissive color image on the other side of the transmissive substrate (verso side).
The invented authentication method relies on a device that has a given appearance under normal white light (e.g. daylight, tungsten light, light from a fluorescent tube, etc.) and another appearance or a substantially similar appearance under an excitation light (e.g. UV light).
The present invention is related to see-through devices which also comprise front and back images that form a new image when viewed in transmission. Such devices require a high registration accuracy between front and back images. Prior art see-through devices are present on several bank notes, see book R. van Renesse, Optical Document Security, 3rd edition, Ed. Artech House optoelectronics library, pp. 133-136.
In U.S. patent application Ser. No. 12/519,981, “Data carrier with see-though window and method for producing it”, filed Dec. 5, 2007, inventors Syrjanen et al. propose a data carrier having a see-through portion that allows revealing security features with a different appearance on each side under special lighting conditions. The see-though portion comprises security markings, a developer material and a filtering material both changing the appearance of the security markings The developer material can be luminescent inks and the filtering material UV or IR filters.
In contrast to Syrjanen's invention, the present invention aims at creating full color images visible both under normal light (e.g. daylight, tungsten light, fluorescent light, halogen light) and under an excitation light (e.g. UV light).
In U.S. patent application Ser. No. 12/337,686, “UV fluorescence encoded background images using adaptive halftoning into disjoint sets”, filed Dec. 18, 2008, inventors Zhao et al. propose to create a watermark visible under UV by using UV-active and UV-dull metameric pairs.
In U.S. Pat. No. 4,652,464, “Printing fine art with fluorescent and non-fluorescent colorants”, filed Aug. 5, 1985, inventors Ludlum et al. propose a method combining invisible and visible fluorescent colorants and non-fluorescent colorants for artistic purposes.
In U.S. Pat. No. 6,400,386, “Method of printing a fluorescent image superimposed on a color image”, filed Apr. 12, 2000, inventor No proposes a method for enhancing the visibility of an image in the dark by printing with phosphorescent inks the outline of an original image printed with classical cyan, magenta and yellow inks.
In U.S. patent application Ser. No. 11/666,029, “Color reproduction on translucent or transparent media”, filed Oct. 28, 2004, inventors Perez and Lammens show how to generate a device color profile on translucent or transparent media. They combine reflected and transmitted colors to build lookup tables and profiles for printing. No color prediction model is used.
A further related field is backlit displays for advertising purposes. Such devices use a backlight source illuminating a transmissive color image to achieve bright images that can be seen in the dark, for example in outdoors advertisement. U.S. Pat. No. 6,338,892, “Imageable backlit composite structure”, filed Oct. 13, 1999, inventors McCue et al. claim an image on one side and a light emitting layer formed by phosphorescent or fluorescent materials on the other side. Variations of the light emitting layer for creating authentication elements are not mentioned. No variable intensity or variable color image is formed by the light emitting layer.
In contrast to these prior art inventions, we reproduce, by applying a color prediction model, a luminescent emissive variable intensity or variable color image on one side and a non-luminescent transmissive color halftone image on the other side to obtain a luminescent backlit image formed by the transmission of the luminescent emissive image through the non-luminescent transmissive color halftone image. The verso luminescent emissive image, the recto non-luminescent transmissive image as well as the luminescent backlit image are used for authentication purposes.
The presents invention aims at creating authenticable images with a security device having on one the verso side a substantially invisible luminescent emissive layer, possibly superposed with a UV-absorbing variable intensity layer, and, superposed on the recto side, a non-luminescent transmissive halftone layer, with a separating transmissive layer located between the superposed luminescent layer and the non-luminescent transmissive layer. A backlit image is the image that can be observed on the recto side when illuminating the verso side either with normal white light or with excitation light such as UV light inducing the emission of the luminescent emissive layer. When illuminated by excitation light, the backlit luminescent image results from the emission of the excited luminescent halftone layer transmitted through the absorbing non-luminescent halftone layer. When illuminated by normal white light from the verso side, the backlit non-luminescent image observable on the recto side is formed by the transmittance of the absorbing non-luminescent halftone layer. For authentication purpose, both the backlit luminescent and the backlit non-luminescent image can be viewed by a human being or captured by a computerized multi-channel sensor system and compared with corresponding known reference images. If the viewed or acquired images are substantially similar to the corresponding reference images, the valuable item incorporating the security device is considered to be authentic. As further authentication means, the security device can be illuminated and viewed or captured by a sensor from the same side. As an example, the security device is illuminated from the verso side with an excitation light source and the direct luminescent image emitted from the luminescent emissive halftone layer is viewed or captured from the same verso side and compared with a reference image. As a further example, the security device is illuminated from the recto side with a normal white light source and the image reflected from the non-luminescent halftone layer is viewed or captured from the same recto side and compared with a reference image.
In addition, the possible presence of a UV absorbing layer printed on the verso side in superposition with the emissive layer contributes to an additional attenuation of the emission of the luminescent layer and therefore offers even more possibilities of producing backlit images.
The fact that the backlit images are formed by superposed luminescent emissive and non-luminescent partly absorbing transmissive layers enables creating secure devices which are very difficult to counterfeit, since a potential counterfeiter would have to correctly reproduce both layers, whose individual intensities or colors are unknown to him.
One may for example create within the non-luminescent transmissive layer a reduced intensity raised color halftone image, viewable under normal white light as backlit color image substantially similar to a first reference color image. The corresponding luminescent emission ink halftone layer is conceived to form the negative image of the reduced intensity raised color halftone image and to possibly incorporate as further attenuation a second intensity reduced color image. Under excitation light from the verso side, the backlit luminescent image then appears gray if the luminescent emission ink halftone layer forms the negative image of the reduced intensity raised color halftone image. It appears as a second intensity reduced color image if the luminescent emission ink halftone layer forms the negative image of the reduced intensity raised color halftone image and is further attenuated by the second intensity reduced color image. The security device can then be authenticated by comparing (a) the normal light backlit non-luminescent color image with the first reference image and (b) the excitation light luminescent backlit color image with the reference second intensity reduced color image.
One may also embed either within the luminescent emissive halftone layer or within the non-luminescent ink halftone layer a message, which is hidden by compensation by the other layer so as to prevent its appearance in the backlit luminescent image, when illuminated under the excitation light source. However under the normal white light source, in both cases, the message appears. The simultaneous presence and absence of the message when switching from normal white light to excitation light clearly indicates that the valuable item incorporating the security device is authentic.
The fact that the backlit images are formed by superposed luminescent emissive and non-luminescent absorbing layers enables creating secure devices which are very difficult to counterfeit, since a potential counterfeiter would have to correctly reproduce both layers, whose individual intensities or colors are unknown to him.
In order to synthesize both the luminescent emissive halftone layer and the non-luminescent halftone layer, one needs a software running on a computer with modules capable of performing (a) the prediction of both luminescent emissive and transmissive absorbing colors as a function of ink surface coverages, in emission mode, in transmittance mode and in reflectance mode, (b) the mapping of an input gamut into an output gamut formed by the emission spectra of the luminescent layer ink halftones, possibly attenuated by the UV-absorbing ink halftones, and further attenuated by the transmittances of the non-luminescent ink halftone layer and (c) the mapping of an input gamut into an output gamut formed by normal white light attenuated by the transmittances or reflectances of the non-luminescent transmissive ink halftone layer.
