The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials.
Reinforcing fillers are usually added to a matrix material to form high-strength composites. In order for the resulting composites to be useful, the reinforcing fillers must have a high load-bearing ability and binding affinity for the matrix. Carbon nanotubes (CNTs) have been added to matrix materials to form high-strength composites. However, the use of CNTs as reinforcing fillers, including multi-walled CNTs, has several disadvantages. Multi-walled CNTs have a tendency to pull out of, or slip from the matrix material, resulting in reduced load bearing ability. This is attributed to the fact that the interface between the matrix material and nanotube layers is very weak, thereby causing a “sword-in-sheath” type failure mechanism. Typically, only the outermost layer of multi-wall CNTs contributes to load bearing strength. (See, for example, D. Qian, et al. Appl. Phys. Lett., 76, 2868 (2000) and C. Bower, et al. Appl. Phys. Lett., 74, 3317 (1999)). Because of the weak van der Waals interaction between the CNTs cylindrical graphene sheets, improved bonding between carbon nanomaterials such as relatively “inert” CNTs and the matrix material is, therefore, essential for improved mechanical performance of the composite.
For high-strength CNT reinforced composites, the matrix material has to bind to the CNT reinforcing filler strongly (to prevent the two surfaces from slipping), so that an applied load (such as a tensile stress) can be transferred to the nanotubes. (See, for example, P. Calvert, Nature, 339, 210 (1999)). Several methods, including chemical functionalization of CNT tubule ends and side walls have been proposed and attempted to enhance bonding between CNTs and matrix material. (See, for example, J. Chen, et al. Science, 282, 95 (1998); A. Grag, et al. Chem. Phys. Lett., 295, 273 (1998), and S. Delpeux, et al. AIP Conf. Proc., 486, 470 (1999)). However, no significant improvement in mechanical properties has been observed after such modification. Chemical coating of both multi-wall and single-wall CNTs with metals and metallic oxides have also been reported for applications such as heterogeneous catalysis and one-dimensional nanoscale composites. (See, for example, T. W. Ebbesen, et al. Adv. Mater., 8, 155 (1996), X. Chen, et al. Compos. Sci. Technol., 60, 301 (2000), and L. M. Ang et al. Carbon, 38, 363 (2000)). The bonding between the coating materials and CNTs is, however, not strong enough to result in efficient load transfer. Thus, there exists a need in the art to improve the interaction between CNT reinforcing fillers and matrix materials in order to confer high mechanical strength to CNT reinforced composites and enable their commercial use in the manufacture of high-strength, light-weight mechanical and electrical device components.
The present invention provides CNTs comprising a plurality of microparticulate carbide or nitride material that provide a reinforcing effect on the CNT matrix, thereby conferring improved mechanical properties in the composite materials comprising them as reinforcing fillers. In particular, the present invention provides microparticulate carbide reinforced CNTs comprising boron carbide nanolumps formed on the surface of CNTs. The present invention also provides a method of producing microparticulate carbide reinforced CNTs. Specifically, the present invention provides the use of microparticulate carbide reinforced CNTs having boron carbide nanolumps formed on the surface of the CNTs to enable their use as reinforcing composite fillers in producing high strength composite materials.
The load transfer efficiency between a matrix material and multi-walled CNTs is increased when the inner layers of multi-walled CNTs are bonded to a matrix material. The present invention provides reinforced CNTs having boron carbide (BxCy) nanolumps formed substantially on the surface of the CNTs. The BxCy nanolumps reinforce CNTs by bonding not only to the outermost layer, but also to the inner layers of the CNTs, and promote the bonding of matrix material to the inner layers of multi-walled CNTs. The load transfer efficiency also increases dramatically when the shape of the CNTs allow for a greater surface area along the CNTs and the matrix material. Boron carbides of the formula BxCy are covalent bonding compounds with superior hardness, excellent mechanical, thermal and electrical properties. They are therefore excellent reinforcing material for CNTs. The carbide modified CNTs of the invention have superior mechanical properties as fillers for matrix materials, enabling the production of high-strength composites.
The present invention provides the synthesis of BxCy nanolumps on the surface of multi-wall CNTs. In one embodiment, present invention uses a solid-state reaction between a boron source material and pre-formed CNTs to form boron carbide (BxCy) nanolumps on the surface of CNTs. In one embodiment, the BxCy nanolumps are formed by a solid-state reaction of magnesium diboride (MgB2) and pre-formed CNTs. The BxCy nanolumps are preferably bonded to the inner layers of multi-wall CNTs. In one embodiment, the bonding between the BxCy nanolumps and the CNTs is covalent chemical bonding. Typically, such covalent chemical nanolumps bonding between BxCy and CNTs occurs in the absence of a secondary phase separation at the interface.
