Technical Field
The present disclosure relates to palladium complexes which are capable of absorbing and/or emitting light and are thus useful as an emissive or absorption material in a device.
Technical Background
Compounds capable of absorbing and/or emitting light are ideally suited for use in a wide variety of optical and electro-optical devices, including photo-absorbing devices such as solar and photo-sensitive devices, photo-emitting devices, such as organic light emitting diodes (OLEDs), or devices capable of both photo-absorption and emission. Much research has been devoted to the discovery and optimization of organic and organometallic materials for use in optical and electro-optical devices. Generally, research in this area aims to accomplish a number of goals, including improvements in absorption and emission efficiency, as well as improvements in processing ability, among others.
Despite significant advances in research devoted to optical and electro-optical materials, many current devices comprising organic or organometallic materials have yet to be optimized. Many materials currently used in optical and electro-optical devices have a number disadvantages, including poor processing ability, inefficient emission or absorption, and less than ideal stability, among others. Thus, a need exists for new materials which exhibit improved performance in optical and electro-optical devices. This need and other needs are satisfied by the compositions and methods of the present invention.
The present invention relates to palladium complexes that exhibit photo-absorption and photo-emission, to methods of making such compounds, and to applications thereof, including optical devices comprising the compounds.
In one embodiment, the compounds are represented by the formula:
wherein each R1 and R2 in (R1)2 and (R2)2 independently represents hydrogen, optionally substituted C1-C4 alkyl, halogen, hydroxyl, amino, nitro, or thiol;
Y1a represents O, S, NR4a, wherein R4a represents optionally substituted C1-C4 alkyl; Si(R4b)2, wherein each R4b in (R4b)2 independently represents optionally substituted C1-C4 alkyl; or C(R4c)2, wherein each R4c in (R4c)2 represents hydrogen or optionally substituted C1-C4 alkyl;
n is an integer 0 or 1;
Y1b when present, represents O, S, NR5a, wherein R5a represents optionally substituted C1-C4 alkyl; Si(R5b)2, wherein each R5b in (R5b)2 independently represents optionally substituted C1-C4 alkyl; or C(R5c)2, wherein each R5c in (R5c)2 represents hydrogen or optionally substituted C1-C4 alkyl;
each of Y2a, Y2b, Y2c, and Y2d independently represents N, NR6a, or CR6b, wherein each of R6a and R6b independently represents hydrogen, optionally substituted C1-C4 alkyl, halogen, hydroxyl, amino, nitro, or thiol;
each of Y3a, Y3b, Y3c, Y3d, Y3e, Y4a, Y4b, Y4c, and Y4d independently represents N, O, S, NR6a, CR6b, wherein each of R6a and R6b independently represents hydrogen or optionally substituted C1-C4 alkyl; or Z(R6c)2, wherein Z is C or Si, and wherein each R6c in (R6c)2 independently represents hydrogen or optionally substituted C1-C4 alkyl;
wherein m is an integer 1 or 2;
wherein the open dotted circle
indicates partial or full unsaturation of the ring with which it is associated;
provided that if m is 1, each of Y2a and Y2d is CH and each of Y2b and Y2c is N, then at least one of Y4a, Y4b, Y3a, or Y3d is not N; and
provided that if n is 0, m is 2, each of Y2a and Y2d is CH, and each of Y2b and Y2c is N, then at least one of Y3b or Y3c is not N.
Also disclosed are optical devices, such as organic light emitting devices and luminescent display devices that comprise one or more compounds of the invention as a functional material, such as a light-emitter or absorber, or both.
The accompanying figures, which are incorporated in and constitute a part of this specification, illustrate several aspects and together with the description serve to explain the principles of the invention.
Additional aspects of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or can be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The present invention can be understood more readily by reference to the following detailed description of the invention and the Examples included therein.
Before the present compounds, devices, and/or methods are disclosed and described, it is to be understood that they are not limited to specific synthetic methods unless otherwise specified, or to particular reagents unless otherwise specified, as such can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, example methods and materials are now described.