The present invention aims at creating a security element relying on authenticable full color images whose appearance differs when viewed under normal light from the appearance viewed under an excitation light source such as UV light. The change in color appearance is due to the emission of a substantially invisible luminescent layer image located on the verso side and illuminating, under the excitation light, a non-luminescent transmissive color image located on the recto side. The revealed backlit image on the recto side is formed by the emission of the luminescent layer on the verso side transmitted through the non-luminescent transmissive image on the recto side and is called “luminescent backlit image”. The observable image on the verso side formed by the emission of the luminescent emissive layer also located on the verso side is called “direct luminescent emissive image”. The non-luminescent transmissive image is either directly printed on a diffusing substrate such as paper or printed on a transparency that is fixed onto a transmissive diffusing substrate. The non-luminescent transmissive image reflected on the diffusing substrate is called “reflected non-luminescent transmissive image”.
Luminescence is defined as the emission of light from a material due to an excitation. Photoluminescence is a special case of luminescence where the excitation source is a distinct light source. Ultra-Violet (UV) light or Infra-Red (IR) light are two different excitation light sources which are commonly used to obtain a visible photoluminescence, i.e. a light emission in the visible region of the spectrum, between the UV and IR regions.
Normal light is defined as light with visible wavelength components, i.e. wavelengths between 380 nm and 730 nm. Examples of normal light sources include daylight, tungsten lights, halogen lights, fluorescent lights, and light emitting diodes (LED). Examples of standardized normal light illuminants are A, D75, D65, D55, D50, F1 to F12, and E illuminants.
The invention includes parts which are produced with classical non-luminescent inks, parts which are produced with luminescent emissive inks, and possibly parts that are produced with UV-absorbing non-luminescent inks. The parts produced with classical non-luminescent color inks only are called “non-luminescent transmissive halftones” and form a “non-luminescent transmissive image”. The parts produced with luminescent emissive inks or with emissive materials at different concentrations or thicknesses create a luminescent emissive halftone layer or luminescent emissive variable intensity layer. The parts produced with UV-absorbing non-luminescent inks are called “UV-absorbing non-luminescent halftones” or “UV-absorbing halftones”. These UV absorbing halftones adjust the intensity of the luminescent emissive halftone layer. Furthermore, the UV-absorbing halftones can form a black and white or a color image on the verso side of the substrate under normal light, which is called “UV-absorbing non-luminescent image”. This UV absorbing non-luminescent image located on the verso side may represent a modified instance of the non-luminescent transmissive image located on the recto side, e.g. a black-white halftone representation of the original color image from which the non-luminescent transmissive image is derived.
The comparison between the luminescent backlit image and a known image enables authentication of the valuable item. The comparison of the color image formed by the transmitted and/or reflected non-luminescent transmissive halftones under normal light with a known image also enables its authentication. Furthermore, the direct luminescent emissive image formed by the emission of the luminescent layer viewed under an excitation light source (e.g. a UV light source) can also be compared with a known image and provides means for authentication. If present, a UV-absorbing non-luminescent image can also be compared with a known image and therefore enables authenticating the valuable item. The different authenticable color images that can be produced according to the present invention are characterized by their “authentication intent”.
A simple example of such an authentication intent is the case of a luminescent emissive surface (
The non-luminescent transmissive image is printed on a transmissive substrate. A transmissive substrate is a transparent, semitransparent or translucent substrate. Examples of fully or partially transmissive substrates comprise Plexiglas sheets, paper such as office paper, paper incorporating optical brighteners, paper without optical brighteners such as the Biotop paper, tracing paper, security paper, etc.
Let us define the recto side of a substrate, product or document as the side facing the observer under normal viewing conditions, and the verso side as the other side, which is illuminated by the light source, either a normal light source or an excitation light source (e.g. UV light). However other setups are possible, for example when the recto side is illuminated by the light source or when the recto and verso sides are inversed.
The invention relies on (a) a transmissive substrate, (b) a luminescent emissive layer located on the verso side of the transmissive substrate, (c) a UV-absorbing non-luminescent image printed on top of the luminescent emissive layer, (d) a non-luminescent transmissive image located on the recto side of the transmissive substrate, (e) a luminescent emission prediction model for predicting the luminescent emission spectra or colors of the luminescent emissive layer, (f) a luminescence attenuation prediction model for predicting the attenuation of the emission of the luminescent layer depending on the UV-absorbing non-luminescent image printed on top of the luminescent layer, (g) a transmittance prediction model for predicting the transmittance or transmitted colors of the non-luminescent transmissive image printed on a transmissive substrate, (h) a reflectance prediction model for predicting the reflectance or reflected colors of the non-luminescent transmissive image printed on a diffusing transmissive substrate, (i) a backlighting model for predicting the spectra or colors of the luminescent backlit image, (j) a conversion of spectral stimuli into CIE-XYZ tri-stimulus values and then into CIELAB colors, (k) gamut mapping of an input gamut into a selected output gamut, (l) color separation and calculation of the non-luminescent ink surface coverages, (m) color separation and calculation of the non-luminescent ink surface coverages and the UV-absorbing non-luminescent ink surface coverages, (n) backlit color halftone image generation and printing with a selected set of luminescent tones, and color halftone luminescent backlit image generation and printing by joint color separation and halftoning of the non-luminescent transmissive image and the luminescent color image (Application II). These elements are detailed in the text that follows.
(a) Transmissive Substrates
The transmissive substrates considered in the present invention transmit normal light fully or partly. A normal light source hitting the verso side of such substrates can be seen on their recto side and vice versa. Purely transparent substrates have very low light diffusion properties. In the case of semi-transparent and translucent substrates, diffusion of light occurs and part of the light is absorbed. A transmissive substrate can also be luminescent as described in section (b).
Examples of transmissive substrates include papers capable of transmitting part of the incident light such as office papers, high-quality papers, security papers and tracing papers. They also include various plastics and polymers, e.g. polycarbonate, polyesters, cellulose acetate (CA), styrenics, polyethylene (PET) and polypropylene.
(b) Luminescent Emissive Layer
The luminescent emissive layer comprises areas incorporating luminescent material or luminescent inks. It is located on one side of the transmissive substrate. The luminescent emissive layer can also be made of several areas of different luminescent emissive colors. The luminescent emissive layer can be a full color luminescent emissive image. The luminescent emissive layer can also be a constant uniform emissive color.
The luminescent emissive layer can be made of a luminescent emissive material, of printed luminescent emissive inks, of a luminescent emissive coating or of combinations of the previous elements. The luminescent emissive layer is formed by at least one emissive substance such as a printed luminescent emissive ink.
Luminescent emissive inks are inks made of luminescent emissive dyes and/or pigments preferably invisible under daylight. Part of their energy absorbed in the excitation wavelength range is reemitted in the visible wavelength range. The amplitude of the spectral radiant emittance or emission spectrum E(λ) emitted by the luminescent emissive material, luminescent emissive ink or luminescent emissive ink halftones depends on the amplitude and the spectral power distribution of the incident excitation light source I0(λ) in the excitation wavelength range. For most luminescent emissive single component inks, varying the spectral distribution I0(λ) of the incident light in the excitation wavelength range only modifies the amplitude of their emission spectra E(λ) and not their spectral distribution. In the case of invisible UV-luminescent inks, their excitation wavelength range is within the ultra-violet wavelength range. The emission colors depend on the spectral radiant emittances of the invisible luminescent emissive inks or emissive ink halftones.