The present invention also provides methods of using reinforced CNTs having BxCy nanolumps as reinforcing fillers in composites. The carbide reinforced CNTs of the invention can be used as additives to provide improved strength and reinforcement to plastics, ceramics, rubber, concrete, epoxies, and other materials, by utilizing standard fiber reinforcement methods for improving material strength. Additionally, the carbide reinforced CNTs comprising BxCy nanolumps are potentially useful for electronic applications, such as use in electrodes, batteries, energy storage cells, sensors, capacitors, light-emitting diodes, and electrochromic displays, and are also suited for other applications including hydrogen storage devices, electrochemical capacitors, lithium ion batteries, high efficiency fuel cells, semiconductors, nanoelectronic components and high strength composite materials. Furthermore, the methods of the present invention provide large scale, cost efficient synthetic processes for producing linear and branched carbide reinforced CNTs having BxCy nanolumps.
The carbide-reinforced CNTs of the present invention have several advantages over current reinforcing materials known in the art. CNTs are good reinforcing fillers for composites because of their very high aspect ratio, large Young's Modulus, and low density. Carbide reinforced CNTs of the invention containing BxCy nanolumps are superior reinforcing fillers for incorporation within a matrix material because the modification of carbon nanotube morphology by the BxCy nanolumps increases the load transfer efficiency between CNTs and the matrix material. The shape modification of CNTs by BxCy nanolumps provides a greater CNT surface area that results in stronger adhesion of the matrix material, while nanolump bonding to the inner layers of multi-wall CNTs allows for a greater load transfer from matrix materials to CNTs. Although the carbide reinforced CNT materials of the invention are illustrated with boron carbide (BxCy) as the reinforcing material, it will be understood by one skilled in the art that other metallic and non-metallic carbides, metallic and non-metallic nitrides may be substituted for boron carbide without departing from the scope of the invention. Metallic carbides, such as boron carbides, are among the hardest solids known in the art, along with diamond and boron nitride. BxCy has a high melting point, high modulus, low density, large neutron capture section, superior thermal and electrical properties, and is chemically inert.
In addition, the present invention provides a method of producing reinforced carbon nanotubes (CNTs) having a plurality of B4C nanoparticles through a thermal decomposition of an amount of MgB2. The method comprises growing a plurality of CNTs and mixing an amount of MgB2 with the CNTs to produce a mixture. Next, the method comprises placing the mixture in a reaction vessel and placing the reaction vessel into a heating device. Further, the method comprises creating a desired pressure within the heating device, heating the mixture by raising a starting temperature of the heating device to a first desired temperature and maintaining the first desired temperature for a first desired period of time. Such heating allows for an amount of MgB2 to undergo thermal decomposition. Next, the heating device heats the mixture to a second desired temperature for a second desired period of time to allow for a reaction of an amount of boron with an amount of carbon to form B4C nanoparticles and thereby produce a reinforce-CNT.
Further, the current invention provides a method of producing a composite material reinforced with reinforced-CNTs having a plurality of B4C nanoparticles. The method comprises mixing an amount of MgB2 with an amount of carbon nanotubes (CNTs) to produce a mixture, placing the mixture in a reaction vessel and placing the reaction vessel into a heating device. Further, the method comprises creating a desired pressure within the heating device and heating the mixture by raising a starting temperature of the heating device to a first desired temperature and maintaining the first desired temperature for a first desired period of time. Such heating allows for an amount of MgB2 to undergo thermal decomposition. Next, the method includes heating the mixture to a second desired temperature for a second desired period of time to allow for a reaction of an amount of boron with an amount of carbon to form reinforced-CNTs having a plurality of B4C nanoparticles, providing a composite material, and adding the reinforced-CNTs to the composite material.
Additionally, the present invention comprises a method of producing CNTs reinforced with B4C nanoparticles comprising mixing an amount of MgB2 with an amount of carbon nanotubes (CNTs) to produce a mixture wherein the amount of MgB2 and the amount of CNTs are selected in order to produce a desired ratio of B to C in a reinforced CNT. Next, the method comprises placing the mixture in a plasma pressure compact device, creating a desired pressure within the plasma pressure compact device and passing a desired current through the mixture in order to generate a desired amount of heat for a desired period of time. Finally, the method comprises removing the reinforced-CNT product from the plasma pressure compact device.
The foregoing and other aspects, features and advantages of the present invention will become apparent from the figures, description of the drawings and detailed description of particular embodiments.
The present invention will be further explained with reference to the attached drawings. The drawings shown are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the present invention.
a shows SEM images of multiwall CNTs.
a shows TEM images of CNTs and B4C nanoparticles wherein B4C has formed at an end of a CNT.
a shows a medium magnification image of B4C nanoparticles.
a shows a medium magnification TEN image of B4C nanoparticles.
a shows a low magnification SEM image of a B4C and CNT mixture of the present invention.
a shows a low magnification TEM image of a B4C and CNT mixture of the present invention.
While the above-identified drawings set forth preferred embodiments of the present invention, other embodiments of the present invention are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments of the present invention by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the present invention.