As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component” includes mixtures of two or more components.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
As used herein, the terms “optional” or “optionally” means that the subsequently described event or circumstance can or can not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The term “alkyl” as used herein is a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, s-pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dode cyl, tetradecyl, hexadecyl, eicosyl, tetracosyl, and the like. The alkyl group can be cyclic or acyclic. The alkyl group can be branched or unbranched. The alkyl group can also be substituted or unsubstituted. For example, the alkyl group can be substituted with one or more groups including, but not limited to, optionally substituted alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol, as described herein. A “lower alkyl” group is an alkyl group containing from one to six (e.g., from one to four) carbon atoms.
The terms “amine” or “amino” as used herein are represented by the formula NA1A2A3, where A1, A2, and A3 can be, independently, hydrogen or optionally substituted alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.
The term “halide” as used herein refers to the halogens fluorine, chlorine, bromine, and iodine.
The term “hydroxyl” as used herein is represented by the formula —OH.
The term “nitro” as used herein is represented by the formula —NO2.
The term “nitrile” as used herein is represented by the formula —CN.
The term “thiol” as used herein is represented by the formula —SH.
Disclosed are the components to be used to prepare the compositions of the invention as well as the compositions themselves to be used within the methods disclosed herein. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds can not be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular compound is disclosed and discussed and a number of modifications that can be made to a number of molecules including the compounds are discussed, specifically contemplated is each and every combination and permutation of the compound and the modifications that are possible unless specifically indicated to the contrary. Thus, if a class of molecules A, B, and C are disclosed as well as a class of molecules D, E, and F and an example of a combination molecule, A-D is disclosed, then even if each is not individually recited each is individually and collectively contemplated meaning combinations, A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are considered disclosed. Likewise, any subset or combination of these is also disclosed. Thus, for example, the sub-group of A-E, B-F, and C-E would be considered disclosed. This concept applies to all aspects of this application including, but not limited to, steps in methods of making and using the compositions of the invention. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the methods of the invention.
Throughout the specification, it should be understood that where letters and/or symbols are utilized to represent atoms or functional groups, and wherein multiple instances of the same letter and/or symbol are present, that each individual instance can represent the same or different species (e.g., atom and/or functional group) than any other instance using the same letter and/or symbol. Similarly, when a metal is depicted as a portion of a chemical structure, the notation can refer to a single metal atom and/or to a plurality of atoms. In one aspect, a notation for a metal refers to a single metal atom. In another aspect, a notation for a metal refers to a plurality of metal atoms.
In one aspect, the invention comprises phosphorescent multidentate, for example, tridentate and/or tetradentate, palladium (II) complexes. In another aspect, such multidentate palladium complexes can be modified and/or specifically tailored to tune the emission spectra from, for example, ultraviolet to near-infrared emission. In yet another aspect, the inventive compositions can provide improved stability and efficiency over conventional light emitting materials. In yet other aspects, the inventive compositions can be useful as luminescent labels, absorbers, emitters, or a combination thereof.
In one aspect, the inventive compositions are represented by the general formula:
wherein Ar1, Ar2, Ar3, and Ar4, if present, represent aromatic groups, wherein each E represents an optional linking atom, such as, for example, carbon or oxygen, and wherein R, if present, represents an ancillary ligand
In various aspects, an ancillary ligand can comprise one or more of the following:
wherein, R1-R10 of the ancillary ligand each independently represent a hydrogen atom, an alkyl group, a haloalkyl group, an aralkyl group, an alkenyl group, an alkynyl group, an aryl group, an amino group, a mono- or di-alkylamino group, a mono- or diaryl amino group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkoxycarbonyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, a sulfonylamino group, a sulfamoyl group, a carbamoyl group, an alkylthio group, a sulfinyl group, a ureido group, a phosphoramide group, a hydroxyl group, a mercapto group, a halogen atom, a cyano group, a sulfo group, a carboxyl group, a nitro group, a hydrazino group, a substituted silyl group, or a polymerizable group; further, wherein a plurality of Rs exist, the number of R should be from 0 to about 4, and each R can be the same or different from any other R. In one aspect, an ancillary ligand can comprise a hydrogen atom. In another aspect, an ancillary ligand can comprise an alkyl group. In another aspect, an ancillary ligand can comprise a haloalkyl group. In another aspect, an ancillary ligand can comprise a aralkyl group. In another aspect, an ancillary ligand can comprise a alkenyl group. In another aspect, an ancillary ligand can comprise an alkynyl group. In another aspect, an ancillary ligand can comprise an aryl group. In another aspect, an ancillary ligand can comprise an amino group. In another aspect, an ancillary ligand can comprise an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkoxycarbonyl group, an acyloxy group, or a combination thereof. In other aspects, an ancillary ligand can comprise an acylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, a sulfonylamino group, a sulfamoyl group, a carbamoyl group, an alkylthio group, a sulfinyl group, a ureido group, a phosphoramide group, a hydroxyl group, a mercapto group, a halogen atom, a cyano group, a sulfo group, a carboxyl group, a nitro group, a hydrazino group, a substituted silyl group, a polymerizable group, or a combination thereof.