In the case of three luminescent emissive inks, such as blue, red, and yellow, the superposition of the 3 emissive ink halftone layers yields halftones with colorants comprising the paper black (uke) each emissive ink color and each emissive ink superposition color. In the present case, the colorants are black (uke), emissive blue (ube), emissive red (ure), emissive yellow (uye), emissive magenta (ume=ure & ube), emissive greenish blue (uge=ube & uye), emissive orange (uoe=ure & uye), and emissive white (uwe=ure & uye & ube), where the “&” sign indicates the superposition operation. Therefore, the superposition variants of 3 emissive inks yield the 8 emissive colorants. The Demichel equations given in formula (1) are also valid here for the luminescent emissive ink halftones. Symbolically, we express the surface coverages of the luminescent emissive colorants ai as a function of the surface coverages of the luminescent emissive inks u1e, u2e, u3e, by ai=Di(u1e, u2e, u3e)=Di(uI), where the symbol D( ) represents a Demichel function as expressed in formula (1), where index i runs from 1 to the number of colorants, and where uI represents the surface coverages of the contributing luminescent inks, e.g. u1e, u2e, u3e for three luminescent emissive inks.
Luminescent substrates such as paper with optical brighteners can be assimilated to substrates incorporating a luminescent emissive layer. Most white papers are composed of fluorescent optical brighteners and exhibit a strong blue fluorescent emission under UV light. Polymeric materials can also incorporate luminescent materials (e.g. PMMA, polymethylmethacrylate), see for example U.S. Pat. No. 7,279,234, “Methods for identity verification using transparent luminescent polymers”, filed Aug. 18, 2004 issued Oct. 9, 2007, priority Aug. 12, 2003, inventor Dean.
(c) UV-Absorbing Non-Luminescent Image
UV-absorbing non-luminescent inks are inks that absorb in the UV excitation light wavelength range but that are non-luminescent. UV-absorbing non-luminescent inks can be used to adjust the amount of UV excitation light reaching the luminescent emissive layer, and hence to modify the luminescent emission intensity of the luminescent emissive layer under UV excitation light. UV-absorbing non-luminescent ink halftones can be printed on the verso side of the transmissive substrate on top of the luminescent emissive layer. If the UV-absorbing non-luminescent ink halftones also absorb light in the visible wavelength range, then, UV-absorbing non-luminescent halftones form UV-absorbing non-luminescent images that are visible under normal light. If the UV-absorbing inks are invisible, UV-absorbing non-luminescent halftones form UV-absorbing non-luminescent images only under excitation light by attenuation of the luminescent emissive layer. As an example, a UV-absorbing non-luminescent black ink can be used as a UV-absorbing non-luminescent ink. The UV-absorbing non-luminescent black ink halftone printed on top of the luminescent emissive layer forms a grayscale UV-absorbing halftone image that can be observed under normal light. Under UV excitation light, the UV-absorbing non-luminescent black halftones locally attenuate the intensity of the UV-excitation light and therefore yield an attenuated luminescent emissive layer. Instead of, or in addition to the UV-absorbing non-luminescent black ink, one can use UV-absorbing non-luminescent cyan, magenta and yellow inks or other chromatic or achromatic UV absorbing inks.
(d) Non-Luminescent Transmissive Image
The non-luminescent transmissive image is a multichromatic image obtained by printing with non-luminescent inks on a transmissive substrate. Non-luminescent inks are made of non-luminescent dyes and/or pigments. The light absorption occurs at least partly in the visible range. Classical cyan, magenta and yellow inks are examples of light absorbing non-luminescent inks.
As is known in the art, color halftones may be formed by mutually rotated layers of clustered ink dots. They may also be formed by stochastic dots, generated with a blue noise dither matrix, or by error-diffusion.
In the case of three classical non-luminescent inks, such as cyan (c), magenta (m) and yellow (y), the superposition of the 3 ink halftone layers yields halftones with colorants comprising the paper white (w), each ink color and colors resulting from the superposition of inks. In the present case, the colorants are white (w), cyan (c), magenta (m), yellow (y), red (r=m & y), green (g=c & y), blue (b=m & c), and chromatic black (k=c & m & y), where the “&” sign indicates the superposition operation. Therefore, all superposition variants of 3 inks yield 8 colorants and of 4 inks yield 16 colorants.
When printing the ink layers independently of one another, for example with mutually rotated layers, with blue noise dithering, or with error diffusion, the surface coverages of the colorants a1 to a8 representing the paper, the single inks and the superpositions of two or three inks can be expressed as functions of the surface coverages of the inks u1, u2, u3, as follows:
a1=(1−u1)(1−u2)(1−u3); a2=u1(1−u2)(1−u3); a3=(1−u1)u2(1−u3);
a4=(1−u1)(1−u2)u3; a5=u1u2(1−u3); a6=u1(1−u2)u3;
a7=(1−u1)u2u3; a8=u1u2u3; (1)
Equations (1) are known as the Demichel equations and are also valid in the case that the inks are luminescent inks They can be extended to 4 or more inks, see Wyble, D. R., Berns, R. S., A Critical Review of Spectral Models Applied to Binary Color Printing. Journal of Color Research and Application Vol. 25, No. 1, 2000, pp. 4-19, incorporated by reference.
Hereinafter, the surface coverages of the colorants are called aj, where the index j runs from 1 to the number of colorants. Note that the surface coverages of the colorants sum to one, i.e.
Symbolically, we express the surface coverages of the non-luminescent colorants aj as a function of the surface coverages of the non-luminescent inks u1, u2, u3, by aj=Dj(u1, u2, u3)=Dj(uJ), where the symbol D( ) represent a Demichel function expressed in formula (1), where index j runs from 1 to the number of non-luminescent colorants, and where uJ represents the surface coverages of the contributing non-luminescent ink, i.e. u1, u2, u3.
(e) Luminescent Emission Prediction Model for Predicting the Luminescent Emission Spectra E(λ) or Colors of the Luminescent Emissive Layer
If the luminescent emissive layer is printed with luminescent emissive inks, a model for predicting the emission spectra or colors of the luminescent emissive halftones is used. The goal of a color emission prediction model is to establish a mapping between ink surface coverages of a selected set of luminescent emissive inks and the resulting emitted colors. With such a mapping, one can find the inverse mapping, i.e. the mapping between the desired emitted color and ink surface coverages of the considered set of luminescent emissive inks that have to be printed to obtain this desired emitted color.
As an alternative to a color emission prediction model, one may directly establish a mapping between the desired luminescent emissive color and surface coverages of the luminescent emissive inks by printing samples with combinations of all selected luminescent emissive inks at variations of surface coverages e.g. surface coverages of [0, 0.05, 0.10, . . . 0.95, 1]. This yields 21 samples per ink, i.e., for a luminescent set of 3 inks, 9261 samples. Each sample is measured by a spectrophotometer under the excitation light source. The measured emittance (emission spectrum) is converted to a color value. One may then interpolate between these color values to create the mapping between desired color and surface coverages of the inks, see R. Bala, Chapter 5, Device Characterization, Section 5.4.5. Lattice-based interpolation, in Digital Color Imaging Handbook, (Ed. G. Sharma), pp. 301-304.
The Yule-Nielsen modified Spectral Neugebauer prediction model (hereinafter: YNSN) adapted to the spectral radiant emittance specifies the possibly non-linear relationship between the emittance E(λ) of a luminescent emissive color halftone, the emittances of the individual solid emissive colorants Ei(λ) and their surface coverages ai by a power function whose exponent n can be optimized according to the emittance of a limited set of luminescent color halftone patches, see related U.S. patent application Ser. No. 11/785,931 [Hersch et. al. 2007].