The present invention provides CNTs comprising a plurality of microparticulate carbide materials that exist substantially on the CNT surface and function as effective reinforcing agents. Specifically, the present invention provides reinforced CNTs having a plurality of microparticulate carbide nanolumps formed on the surface of the CNTs. The present invention also provides a method of producing reinforced CNTs having BxCy nanolumps formed on the surface of the CNTs. The present invention also provides a method of using reinforced CNTs having BxCy nanolumps formed on the surface of the CNTs as reinforcing composite fillers.
The terms “boron carbide nanolump” and “BxCy nanolump” refer to a nanoscale aggregate comprising a boron carbide microparticles on a surface of a nanoscale carbon material, including but not, limited to carbon nanotubes. Nanolumps are typically irregular in shape.
The term “reinforced carbon nanotube” refer to strengthened CNTs in which more force or effectiveness is given to the carbon nanotube. In one embodiment of the present invention, CNTs are reinforced by reducing the amount that the inner layers of a multi-walled CNT slip from the outer layers of the CNT. In a currently preferred embodiment, CNTs are reinforced by bonding a microparticulate carbide material substantially to the surface of the CNT which binds to the inner walls of the CNTs.
The term “matrix material” refers to any material capable of forming a composite with reinforced CNTs. Examples of matrix materials include, but are not limited to, plastics, ceramics, metals, metal alloys, rubber, concrete, epoxies, glasses, polymers, graphite, and mixtures thereof. A variety of polymers, including thermoplastics and resins, can be used to form composites with the reinforced CNTs of the present invention. Such polymers include, but are not limited to, polyamides, polyesters, polyethers, polyphenylenes, polysulfones, polycarbonates, polyacrylites, polyurethanes or epoxy resins.
The term “carbide forming source” refers to any suitable material capable of forming a carbide material. The carbide forming source can be metallic or non-metallic. Preferred carbide forming source include, but are not limited to, magnesium diboride (MgB2), aluminum diboride (AlB2) calcium diboride (CaB2), and gallium diboride (GaB2). Preferably the carbide forming source exists in the form of a carbide forming source powder.
A “carbide material” as referred to herein is afforded the meaning typically provided for in the art. More specifically, a carbide material is a binary solid compound of carbon and another element. Elements capable of forming carbide materials can be metallic or non-metallic. Examples of elements that can form carbides include, but are not limited to, boron (B), calcium (Ca), tungsten (W), silicon (Si), nobium (No), titanium (Ti), and iron (Fe). Carbides can have various ratios between carbon and the element capable of forming the carbide material. A presently preferred carbide material of the present invention is boron carbide (BxCy).
The carbide materials on the surface of CNTs can be either in the form of a contiguous coating layer or a non-contiguous surface layer, such as, for example, in the form of nanolumps. In one embodiment, the carbide material is BxCy in a non-contiguous surface layer in the form of nanolumps. In one embodiment, the interface between BxCy nanolumps and CNTs is sharp, in which there is no amorphous layer in between the BxCy nanolumps and CNTs. The BxCy nanolumps may be chemically bound to the CNT surface by covalent bonding or by van der Waals type attractive forces. In one embodiment, the BxCy nanolumps are bound to CNTs covalently.
The BxCy nanolumps of the present invention typically have an average particle size from about 10 nanometers (nm) to about 200 nm. Preferably, the BxCy nanolumps have an average diameter of about two to three times the average diameter of CNTs. In one embodiment, the BxCy nanolumps have an average diameter ranging from about 50 run to about 100 nm. In one embodiment, the BxCy nanolumps have an average diameter of about 80 nm. Those skilled in the art will recognize that particles of various diameters are within the spirit and scope of the present invention.
The BxCy lump density on the reinforced CNTs of the invention can vary over a wide range. In one embodiment, the nanolumps are isolated nanolumps. The spacing variation between adjacent nanolumps on a CNT can range from about 30 nm to about 500 nm and is dependent on the particle density on the CNT surface, which is expressed as a ratio of the percentage of boron atoms to carbon atoms in the boron carbide BxCy (atom % carbon). In one embodiment, the spacing between BxCy nanolumps is from about 50 nm to about 100 nm. Those skilled in the art will recognize that many spacing variations are within the spirit and scope of the present invention.
In one embodiment of the present invention, the BxCy nanolumps in the reinforced CNTs is crystalline. In one embodiment of the present invention, the BxCy nanolumps in the reinforced CNTs is amorphous. The crystal geometries of the BxCy nanolumps include, but are not limited to, rhombohedral, tetragonal and orthorhombic. Those skilled in the art will recognize that various geometries are within the spirit and scope of the present invention.