In still other aspects, an ancillary ligand can comprise a group or groups difference from those specifically recited herein, and the present invention is not intended to be limited to any particular ancillary ligand.
In various aspects, specific non-limiting examples of the inventive composition can be grouped and illustrated by ligand class. In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, each N represents a nitrogen substituted aromatic group, each E represents an optional linking atom, such as, for example, carbon or oxygen, X represents a halogen or other electronegative group, and C represents an aromatic group. Specific examples of inventive compositions within this ligand class can comprise:
or a combination thereof.
In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, each N represents a nitrogen substituted aromatic group, each E represents an optional linking atom, such as, for example, carbon or oxygen, X represents a halogen or other electronegative group, and C represents an aromatic group. Specific examples of inventive composition within this ligand class can comprise:
or a combination thereof.
In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, each N represents a nitrogen substituted aromatic group, each E represents an optional linking atom, such as, for example, carbon or oxygen, and X represents a halogen or other electronegative group. Specific examples of inventive composition within this ligand class can comprise:
or a combination thereof.
In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, N represents a nitrogen substituted aromatic group, each E represents an optional linking atom, such as, for example, carbon or oxygen, X represents a halogen or other electronegative group, and each C represents an aromatic group. Specific examples of inventive composition within this ligand class can comprise:
or a combination thereof.
In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, each E represents an optional linking atom, such as, for example, carbon or oxygen, R represents an ancillary ligand, and each C represents an aromatic group. Specific examples of inventive composition within this ligand class can comprise:
or a combination thereof.
In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, each N represents a nitrogen substituted aromatic group, each E represents an optional linking atom, such as, for example, carbon or oxygen, and each C represents an aromatic group. Specific examples of inventive composition within this ligand class can comprise:
or a combination thereof.
In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, each N represents a nitrogen substituted aromatic group, each E represents an optional linking atom, such as, for example, carbon or oxygen, and each C represents an aromatic group. Specific examples of inventive composition within this ligand class can comprise:
or a combination thereof.
In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, N represents a nitrogen substituted aromatic group, each E represents an optional linking atom, such as, for example, carbon or oxygen, and each C represents an aromatic group. Specific examples of inventive composition within this ligand class can comprise:
or a combination thereof.
In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, N represents a nitrogen substituted aromatic group, each E represents an optional linking atom, such as, for example, carbon or oxygen, and each C represents an aromatic group. A specific example of an inventive composition within this ligand class can comprise:
In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, each N represents a nitrogen substituted aromatic group, each E represents an optional linking atom, such as, for example, carbon or oxygen, and C represents an aromatic group. Specific examples of inventive compositions within this ligand class can comprise:
or a combination thereof.