In order to make accurate spectral or color predictions, the YNSN model needs to be extended, for example by combining it with an ink spreading model, see the following publication about the ink-spreading enhanced YNSN model, incorporated by reference: R. D. Hersch, F. Crété, Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions, Color Imaging X: Processing, Hardcopy and Applications, Proc SPIE 5667, 2005, pp. 434-445, hereinafter referenced as [Hersch 2005].
The spectral radiant emittance described by equation (2) can be converted into a CIE-XYZ tri-stimulus value according to equations (11) and then into a CIELAB color, see section (j).
(f) Luminescence Attenuation Prediction Model for Predicting Attenuations of the Luminescent Layer Emission Resulting from UV-Absorbing Non-Luminescent Halftones Printed on Top of it
When UV-absorbing non-luminescent halftones are printed on top of the luminescent emissive layer, the emission of the luminescent layer is modified according to the surface coverage of the UV-absorbing non-luminescent inks. An attenuation factor can model the attenuation. This attenuation factor can be a spectral attenuation factor that depends on the wavelengths of the luminescent layer emission, or simply a scaling factor. The attenuation factor K(λ) attenuates the emission spectrum of the unattenuated luminescent emissive layer E0(λ) to yield the emission spectrum E(λ) used as backlight for non-luminescent transmissive halftones in (7):
E(λ)=K(λ)·E0(λ) (3)
The attenuation factor K(λ) can be calculated by a spectral prediction model. For example, the attenuation factor can be calculated from the attenuation of the luminescent emissive layer by the UV-absorbing non-luminescent colorants Kp(λ), in a similar manner as the YNSN model adapted to transmittances defined in (g).
Alternatively, the attenuation factor can be modeled by raising the attenuation factor of the UV-absorbing non-luminescent colorants Kp(λ) with their effective surface coverages ap and multiplying the attenuation factors of each UV-absorbing non-luminescent colorant:
The effective surface coverages ap are deduced from the effective surface coverages of the UV-absorbing non-luminescent inks by using ink spreading equations and the Demichel equations (1). The index p is the index of the UV-absorbing non-luminescent colorants. The calculation of the attenuation factor and the calculation of the resulting attenuated emission spectrum define an emission attenuation prediction model.
(g) A Transmittance Prediction Model for Predicting the Transmittances or Transmitted Colors of a Non-Luminescent Transmissive Image (Transmittance Mode)
A variation of the ink spreading enhanced YNSN model enables predicting the transmittances or transmitted colors of non-luminescent transmissive halftones printed with a set of non-luminescent inks on a transmissive substrate.
The YNSN model adapted to the transmission mode specifies the non-linear relationship between the transmittance T(λ) of a non-luminescent transmissive color halftone, the transmittances of individual solid colorants Tj(λ) and their surface coverages aj by a power function whose exponent m can be optimized according to the transmittance of a limited set of non-luminescent color halftone patches.
In order to make accurate spectral or color predictions, the YNSN model needs to be extended, for example by combining it with an ink spreading model, see [Hersch 2005].
When illuminated from the verso side, the observer facing the recto side of the transmissive substrate will see colors by transmission of the light through the non-luminescent transmissive halftone image printed on the recto side of the transmissive substrate. In that case, the stimulus transmitted by the non-luminescent transmissive halftone image can be converted into a CIE-XYZ tri-stimulus value according to equations (11) and then into a CIELAB color, see section (j).
If the transmissive substrate is sufficiently diffusing (as in paper substrates) and illuminated from the recto side, the reflected stimulus can be predicted with a reflectance prediction model, see section (h), converted into a CIE-XYZ tri-stimulus value according to equation (11) and then into a CIELAB color, see section (j). Both the transmitted color halftone image and the reflected color halftone image can be used for document authentication by comparing them with known images.
(h) A Reflectance Prediction Model for Predicting the Reflectance or Reflected Colors of the Non-Luminescent Transmissive Image Printed on a Diffusing Transmissive Substrate (Reflective Mode)
Reflectance can be predicted by a variant of the YNSN model that specifies the non-linear relationship between the reflectance R(λ) of a non-luminescent color halftone, the reflectance of individual solid colorants Rj(λ) and their surface coverages aj by a power function whose exponent u can be optimized according to the reflectance of a limited set of non-luminescent color halftone patches.
In order to make accurate spectral or color predictions, the YNSN model needs to be extended, for example by combining it with an ink spreading model, see [Hersch 2005].
When illuminated from the recto side, the stimulus reflected by the non-luminescent transmissive halftone image can be converted into a CIE-XYZ tri-stimulus value according to equation (11) and then into a CIELAB color, see section (j).
(i) A Backlighting Model for Predicting the Luminescent Backlit Spectra or Colors of Luminescent Emissions from the Luminescent Emissive Layer Through a Non-Luminescent Transmissive Halftone Image
The luminescent backlit spectra ET(λ) (see
ET(λ)=E(λ)·T(λ) (7)
The transmittances are predicted using the transmittance prediction models proposed in (g). If the luminescent emissive layer is spatially constant, its emission spectrum Elum(λ) can be measured once to calibrate the model. In this case, the luminescent backlit spectra ET(λ) are expressed by equation (8), by expressing the transmittance of the non-luminescent transmissive halftone located on the recto side of the transmissive substrate as a function of the surface coverages of the non-luminescent colorants forming that transmissive halftone
In case of the presence of a UV-absorbing non-luminescent ink halftone layer, we obtain according to Eqs. (3) and (4):
The emission attenuation by the UV-absorbing ink halftone layer K(λ), see Eq. (4), further attenuates the emitted light, in addition to the attenuation performed by the non-luminescent transmissive halftones. The color gamut obtained with the UV-absorbing non-luminescent ink halftones (
In one embodiment of the present invention, the luminescent emissive layer colors are limited to a few “luminescent tones”. A white, grayish, reddish, greenish and bluish white can for example be chosen as “luminescent tone” Elum(λ). Each of these five luminescent tones acts as a light source, possibly attenuated by the UV absorbing ink halftone, traversing the non-luminescent transmissive halftones. The luminescent backlit spectra of the emissions from these luminescent tones, Elum(λ), traversing the non-luminescent transmissive halftones are expressed by equation (8) and in case of an attenuating UV absorbing layer by Eq. (9).
In another embodiment, the luminescent emissive layer forms a color image with location dependent variable emission spectra. The emission spectra of the luminescent image are predicted with the luminescent emission prediction model proposed in section (e). The luminescent backlit spectra ET(λ) are then predicted according to equation (10). The first part on the right side of equation (10) is the same as in equation (2) and the second part of equation (10) is the same as in equation (5).
Luminescent backlit spectra ET(λ) can be converted into CIE-XYZ tri-stimulus values and then into CIELAB colors according to section (j).
(j) Conversion of Spectral Stimuli into CIE-XYZ Tri-Stimulus Values and then into CIELAB Colors
The spectral stimuli S(λ) formed by the luminescent emissions predicted in section (e), a normal light illuminant attenuated by the transmittances predicted in section (g), a normal light illuminant attenuated by the reflectances predicted in section (h) as well as the luminescent backlit spectra predicted in section (i) can be converted into a color space to predict the corresponding colors that can be reproduced with a set of luminescent emissive inks forming the luminescent emissive layer, non-luminescent inks forming the non-luminescent transmissive image and the superposition of the two forming the luminescent backlit image.