The ratio of boron to carbon in the BxCy nanolumps is variable. Boron carbides typically exist as a stable single phase, with a homogeneity ranging from about 8 atom % carbon to about 20 atom % carbon. Examples of boron carbon ratios within this range are B4C and B10C. The boron carbide nanolumps in the reinforced CNTs of the invention have the general formulas BxCy wherein x ranges from about 4 to about 50 and y ranges from about 1 to about 4. In one embodiment, the stable BxCy structures are rhombohedral with a stoichiometry of B13C, B12C3 or B4C. In one embodiment, the stable BxCy structures are tetragonal with a stoichiometry of B50C2, B50C, B48C3, B51C, B49C3. In one embodiment, the stable BxCy structures are orthorhombic with a stoichiometry of B8C. In one embodiment, stable BxCy structures may include B12C, B12C2 and B11C4. In one embodiment, the ratio of boron to carbon is 4 boron atoms to one carbon atom (B4C).
Typically, twin boundaries can be observed in B4C nanolumps. In one embodiment, the twin boundary is along either (101) or (01{overscore (1)}) planes, as shown in
In one embodiment, BxCy nanolumps of the invention provide materials such as carbon fibers and CNTs with a knotted-rope-shaped or bone-shaped morphology. Knotted-rope-shaped CNTs and bone-shaped CNTs can be excellent reinforcing fillers to increase strength and toughness due to a more effective load transfer between CNTs and matrix materials. The lumps or knots allow for mechanical matrix-CNT interlocking. Those skilled in the art will recognize that various shapes are within the spirit and scope of the present invention.
Another aspect of the present invention is a method of producing CNTs having boron carbide (BxCy) nanolumps formed on the surface of the CNTs. The method of the present invention can be applied to CNTs comprising any morphology including aligned or non-aligned linear arrays. Preferably, the CNTs have a branched, multi-walled morphology. Those skilled in the art will recognize that various morphologies are within the spirit and scope of the present invention.
In one embodiment, the carbide forming source is a metallic material. In one embodiment, the carbide forming material is a non-metallic material. The carbide forming source may be any material capable of forming a carbide on the CNT surface. In one embodiment, the carbide forming sources include, but are not limited to, magnesium diboride (Mg B2), aluminum diboride (AlB2), calcium diboride (CaB2) and gallium diboride (GaB2).
BxCy nanolumps can be grown on CNTs using any suitable method. In one embodiment, BxCy nanolumps are grown on CNTs by using a reaction between a boron source and CNTs. Any suitable boron source known in the art can be used. Suitable boron sources include, but are not limited to, magnesium diboride (MgB2) and aluminum diboride (AlB2). In one embodiment, the boron source is MgB2. In one embodiment, the boron source is in the form of a powder. In one embodiment, the powder comprises particles with an average grain size of about 0.1 micrometer (μm) to about 100 micrometers (μm). In one embodiment, the powder comprises particles with an average grain size of about 1 micrometer. The synthesis of magnesium diboride (MgB2) powders is accomplished by combining elemental magnesium and isotopicaly pure boron by known methods.
In one embodiment, the boron source used in the present invention decomposes at a temperature of between about 100° C. to about 1000° C., preferably, at a temperature of about 600° C. Thermally decomposed boron is typically more reactive chemically; a solid-state reaction can, therefore, be performed at relatively low temperatures. In one embodiment, a reaction is performed at temperatures ranging from about 500° C. to about 2000° C. In one embodiment, a reaction is performed at temperature of ranging from about 1000° C. to about 1250° C.
In one embodiment, the CNTs used for producing reinforced CNTs of the present invention may be purified by any suitable method known in the art prior to introduction of BxCy nanolumps. In one embodiment, CNTs are purified by washing with a mineral acid. Examples of suitable mineral acids include, but are not limited to, hydrofluoric acid (HF), hydrochloric acid (HCl), hydrobromic acid (HBr), hydroiodic acid (HI), sulfuric acid (H2SO4) or nitric acid (HNO3). Those skilled in the art will recognize that various methods of purification are within the spirit and scope of the present invention. Further, those skilled in the art will recognize that various mineral acids are within the spirit and scope of the present invention.
In one embodiment of the present invention, the purified CNTs nanotubes are then mixed with the boron source powder. In one embodiment, the CNTs and the boron source undergo gentle mechanical mixing following which the mixture is wrapped with a metal foil to form an assembly. Metal foils to be used in the present invention include, but are not limited to, transition metal foils. In one embodiment, the metal foil is Tantalum (Ta). In one embodiment, the assembly is then placed in a ceramic tube furnace, wherein a vacuum of about 0.5 torr is created by a mechanical pump. In one embodiment, the reaction area is localized only at the area where boron is present. That is, no surface diffusion of boron is observed in the solid-state reaction. In one embodiment, the reaction area is not localized only at the area where boron is present.
In one embodiment, BxCy nanolumps are formed via chemical vapor deposition (CVD). In one embodiment of the present invention, CVD of boron carbide such as plasma enhanced chemical vapor deposition (PECVD), hot filament chemical vapor deposition (HFCVD), and synchrotron radiation chemical vapor deposition (SRCVD) using reactive gas mixtures such as BCl3—CH4—H2, B2H6—CH4—H2, B5H9—CH4, BBr3—CH4—H2, C2B10H12, BCl3—C7H8—H2, B(CH3)3 and B(C2H5)3 are used. One embodiment of the present invention uses a solid state reaction between a carbide forming source and CNTs. Another embodiment, of the present invention uses a solid state reaction between a boron source and CNTs. Those skilled in the art will recognize that various methods of forming BxCy nanolumps are within the spirit and scope of the present invention.
In addition, the present invention provides a method of manufacturing reinforced carbon nanotubes having a plurality of boron carbide nanolumps formed substantially on a surface of pre-formed CNTs comprising the steps of: (1) purifying a plurality of carbon nanotubes by washing with a mineral acid; (2) mixing the plurality of carbon nanotubes with a boron source powder to form a mixture of carbon nanotubes and boron source powder; (3) wrapping the mixture of carbon nanotubes and boron source powder within a metal foil; (4) placing the metal foil containing the mixture of carbon nanotubes and boron source powder in a ceramic tube furnace; (5) pumping the ceramic tube furnace to below about 0.5 torr by a mechanical pump; and (6) heating the ceramic tube furnace.
In one embodiment of the present invention, a material comprising a plurality of reinforced carbon nanotubes having a plurality of boron carbide nanolumps formed substantially on the surface of the CNTs is used as reinforcing fillers for materials comprising the step of combining the plurality of reinforced carbon nanotubes and a matrix material to form a high-strength composite.
a shows a SEM image of the CNTs before the growth of boron carbide nanolumps.
a and
a shows an interface between BxCy nanolump and multi-wall carbon nanotube. Part of the multi-wall CNTs is reacted with boron by a solid state reaction, therefore no lattice fringes of CNTs can be observed at the bottom portion of the BxCy nanolump. The solid state reaction area is localized only at the area where there is boron. No surface diffusion of boron is observed in the solid-state reaction. As shown by the HRTEM images of
The strong bonding at the interface between BxCy nanolumps and CNTs can prevent the breaking at the interface between BxCy nanolumps and CNTs during load transfer. Bone-shaped short fibers were reported to be ideal reinforcing fillers to increase strength and toughness due to a more effective load transfer. Therefore, the modification of CNT morphology by BxCy nanolumps increases the load transfer between the nanotubes and the matrix of the present invention. Moreover, inner layers of multi-wall CNTs are also bonded to BxCy nanolumps, so the inner layers can also contribute to load carrying, instead of only the outmost layer.
Reinforced CNTs can be used to form or reinforce composites with other materials, especially a dissimilar material. Suitable dissimilar materials include, but are not limited to, metals, ceramics, glasses, polymers, graphite, and mixtures thereof. Such composites may be prepared, for example, by coating the reinforced CNTs with the dissimilar material either in a solid particulate form or in a liquid form. A variety of polymers, which include but are not limited to, thermoplastics and resins can be utilized to form composites with the products of the present invention. Such polymers include, but are not limited to, polyamides, polyesters, polyethers, polyphenylenes, polysulfones, polyurethanes or epoxy resins. In one embodiment, branched CNTs of the present invention can find application in construction of nanoelectronic devices and in fiber-reinforced composites. In one embodiment, the Y-junction CNT fibers of the invention are expected to provide superior reinforcement to composites compared to linear CNTs.
The carbon nanotubes comprised in the reinforced CNTs of the present invention can possess any of the several known morphologies. Examples of known CNT morphologies include, but are not limited to, linear, non-linear, branched, “bamboo-like”, and non-linear (“spaghetti-shaped”). Individual tubules of such CNTs can be either single or multi-walled. CNTs with the above morphologies are described, for example, in Li, et al., Appl. Phys. A: Mater. Sci. Process, 73, 259 (2001) and U.S. application Ser. No. 10/151,382, filed on May 20, 2002. Both references are hereby incorporated herein by reference in their entirety. In one embodiment of the present invention, the reinforced CNTs of the invention have a branched, multi-walled tubule morphology. Those skilled in the art will recognize that various morphologies are within the spirit and scope of the present invention.
The CNTs in the carbide reinforced CNT materials of the present invention can be aligned or non-aligned. In one embodiment, the CNTs are non-aligned, substantially linear, concentric tubules with hollow cores, or capped conical tubules stacked in a bamboo-like arrangement. As shown in
At gas pressures greater than about 200 torr, an entirely bamboo-like morphology is obtained for the CNTs, with increased compartmental density. The inter-compartmental distances within the individual CNTs decrease with increasing gas pressure (about 10 nm to about 50 nm at about 400 torr and about 10 nm to about 40 nm at about 600 torr and about 760 torr, respectively). As shown in
In one embodiment of the present invention, CNTs have a relatively high degree of graphitization (process of forming a planar graphite structure or “graphene” layer). The complete formation of crystalline graphene layers, and the formation of multiple concentric layers within each tubule and hollow core, with minimal defects (such as defects typically caused by entrapment of non-graphitized, amorphous carbon and metal catalyst particles) is an important prerequisite for superior mechanical properties in CNTs.