The preferred color space is CIELAB. The L*a*b* values are calculated from the CIE-XYZ tri-stimulus values by providing a reference (XW, YW, ZW) coordinate that defines the white point of the color space. The conversion of a spectral stimulus to tri-stimulus CIE-XYZ colorimetric values is carried out according to equations (11), well known in the art. In the present case, we define the normalization factor K with a selected “white” reference stimulus Sref(λ). In the case of stimuli resulting from normal light attenuated by transmittance or reflectance, the reference stimulus Sref(λ) is the normal light illuminant (e.g. standard normal light illuminant such as D65, D50, E, or one of the F illuminants) attenuated by the reference non-luminescent unprinted transmissive or respectively reflective substrate. In the case of emission spectra E(λ) or of luminescent backlit spectra ET(λ), their spectral radiant emittances across the unprinted transmissive substrate are directly used as stimuli. The corresponding reference stimulus Sref(λ) is then a selected reference emittance Eref(λ) representing the “whitest” emitted spectrum emerging from the unprinted transmissive substrate. According to equations (11), this reference stimulus Sref(λ) then yields a Y value of 100.
As is known in the art, when calculating X, Y, Z values, the integrals of equations (11) are replaced by summations of discrete spectral components weighted by the discrete color matching functions over the visible wavelength range.
When converting from the CIE-XYZ color space to the CIELAB color space, a white adaptation reference needs to be defined. For example, in the case of luminescent emissive red, yellow-green and blue inks, the emission spectrum of the white colorant printed on the verso side of the transmissive substrate by the superpositions of the luminescent emissive red, yellow-green and blue inks and emerging from the recto side is converted to CIELAB and becomes the white adaptation reference for emissive inks in transmittance mode. Under normal light illumination, the CIELAB white adaptation reference is usually the normal light attenuated by the transmittance or respectively the reflectance of the unprinted transmissive substrate.
(k) Gamut Mapping of an Input Gamut into a Selected Output Gamut
In the present invention, we consider two illuminations, a normal white light illumination yielding the non-luminescent backlit image and illumination by the luminescent emissive layer under excitation light yielding the luminescent backlit image. Under normal light illumination, the non-luminescent transmissive image is formed either by transmission or reflection of the normal light source. The colors achievable under normal light transmission or reflection through or respectively on the transmissive non-luminescent color image form two different gamuts. The colors formed by transmission of the normal light illumination through the non-luminescent transmissive color image form the normal light transmitted gamut. The colors formed by reflection of the normal light illumination on the non-luminescent transmissive color image form the normal light reflected gamut. In case of a UV absorbing ink halftone layer which further attenuates the incident normal light, the resulting normal light transmitted gamut is larger and incorporates also dark colors.
Under an excitation light, (e.g. a UV light source), the luminescent backlit image colors can be predicted as explained in section (i). If the luminescent layer is composed of many different luminescent emissions achievable by different surface coverages of the luminescent emissive inks, each emission spectrum may be transmitted through each non-luminescent transmissive halftone. Therefore, each different luminescent emission traversing the non-luminescent transmissive halftones yields a specific gamut, hereinafter “specific luminescent backlit sub-gamut”. These sub-gamuts form the boundary of a larger gamut representing all reproducible colors with all the different specific luminescent emissions traversing all possible non-luminescent transmissive halftones. The larger gamut is the “merged luminescent backlit gamut” achievable by all considered variations of specific luminescent emissions through the non-luminescent transmissive halftones. The range of colors inside each specific luminescent backlit sub-gamut depends on the corresponding specific luminescent emission spectrum. With a UV absorbing non-luminescent halftone ink layer, larger luminescent backlit sub-gamuts can be achieved, as well as a larger merged luminescent backlit gamut comprising also dark and very dark tones.
As an example, if five luminescent tones are selected, five specific luminescent backlit sub-gamuts are formed by the five luminescent tones. A luminescent backlit spectrum produced by a specific luminescent tone transmitted through a non-luminescent transmissive halftone belongs to the specific luminescent backlit sub-gamut associated with that specific luminescent tone. The union of these five sub-gamuts forms a merged luminescent backlit gamut whose boundary encloses all colors reproducible by selecting for each color one of the five luminescent tones to backlight the non-luminescent transmissive halftones. More tones can be chosen, up to the complete luminescent gamut formed by all variations of surface coverages of the chosen set of luminescent emissive inks. In case of UV absorbing non-luminescent halftones superposed with the luminescent tones, the complete luminescent gamut comprises all colors generated by all variations of surface coverages of the luminescent tones, of the UV absorbing non-luminescent halftones and of the color non-luminescent transmissive halftones.
Inside the merged luminescent backlit gamut, all colors can be reproduced by choosing the correct luminescent tone, if applicable, the appropriate surface coverage of the UV absorbing non-luminescent halftones and the appropriate surface coverages of the non-luminescent inks forming the non-luminescent transmissive halftone. The choice of the luminescent tone is constrained by the location of the desired backlit color inside the merged luminescent backlit gamut. If the desired color is located at an intersection of several specific luminescent backlit sub-gamuts, this desired color can be reproduced by any of the corresponding luminescent tones.
A gamut mapping table is created by providing the input gamut (e.g. the sRGB gamut of standard displays) and a desired output gamut, and by mapping all sampled CIELAB values of the input gamut into the output gamut. At image rendering time, the input color values are gamut mapped by reading the corresponding gamut mapped CIELAB colors from the gamut mapping table, possibly by performing a tri-linear interpolation. Methods for gamut mapping, including gamut translation, adaptation, reduction and extension, are described in Chapter 10, Digital Color Imaging Handbook, (ed. G. Sharma), CRC Press, 2003, p. 639-685, included by reference.
The choice of the output gamut depends on the desired authentication intent. The colors of an image that is intended to be authenticated by transmission under normal light, or reflection under normal light are mapped into the normal light transmitted gamut or normal light reflected gamut respectively. The colors of an image that is intended to be authenticated by luminescent backlighting with a uniform luminescent surface are mapped into the specific luminescent backlit sub-gamut associated with the selected uniform luminescent tone. The colors of an image that is intended to be authenticated by luminescent backlighting with several luminescent tones are mapped into the merged luminescent backlit gamut formed with the selected set of luminescent tones if any of the luminescent tones can be selected at any special location. If there is a particular luminescent tone at a given special location, the colors of the input image are mapped into the intersection of the considered specific luminescent sub-gamuts. The colors of an image that is intended to be authenticated by direct luminescent emission are mapped into the luminescent emission color gamut of the luminescent emissive inks Each of these authentication intents yields a gamut mapping table.
(l) Color Separation and Calculation of the Non-Luminescent Color Ink Surface Coverages
After mapping the sRGB gamut into the output gamut selected according to the desired authentication intent, a non-luminescent ink surface coverage separation table is established by associating to each sampled mapped color and for each of the selected luminescent tone and depending on the authentication intent, for normal light, the corresponding surface coverages of the non-luminescent inks. This is carried out by performing, for example, a gradient descent on the corresponding spectral color prediction model, in transmission mode, in reflection mode, or in backlit mode, asking for a given CIELAB color and obtaining the corresponding surface coverages of the non-luminescent inks. In the case that the desired color cannot be achieved by varying the surface coverages of the non-luminescent inks, it is out of the specific luminescent backlit sub-gamut associated with the considered luminescent tone or respectively out of gamut of the colors achievable with the considered normal light source.
The non-luminescent ink surface coverage separation table enables obtaining from an input CIELAB value the optimal surface coverages of the non-luminescent inks separately for each luminescent tone or for normal light. In the case of three non-luminescent inks (e.g. cyan, magenta, yellow), five luminescent tones (e.g. luminescent white, grayish, reddish, greenish and bluish whites), and normal light there are, for each sampled CIELAB color, six entries (one per luminescent tone and one for normal light), containing the surface coverages of cyan, magenta and yellow. Colors that are non-reproducible with the considered luminescent tone or normal light are labeled as non-reproducible. Surface coverages of input CIELAB values located between sampled CIELAB values are obtained by interpolation between surface coverages of the neighboring sampled CIELAB values, e.g. by tri-linear interpolation.