In one embodiment, CNTs can comprise a branched (“Y-shaped”) morphology, referred to herein as “branched CNTs”, wherein the individual arms constituting branched tubules are either symmetrical or unsymmetrical with respect to both arm lengths and the angle between adjacent arms. In one embodiment, the Y-shaped CNTs exist as (1) a plurality of free standing, branched CNTs attached to the substrate and extending outwardly from the substrate outer surface; and (2) one or more CNTs with a branched morphology wherein the CNT tubule structures have Y-junctions with substantially straight tubular arms and substantially fixed angles between said arms.
As seen in
As shown in
In another embodiment of the present invention, the reinforced CNT material comprises a microparticulate oxide material that is bound substantially on the surface of the CNT tubules. The microparticulate oxide materials of the invention can be metallic or non-metallic oxides. Examples of oxide materials include, but are not limited to, magnesium oxide (MgO) and boron oxide (B2O3). As shown in
CNTs can be grown by any suitable method known in the art. In one embodiment, multi-wall CNTs can be grown by any CVD method, including but not limited to, plasma enhanced chemical vapor deposition (PECVD), hot filament chemical vapor deposition (HFCVD), or synchrotron radiation chemical vapor deposition (SRCVD). Suitable methods for growing CNTs are described by Li, et al., Appl. Phys. A: Mater. Sci. Process, 73, 259 (2001) and U.S. application Ser. No. 10/151,382, filed on May 20, 2002, the contents of both these references are hereby incorporated herein by reference in their entireties.
B4C Nanoparticles Formed by a Reaction of Boron from Thermal Decomposition of MgB2 with CNTs Yielding Large Quantities of B4C Nanoparticles
In one embodiment of the present invention, reinforced CNTs are produced through the thermal decomposition of MgB2. In one embodiment, a large quantity of boron carbide (B4C nanoparticles) can be produced on CNTs wherein the CNTs are multi-walled and of a bambo-like morphology.
Boron carbide (B4C) can be prepared by several methods, such as carbonthermal route of boron oxide (B2O3, H3BO3, Na2B3O7, etc.), reduction of BCl3 by CH4 at a temperature of about 1500° C. with laser, direct reaction of carbon with boron, magnesiothermic reduction of B2O3 in the presence of carbon at about 1000-1200° C. The industrial method to grow B4C is carbon-thermal reduction of boric acid at a temperature over 2000° C. At low temperature (about 450° C.), B4C nanoparticles can be made by using BBr3 and CCl4 as the reactants and metallic Na as the co-reductant.
The hardness and yield stress of any material typically increase with decreasing grain size. Commercially available B4C has grain size around microns. The present invention includes a solid-vapor reaction, through which uniformly sized B4C nanoparticles may be produced. In one embodiment, the reaction produces nanoparticles less than 100 nm in size. In one embodiment of the invention, the use of these nanometer grain sizes will significantly enhance the mechanical properties of a composite. In one embodiment, a toughness of the composite is increased by use of these nanometer grain sizes. Those skilled in the art will recognize that various particle sizes are within the spirit and scope of the present invention.
In one embodiment of the current invention, boron was produced through the thermal decomposition of magnesium diboride (MgB2), and multiwall carbon nanotubes (CNTs) were used as the carbon source. In one embodiment, a graphite boat was used as the reactor.
The multiwall CNTs were grown by catalytic chemical vapor deposition and purified by HF acid.
Using the same starting materials and a similar reaction procedure, B4C nanolumps were grown on CNTs. MgB2 begins to decompose at about 600° C. In vacuum condition, the decomposition was almost complete at about 900° C. Boron from the thermal decomposition of MgB2 is more chemically reactive so the reaction with CNTs was realized at a relatively low temperature of about 1150° C.
MgB2 was first mixed with CNTs in a mortar and pestle. The atomic ratio of boron and carbon in the mixture was 5:1. After uniformly mixed, certain amount of mixture was loaded in to the graphite boat, and then was placed into the ceramic tube of the high temperature tube furnace. Before heating up, the tube was pumped to below 0.05 Torr. It was first heated to about 900° C. and kept for 1 h for preliminary decomposition of MgB2. Then the temperature was increased to about 1150° C. within 0.5 hours and stayed at that temperature for 3 hours for reaction of boron with carbon to form B4C.
Normally, the as-made sample contains impurities such as Mg2(BO3)3, B2O3, etc. To get pure B4C nanoparticles, purification was carried out in 10% HCl aqueous solution assisted by ultrasonication, followed by vacuum filtration. Microstructure was studied by scanning electron microscope (SEM, JEOL JSM-6340F), x-ray diffraction (XRD), and filed emission transmission electron microscope (TEM, JEOL 2010F). The TEM is also equipped with an x-ray energy dispersive spectrometer (EDS). TEM specimen were prepared by dispersing a drop of B4C nanoparticle-acetone solution on a holey carbon grid.
a is an SEM image of the CNTs used as the carbon source.
Under TEM study, B4C nanoparticles were formed at either the end (see
a is an SEM image of the purified B4C nanoparticles to show their abundance and size uniformity. In
In
In summary, B4C nanoparticles were formed by a reaction of boron from thermal decomposition of MgB2 with CNTs. The single crystal nature of each B4C nanoparticle is well demonstrated by SEM, XRD, and TEM characterizations. In comparison with the conventional synthesizing routes, the current technology is very easy to obtain large quantity B4C nanoparticles. In addition, it is expected that a mixture with certain ratio of B4C over CNTs can be obtained for the following CNTs-reinforced B4C nanocomposite. The reaction happens at either the ends or defect sites of the CNTs. To obtain even smaller nanoparticles, smaller CNTs diameter and higher defect (bamboo) density is required.
Ratio of Boron to Carbon; Effect on Physical Properties
In one embodiment of the invention, adjusting the boron to carbon ratio (B:C) was seen to improve the physical properties of the reinforced CNTs; additionally, in one embodiment, the use of a plasma pressure compact device was seen to improve the physical properties of the reinforced CNTs.
B4C particles of approximately 100 nm size were synthesized through reaction of MgB2 with multiwall carbon nanotubes (MWCNTs). The mixture of MgB2 and MWCNTs were heated to 1150° C. and kept for 2 hrs under a pressure of 10−2 Torr. Different ratio of starting materials can produce either B4C-rich or CNTs-rich sample. Scanning electron microscopy (SEM) images show the uniform dispersion of B4C among CNTs after reaction (see
X-ray diffraction (XRD)(see
In one embodiment, a plasma pressure compact process is used for sintering. Unlike conventional hot press which has an external heat source, a few thousand amperes DC current passes through the sample to generate a large amount of heat. As such, less time is needed to reach the required temperature, which reduces the chance of grain growth. The main parameters used during sintering were current and pressure. Samples were held at maximum current for about 5 minutes.
M = Sample Mass, I = Current, P = Pressure, D = Density, % = relative density of the theoretical value of B4C, Al2O3 = weight percent in the sample. KHN = Knoop hardness number.
Table 1 shows that higher pressure produces higher density, Al2O3 is an effective additive for higher density (1 wt % Al2O3 improves the final density significantly) and hardness increases with density.
The next round of hot press was done with 1 wt % A12O3.
FT = fractural toughness by Vicker's method, HV = Vicker's hardness
In comparison, the commercial cercom hot pressed boron carbide was used as a reference. This material is used for light armor applications. The Vicker's toughness and hardness of cercom material is 3.23 MPam1/2 and 3084 kg/mm2, respectively. From the value shown in Table 2, sample #6 comprises the most preferred properties, having approximately 80% of the cercom material hardness and 130% of the toughness. Sample #7 has the highest toughness, but the hardness is relatively low. Hardness of sample #8 is closest with cercom but it does not show obvious toughness enhancement. From SEM and TEM analysis, we find grain growth after sintering, which explains why the enhancement is not as significant as expected. The grain growth may be due to the high temperature used for sintering.
In summary, several tests were performed on the B4C-CNT composite samples of the present invention. Samples with higher boron ratio had the most preferred properties.
Synthesis of Reinforced CNTs having Boron Carbide (BxCy) Nanolumps Formed Substantially on the Surface of the CNTs
The multi-wall CNTs were grown by catalytic chemical vapor deposition method (see Li, et al., Appl. Phys. A: Mater. Sci. Process, 73, 259 (2001), the contents of which is incorporated herein by reference in its entirety) and purified by hydrofluoric acid (HF). Magnesium diboride (MgB2), a new superconducting material, is used as the source of boron. The synthesis of magnesium diboride (MgB2) can be synthesized by combining elemental magnesium and boron in a sealed (Ta) tube in a stoichiometric ratio and sealed in a quartz ampule, placed in a box furnace at a temperature of about 950° C. for about 2 hours. Powder MgB2 with average grain size of about 1 micrometer decomposes at a temperature of about 600° C. Thermally decomposed boron is more chemically reactive so the solid-state reaction can be performed at relatively low temperatures. The nanotubes were mixed gently with MgB2 powder first, then wrapped by a tantalum (Ta) foil to form an assembly, and finally the assembly was placed in a ceramic tube furnace, and pumped to below about 0.5 torr by mechanical pump. The sample was heated at about 1100° C. to about 1150° C. for about 2 hours. Microstructural studies were carried out by a JEOL JSM-6340F scanning electron microscope (SEM) and JEOL 2010 transmission electron microscope (TEM), respectively. The TEM is equipped with an X-rays energy dispersive spectrometer (EDS). A TEM specimen was prepared by dispersing CNTs into an acetone solution by sonication and then putting a drop of the solution on a holey carbon grid.