In one embodiment, the authentication intent is an accurate luminescent backlit color image under excitation light. The color backlighting prediction model is composed of the spectral prediction of equation (8) or (9), the conversion of spectra to CIE-XYZ according to equations (11) and the conversion from CIE-XYZ to CIELAB.
In a second embodiment, the authentication intent is an accurate non-luminescent transmissive or reflective image under normal light. The corresponding spectral prediction model is used to build the non-luminescent ink surface coverage separation table usable to create accurate images under normal light, in the selected transmissive or reflective mode.
(m) Color Separation and Calculation of the Non-Luminescent Color Ink Surface Coverages and of the UV-Absorbing Non-Luminescent Ink Surface Coverages
The description of section (l) applies also here, but with the non-luminescent ink surface coverage table also containing the surface coverages of the UV absorbing non-luminescent ink halftones printed on top of the luminescent emissive layer. The gradient descent yields the fitted surface coverages of the non-luminescent color inks printed on the recto side and of the UV-absorbing non-luminescent ink halftones printed on the verso side, in superposition with the luminescent emissive layer.
In one embodiment, the authentication intent is an accurate luminescent backlit color image under excitation light. The color backlighting prediction model is composed of the attenuation of the backlight luminescence according to equation (3), the prediction of the backlight attenuation factor by equation (4), of the prediction of the luminescent backlit spectra according to equation (9), of the conversion of spectra to CIE-XYZ according to equation (11) and of the conversion from CIE-XYZ to CIELAB.
In a second embodiment, the authentication intent is an accurate non-luminescent transmissive image under normal light. The corresponding spectral prediction model comprising the attenuation of the incoming normal light by the UV-absorbing non-luminescent ink halftones and by the non-luminescent transmissive ink halftones is used to build the non-luminescent ink surface coverage separation table usable to create accurate images under normal light, in the transmissive mode.
(n) Backlit Color Halftone Image Generation and Printing
Backlit color image halftone generation is carried out by creating in a computer memory the separation layers for the non-luminescent transmissive halftone image (1 layer per non-luminescent ink) and if applicable the separation layers for the luminescent emissive halftone image (1 layer per luminescent emissive ink). The separation layers indicate if an ink or no ink is to be printed or how much of each ink is to be printed at each output pixel location. Output image separation layers are created by scanning in computer memory the output image representation, scanline by scanline (
The halftoning operations (406) and (408) indicate, for each ink layer, if the current pixel is to be set or not, or in case of variable pixel dot sizes, the pixel dot sizes at which the inks are to be printed. Once created, the output separation layers are sent to the printer for printing (printing technologies: ink-jet, electrophotography, thermal transfer, etc. . . . ) or are used to create the plates for offset printing, the cylinders for gravure or flexo printing or the screen for screen printing. The resulting target luminescent backlit color image is formed by the transmissive color image printed with the selected non-luminescent inks on the recto side, and formed by the selected luminescent tones printed with the luminescent emissive inks on the verso side.
For backlit images produced with a UV-absorbing non-luminescent ink printed on top of the luminescent layer (
The detailed explanation given in the previous paragraphs apply to halftone image generation for the creation of a backlit luminescent image. For other authentication intents such an accurate image under normal illumination, the gamut mapping table and the non-luminescent ink surface coverage separation table are established for normal light illumination. Halftoning is performed in a similar manner as above.
For the case of Application II, where the transmissive non-luminescent color image A′ is an intensity reduced raised instance of an original image A to be viewed under normal light and where the emissive luminescent emissive color image compensates for the intensity reduced raised non-luminescent transmissive color image A′ and possibly further incorporates a second independent reduced intensity image C′, the transmissive non-luminescent color image is halftoned as described in the previous paragraph. In order to produce a uniform gray backlit luminescent image, the surface coverages of the luminescent emissive color image are calculated at each output image pixel according to Eqs. (15), (16) and (17). In order to produce a second image C′ independent of image A′, the surface coverages of the luminescent emissive inks are calculated according to Eqs. (15), (16) and (18). With the calculated luminescent emissive ink surface coverages, the luminescent emissive ink separation layers can be halftoned according to the selected halftoning method as mentioned above.
Application I: Creation of Backlit Color Images
By having the possibility of mapping an input gamut into a selected output gamut, see section (k), one may create a luminescent backlit color image that under normal light looks either like an accurately reproduced color image or like a distorted color image, and that, under the excitation illuminant, appears respectively as a distorted luminescent backlit color image or as an accurate luminescent backlit color image depending on the selected authentication intent. For authentication purposes, a luminescent backlit image can be identified and compared with a pre-recorded or printed reference image. Such a luminescent backlit color image has therefore both a protective and a decorative function.
In an authentication intent called “accurate luminescent backlit color image under excitation light”, the luminescent backlit image has accurate colors, whereas the same image under normal light has distorted colors. The “accurate luminescent backlit color image under excitation light” intent is achieved by mapping the gamut of the input image either into a merged luminescent backlit gamut, into a specific luminescent backlit sub-gamut, or into the intersection of a set of specific luminescent backlit sub-gamuts, depending on the luminescent tone positioning requirements within the luminescent emissive image as explained in section (k). The non-luminescent ink surface coverages are retrieved by reading and interpolating in the non-luminescent ink surface coverage separation table as explained in sections (l) and section (m). The non-luminescent transmissive color halftone image (
In an authentication intent called “accurate non-luminescent backlit color image under normal light”, the luminescent backlit image under excitation light has distorted colors, whereas the same image under normal light has accurate colors. The gamut mapping is performed into the respective gamut of the non-luminescent transmissive color image illuminated by the normal light, either in transmission mode or in reflection mode as explained in section (k). The non-luminescent ink surface coverages are retrieved by reading and interpolating in the non-luminescent ink surface coverage separation table as explained in sections (l) and (m). Any invisible luminescent tone can then be printed on the verso side. The color under the excitation light can always be predicted with the backlighting model described in section (i). In this embodiment, the authentication is performed by verifying that under a normal light source, the non-luminescent transmissive color image is accurate and is substantially identical with a pre-stored or printed reference color image. For further verification, the distorted luminescent backlit image can be compared with a pre-stored or printed reference distorted image.
In a further embodiment, one may include the two authentication intents “accurate luminescent backlit color image under excitation light” and “accurate non-luminescent backlit color image under normal light” on a same security element by dividing the luminescent backlit image into parts that have distorted colors under normal light and parts that have accurate colors under normal light. The parts that are distorted under normal light are accurate under the excitation light and the parts that are accurate under normal light are distorted under the excitation light. As an example (
In the case of the two authentication intents mentioned above, it is possible to use a UV absorbing non-luminescent ink halftone layer for attenuating the spectral emission from the luminescent emissive layer and for attenuating the amount of transmitted normal light. As a result, the non-luminescent transmissive color ink halftones printed on the recto side and viewed in reflection mode exhibit mainly chromatic differences. The lightness differences present in the corresponding backlit image when viewed in transmission mode are mainly due to the UV absorbing non-luminescent ink halftone layer printed on the verso side.
Application II: Authentication by Two Independent Accurately Reproduced Images
The present invention enables the authentication of documents and valuable items by enabling viewing quasi-simultaneously at the same spatial location two different independent images that are accurately reproduced. One image A′ is formed by the printed non-luminescent color inks on the recto side viewed either in transmission or in reflection mode under normal light and a second image C′ is viewed in transmissive mode, under excitation light, e.g. UV light.