Determining the Composition of BxCy Nanolumps
In order to find out whether the nanolumps are boron carbide, a high-resolution transmission electron microscopic (HRTEM) image of a nanolump is taken and shown in
Preparation of Catalyst Substrate for Synthesis of Linear CNTs
Mesoporous silica containing iron nanoparticles were prepared by a sol-gel process by hydrolysis of tetraethoxysilane (TEOS) in the presence of iron nitrate in aqueous solution following the method described by Li et al. (Science, (1996), Vol. 274, 1701-3) with the following modification. The catalyst gel was dried to remove excess water and solvents and calcined for about 10 hours at about 450° C. and about 10−2 torr to give a silica network with substantially uniform pores containing iron oxide nanoparticles that are distributed within. The catalyst gel is then ground into a fine, micro-particulate powder either mechanically using a ball mill or manually with a pestle and mortar. The ground catalyst particles provide particle sizes that range between about 0.1 μm and about 100 μm under the grinding conditions.
Preparation of Catalyst Substrate for Synthesis of branched CNTs
Magnesium oxide (MgO) supported cobalt (Co) catalysts were prepared by dissolving about 0.246 g of cobalt nitrate hexahydrate (Co(NO3)2.6H2O, 98%) in 40 ml ethyl alcohol, following which immersing about 2g of particulate MgO powder (−325 mesh) were added to the solution with sonication for about 50 minutes. The solid residue was filtered, dried and calcined at about 130° C. for about 14 hours.
General Synthetic Procedure for Linear CNTs
The synthesis of CNTs is carried out in a quartz tube reactor of a chemical vapor deposition (CVD) apparatus. For each synthetic run, about 100 mg of the micro-particulate catalyst substrate was spread onto a molybdenum boat (about 40×100 mm2) either mechanically with a spreader or by spraying. The reactor chamber was then evacuated to about 10−2 torr, following which the temperature of the chamber was raised to about 750° C. Gaseous ammonia was introduced into the chamber at a flow rate of about 80 sccm and maintained for about 10 minutes, following which acetylene at a flow rate of about 20 sccm was introduced for initiate CNT growth. The total gas pressure within the reaction chamber was maintained at a fixed value that ranged from about 0.6 torr to about 760 torr (depending on desired morphology for the CNTs). The reaction time was maintained constant at about 2 hours for each run. The catalytic substrate containing attached CNTs were washed with hydrofluoric acid, dried and weighed prior to characterization.
General Synthetic Procedure for Branched CNTs
The MgO supported cobalt catalyst of Example 5 were first reduced at about 1000° C. for about 1 hour in a pyrolytic chamber under a flow of a mixture hydrogen (about 40 sccm) and nitrogen (about 100 sccm) at a pressure of about 200 torr. The nitrogen gas was subsequently replaced with methane (about 10 sccm) to initiate CNT growth. The optimum reaction time for producing branched CNTs was about 1 hour.
Characterization of CNT Morphology and Purity by Scanning Electron Microscopy (SEM), and Tubule Structure and Diameter by Transmission Electron Microscopy (TEM)
Scanning electron microscopy (SEM) for characterization and verification of CNT morphology and purity was performed on a JEOL JSM-6340F spectrophotometer that was equipped with an energy dispersive x-ray (EDS) accessory. Standard sample preparation and analytical methods were used for the SEM characterization using a JEOL JSM-6340F microscope. SEM micrographs of appropriate magnification were obtained to verify tubule morphology, distribution and purity.
Transmission electron microscopy (TEM) to characterize individual tubule structure and diameter of the CNTs was performed on a JEOL 2010 TEM microscope. Sample specimens for TEM analysis were prepared by mild grinding the CNTs in anhydrous ethanol. A few drops of the ground suspension were placed on a micro-grid covered with a perforated carbon thin film. Analysis was carried out on a JEOL 2010 microscope. TEM micrographs of appropriate magnification were obtained for determination of tubule structure and diameter.
Synthetic Procedure for Oxide Reinforced CNTs
Reinforced CNT materials comprising microparticulate oxide are obtained in a manner substantially similar to the procedure described in Example 3. The oxide source materials used are magnesium oxide (MgO) and boron oxide (B2O3). The microparticulate oxide formation on CNTs is carried out a pressure of 5 torr.
Although the examples described herein have been used to describe the present invention in detail, it is understood that such detail is solely for this purpose, and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention.
All patents, patent applications, and published references cited herein are hereby incorporated herein by reference in their entirety. While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/339,849, filed on Jan. 10, 2003, which claims the benefit of U.S. Provisional Application Ser. No.60/347,808, filed on Jan. 11, 2002, all of which are hereby incorporated herein by reference in their entirety.
The present invention was made with partial support from The US Army Natick Soldier Systems Center (DAAD, Grant Number 16-00-C-9227), Department of Energy (Grant Number DE-FG02-00ER45805), The National Science Foundation (Grant Number DMR-9996289), The National Science Foundation (Grant Number NIRT-0304506), and The National Science Foundation (Grant Number CMS-0219836).
Number | Date | Country | |
---|---|---|---|
60347808 | Jan 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10339849 | Jan 2003 | US |
Child | 11088527 | Mar 2005 | US |