The emission image B printed on the verso side with invisible luminescent emissive inks is conceived so as (a) to reduce intensities at all locations of the luminescent backlit image to a common lowest intensity level by reducing the corresponding emissions of image B and (b) to create luminescent backlit image C by further attenuating the emissions of image B. The novel approach aiming at compensating for the attenuation of a first non-luminescent transmissive image by emission of its negative image and aiming at incorporating a second independent image by further attenuation of the luminescent emission relies on the fact that the dark parts of a transmissive non-luminescent image do not necessarily need to fully attenuate the incoming light. From an original color image, it is easy to create a reduced intensity range image whose darkest parts attenuate only a fraction of the incident light, e.g. down to 47% of the maximal intensity. For example, a non-luminescent transmissive or reflective reduced intensity range image A′ can be formed by reducing the intensities {dA: rA, gA, bA} of the original RGB image into a limited intensity range between a lowest intensity β and the maximal intensity (
dA′=(1−β)·dA+β (12)
As a first example,
As a second example, the aim is to have the same original intensity reduced raised non-luminescent transmissive color image A′ under normal light (
In a transmissive mode embodiment, the reduced intensity range raised non-luminescent transmissive image A′ is accurately reproduced by mapping the input gamut (e.g. sRGB gamut) into the “normal light transmitted gamut” formed by the normal light illuminant attenuated by the non-luminescent transmissive color image. Surface coverages uJ of the non-luminescent inks are obtained according to section (l) “Color separation and calculation of the non-luminescent ink surface coverages”. These surface coverages (
In a reflective mode embodiment, the reduced intensity range non-luminescent reflective image A′ is accurately reproduced by mapping the input gamut (e.g. sRGB gamut) into the “normal light reflected gamut”.
In the transmissive mode, the transmittances Tnl(λ) of the non-luminescent transmissive image are given by Eqs. (5) and shown in Eq. (13) as a function of the surface coverages uJ of the non-luminescent inks
where Dj(uJ) are the Demichel functions yielding the surface coverages aj of the colorants as a function of the surface coverages uJ of the inks and where Tj(λ) are the transmittances of the non-luminescent colorants printed on the substrate, on its recto side.
With a normal light illuminant I0 illuminating the non-luminescent transmissive image, the corresponding colors are obtained by their CIE-XYZ tri-stimulus values as shown in Eqs. (11), where S(λ)=I0 Tnl(λ). For the CIE Xnl, Ynl, Znl values of non-luminescent color halftones viewed in transmissive mode, printed with ink surface coverages uJ we obtain
with
where Tw(λ) is the transmittance of the unprinted transmissive substrate.
The luminescent backlit image spectra ETlum(λ) under an appropriate excitation light such as UV light is formed by the emission spectrum E(λ) multiplied by the transmittance spectrum of the non-luminescent halftone at the corresponding location, as given by Eq. (10), embodied here by Eq. (15), where uI and uJ are respectively the surface coverages of the luminescent emissive inks printed on the verso side and of the non-luminescent inks printed on the recto side.
Equation (15) represents a joint emissive-transmissive model predicting the backlit luminescent emission spectra or colors obtained by luminescent emissive ink halftones irradiating under excitation light non-luminescent light absorbing ink halftones.
Eq. (16) gives the corresponding CIE Xlum, Ylum, Zlum tri-stimulus values of the colours seen on the recto side when the verso side with the luminescent emissive halftone is illuminated with the excitation light source (UV light):
where uIw are the surface coverages of the luminescent emissive inks that yield together with the substrate transmittance Tw(λ) the reference white transmissive color.
Compensating under UV light for the non-luminescent transmissive image A′ can be performed by creating a gray surface YlumGray at the lowest Ylum, intensity value induced by the surface coverages uIw of the luminescent emissive inks yielding the reference white attenuated by the darkest ink halftone present in the non-luminescent transmissive halftone image A′. This uniform gray surface can be obtained by fitting at each pixel location according to Eqs. (16) the surface coverages of the luminescent emissive inks uJ creating the gray intensity given by YlumGray (
Ylum=YlumGray
xlum(ai)=Xlum/(Xlum+Ylum+Ylum)≡⅓
ylum(ai)=Ylum/(Xlum+Ylum+Ylum)≡⅓ (17)
This is performed by an optimization procedure minimizing e.g. the sum of square differences between the desired chromaticities and the predicted chromaticities (in the Matlab software package: functions “fminsearch” or “fmincon”).
Creating a reduced intensity range backlit image C′ completely independent of the reduced intensity range image A′ uses the intensity range Ylum, between 0 and YlumGray. Therefore the CIE Xc, Yc, and Zc colorimetric values of original image C, obtained by converting from sRGB to CIE-XYZ need to be scaled by a factor γ to fit within the intensity range 0 to YlumGray. A possible value is γ=YlumGray/YcMax, where YcMax is the largest intensity value present in image C. An alternative consists in assuming that the highest intensity present in an image is YcMax=100; in that case, γ=YlumGray/100. A reduced intensity range image C′ is computed (
Xlum=Yc′;
Ylum=Yc′;
Zlum=Zc′, (18)
by starting e.g. a gradient descent with the previously computed surface coverages uJ of the non-luminescent inks present at that location. The resulting luminescent emission color halftone image B to be printed on the verso side of the transmissive substrate is then composed of the negative of image A′ and of the positive of image C′.
The joint calculation of the surface coverages uJ of the non-luminescent inks and of the surface coverages uI of the luminescent emissive inks is very difficult to achieve without the mathematical framework presented above and provides therefore a valuable protection against counterfeits. In addition, in order to show under excitation light (UV light) backlit luminescent image C′ and be able to hide the non-luminescent transmissive image A′ printed in perfect superposition on the recto side, there is a need for a high registration accuracy between the printed luminescent emissive color image B on the verso side and the printed non-luminescent color image A′ on the recto side. Such a high registration accuracy can only be achieved in high end printing systems, mainly systems for printing security documents.
Application III: Embedding Messages Hidden Upon Luminescent Backlighting
Since different luminescent tones can yield the same luminescent backlit color once filtered through the non-luminescent transmissive halftones, a message can be hidden on the recto side upon luminescent backlighting from the excited verso side, but be visible on the verso side as a direct luminescent message. The authentication is then performed by verifying that the message appearing on the verso side is completely hidden on the recto side, when illuminated with an excitation light source (UV light).
As an example, a direct luminescent message “OK” appearing under excitation light can be formed with a luminescent surface (
The luminescent tones are chosen so as to create a well visible direct luminescent color difference and so as to minimize the luminescent backlit color differences between the desired luminescent backlit colors (i.e. the gamut mapped colors of the input color image) and the reproduced luminescent backlit colors. Since the two luminescent tones should be able to reproduce all luminescent backlit colors, the gamut mapping maps the colors of the input image into the intersection of the two specific luminescent sub-gamuts associated with the two selected luminescent tones.
The non-luminescent transmissive image is printed on the recto side of the transmissive substrate with the surface coverages of the non-luminescent inks associated with the luminescent tone used to print the luminescent message foreground (1002), and with the surface coverages of the non-luminescent inks associated with the luminescent tone used to print the luminescent background (1001). The luminescent tones of the luminescent message foreground (1004) and luminescent background (1003) are halftoned on the verso side of the transmissive substrate with the corresponding respective surface coverages of the luminescent inks The detailed procedure is described in section (m).
Let us consider a similar embodiment with a single luminescent tone for both the background 1003 and the foreground 1004 where the luminescent backlit images are produced using UV-absorbing ink halftones on the verso side. In the example shown in
Application IV: Embedding Invisible Messages into a Luminescent Backlit Image
Luminescent invisible red, yellow-green and blue inks or a white emissive layer can create a luminescent emissive layer visible under the excitation light (e.g. UV light), but invisible under normal light. A message (
Under the excitation light, the luminescent emissive layer illuminates the non-luminescent transmissive color image. If the luminescent emissive layer has two different luminescent tones for the message foreground (1103) and background (1102), the luminescent backlit image will display the message present in the luminescent emissive layer.
Furthermore, different messages formed by different luminescent tones can be revealed. In addition, the luminescent backlit message can be a variable intensity or variable color mark (1202) that is visible only under the excitation light source (
The image is reproduced to appear accurately under normal light. This is achieved by mapping the colors of the input image (e.g. the photograph of the document holder) into the normal light transmitted gamut as described in section (k). Under an excitation light source, the authenticity of a document or valuable item is verified by observing if its luminescent backlit image, e.g. the backlit photograph of the document holder, incorporates the expected message, for example the name and birth date of the document holder.
As in previous applications, the non-luminescent ink surface coverages are obtained from the non-luminescent ink surface coverage separation table according to the desired authentication intent.
Generalizations of the Present Invention
Besides being printed, the non-luminescent color halftone image, the luminescent emissive layer and the UV-absorbing non-luminescent halftone image can be created by other imaging means such as gratings creating light diffraction patterns, holography, thin films creating interference colors, multilayer structures, light emitting devices, luminescent materials emitting light in the visible wavelength range. Corresponding production processes may rely on lithography, photolithography, electronic beam erasure, ion deposition, engraving, etching, perforating, and embossing, see R. L. Van Renesse, Chapter 7, Interference-based security features, in Optical Document Security, 3rd edition, Artech House, pp 223-264, included by reference.
Computer-based implementation of the methods for creating luminescent backlit color halftone images relying on luminescent emissive halftones illuminating across a transmissive substrate non-luminescent transmissive color halftones
A software package running on a computing system (
Computing System for Synthesizing Luminescent Backlit Color Halftone Images
A computing system for synthesizing luminescent backlit color halftone images comprises a number of software modules, simply called “modules”. At system initialization time, a transmissive color (or spectral) prediction module (
Authenticating a Valuable Item by a Human being or by an Apparatus
The authentication of a valuable item can be carried out by a human being, for example the person verifying the identity of the passengers embarking on an airplane or the customer buying a valuable item such as a watch. In this case the person verifying the valuable item's backlit halftone color image will first observe it under normal light I0 and then under excitation light. Depending on the authentication intent, the person will verify that the non-luminescent backlit color image is accurate under normal light or that the luminescent backlit color image is accurate under excitation light and if a message is embedded, that the corresponding message is revealed.
The authentication of the valuable item incorporating a verso side with the luminescent emissive halftone layer and a recto side with the non-luminescent layer halftone image may also be carried out by an apparatus, which projects either a normal or an excitation light source onto the valuable item's verso side and acquires with an acquisition device (e.g. camera, smartphone, multi-channel sensor array) the backlit image appearing on the recto side.
This apparatus then compares the extracted backlit image with a previously registered reference image and according to matching techniques known in the art, decides if the extracted backlit image matches the previously registered reference image or not. If a match is found, the valuable item is labeled as authentic.
An example of such a computer-based authenticating apparatus is given in
Let us give an example of how such an apparatus works. The apparatus scans the part of the valuable item 1701 to be authenticated by displacing it in respect to the light sources and multi-channel sensor array. There is a scan of the valuable item under the normal white light and a scan of the valuable item under the excitation light. The scan performed with the normal white light generates the backlit non-luminescent output image visible under normal light and the scan performed with the excitation light generates the backlit luminescent output image. Both images are scanned multi-channel images, for example with blue (wavelength range 400 nm-500 nm), green (wavelength range 500 nm-570 nm), red (wavelength range 570 nm-730 nm) channels. For the authentication of the valuable item, each of the acquired multi-channel images are compared with a corresponding previously registered reference image by applying image matching techniques.
The fact that the backlit images are formed by superposed luminescent emissive and non-luminescent absorbing layers enables creating secure devices which are very difficult to counterfeit, since a potential counterfeiter would have to correctly reproduce all the layers, whose individual intensities or colors are unknown to him.
Both the luminescent emissive halftone layer possibly incorporating a UV-absorbing non-luminescent ink halftone and the non-luminescent color halftone layer are synthesized by using, according to the desired authentication intent, a color prediction model able to infer, by an optimization procedure such as gradient descent, ink surface coverages as a function of the desired colors of the resulting backlit luminescent or non-luminescent variable intensity or color image. Without the software implementing the color prediction model and able to predict ink surface coverages, it is not possible to counterfeit faithfully both the luminescent emissive and the non-luminescent halftone layers.
A further advantage resides in the fact that a message embedded within the luminescent layer on the verso side and hidden by compensation in the non-luminescent layer located on the recto side, appears as authenticable backlit image without message under excitation light and with the message under normal white light. On the other side, a message embedded within the non-luminescent layer and hidden by compensation within the luminescent layer and/or possibly by the UV-absorbing non-luminescent ink halftone appears as authenticable backlit image without message under excitation light and as backlit image with the message under normal white light. The authentication of either of these two cases is easily performed by any person with the help of both a normal white light source and of an excitation light source illuminating the secure item from its verso side. The simultaneous presence and absence of the message when switching the type of light source clearly indicates that the valuable item incorporating the security device is authentic.
Number | Name | Date | Kind |
---|---|---|---|
4652464 | Ludlum et al. | Mar 1987 | A |
6338892 | McCue | Jan 2002 | B1 |
6400386 | No | Jun 2002 | B1 |
7279234 | Dean | Oct 2007 | B2 |
8085438 | Hersch et al. | Dec 2011 | B2 |
20100047488 | Syrjanen et al. | Feb 2010 | A1 |
20100157377 | Zhao et al. | Jun 2010 | A1 |
Entry |
---|
U.S. Appl. No. 12/805,872, filed Aug. 23, 2010, Hersch, Rossier et al. |
R.L. van Renesse, Optical Document Security, 3rd edition, Ed. Artech House optoelectronics library, pp. 133-136. |
Wyble, D. R., Berns, R. S., A Critical Review of Spectral Models Applied to Binary Color Printing. Journal of Color Research and Application vol. 25, No. 1, 2000, pp. 4-19. |
R.D. Hersch, F. Crété, Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions, Color Imaging X: Processing, Hardcopy and Applications, Proc SPIE 5667, 2005, pp. 434-445. |
R. Rossier, R.D. Hersch, Hiding patterns with daylight fluorescent inks, Proc. IS&T/SID's 19th Color Imaging Conference, Nov. 2011, pp. 223-228. |
R.L. Van Renesse, Chapter 7, Interference-based security features, in Optical Document Security, 3rd edition, Artech House, pp. 223-264. |
R. Rossier, R.D. Hersch, Gamut expanded halftone prints, Proc. IS&T/SID's 20th Color Imaging Conference, Nov. 2012. |
Chapter 10, Digital Color Imaging Handbook, (ed. G. Sharma), CRC Press, 2003, p. 639-685, included by reference.(gamut mapping). |
Number | Date | Country | |
---|---|---|---|
20140168426 A1 | Jun 2014 | US |