In one aspect, the inventive composition can be represented by the general formula:
wherein Pd represents palladium, each N represents a nitrogen substituted aromatic group, each E represents an optional linking atom, such as, for example, carbon or oxygen, and C represents an aromatic group. A specific example of an inventive composition within this ligand class can comprise:
In another aspect, the compounds of the present invention are represented by the formula:
In the above formula, each R1 and R2 in (R1)2 and (R2)2 independently represents hydrogen, optionally substituted C1-C4 alkyl, halogen, hydroxyl, amino, nitro, or thiol; Y1a represents O, S, NR4a, wherein R4a represents optionally substituted C1-C4 alkyl; Si(R4b)2, wherein each R4b in (R4b)2 independently represents optionally substituted C1-C4 alkyl; or C(R4c)2, wherein each R4c in (R4c)2 represents hydrogen or optionally substituted C1-C4 alkyl; n is an integer 0 or 1; Y1b, when present, represents O, S, NR5a, wherein R5a represents optionally substituted C1-C4 alkyl; Si(R5b)2, wherein each R5b in (R5b)2 independently represents optionally substituted C1-C4 alkyl; or C(R5c)2, wherein each R5c in (R5c)2 represents hydrogen or optionally substituted C1-C4 alkyl; each of Y2a, Y2b, Y2c, and Y2d independently represents N, NR6a, or CR6b, wherein each of R6a and R6b independently represents hydrogen, optionally substituted C1-C4 alkyl, halogen, hydroxyl, amino, nitro, or thiol; each of Y3a, Y3b, Y3c, Y3d, Y3e, Y4a, Y4b, Y4c, and Y4d independently represents N, O, S, NR6a, CR6b, wherein each of R6a and R6b independently represents hydrogen or optionally substituted C1-C4 alkyl; or Z(R6c)2, wherein Z is C or Si, and wherein each R6c in (R6c)2 independently represents hydrogen or optionally substituted C1-C4 alkyl; m is an integer 1 or 2; wherein the open dotted circle indicates partial or full unsaturation of the ring with which it is associated.
In one embodiment of the formula above, if m is 1, each of Y2a and Y2d is CH and each of Y2b and Y2c is N, then at least one of Y4a, Y4b, Y3a, or Y3d is not N. For example, according to this embodiment, the following compound is not included in the above formula:
As can be seen in the preceding example above, m is 1, each of Y2a and Y2d is CH and each of Y2b and Y2c is N; however, each of Y4a, Y4b, Y3a, or Y3d is N. It follows that the preceding example, according to this embodiment, is not included within the general formula above. In the practice of this embodiment, similar analysis can be used to determine whether or not a compound is or is not included within the general formula above.
In a further embodiment of the general formula above, if n is 0, m is 2, each of Y2a and Y2d is CH, and each of Y2b and Y2c is N, then at least one of Y3b or Y3c is not N. For example, according to this embodiment, the following compound is not included in the above formula:
As can be seen in the preceding example above, n is 0, m is 2, each of Y2a and Y2d is CH, and each of Y2b and Y2c is N. However, each of Y3b and Y3c is N. It follows that the preceding example, according to this embodiment, is not included within the general formula above. Once more, in the practice of this embodiment, similar analysis can be used to determine whether or not a compound is or is not included within the general formula above.
In one embodiment of the general formula above, the compound is represented by the formula:
Non-limiting examples of specific embodiments within this formula include:
In another embodiment of the general formula above, the compound is represented by the formula:
Non-limiting examples of specific embodiments within this formula include:
In another embodiment of the general formula above, the compound is represented by the formula:
Non-limiting examples of specific embodiments within this formula include:
In another embodiment of the general formula above, the compound is represented by the formula:
Non-limiting examples of specific embodiments within this formula include:
In another embodiment of the general formula above, the compound is represented by the formula:
Non-limiting examples of specific embodiments within this formula include:
In another embodiment of the general formula above, the compound is represented by the formula:
Non-limiting examples of specific embodiments within these formula include:
In other aspects, any one or more of the general formulas and/or specific examples recited herein can be excluded from the invention. For example, in one aspect, the formula
is not included in the present invention.
The compounds of the invention can be made using a variety of methods. In one embodiment, wherein Y1a is O, the compounds can be provided according to Scheme 1.
With reference to Scheme 1, step “a” can be accomplished, for example, by using a catalytic amount of a coupling reagent, such as Cu2O, which couples alcohols, particularly phenols, with halogenated phenyl groups. The variable “X” in Scheme 1 above represents a halogen (i.e., Cl, F, I, Br), and is preferably I when used in conjunction with Scheme 1.
Each side of a ligand which complexes a metal can be made independently using a variety of methods, which, in one aspect, depend on whether Y3a is N or C. With reference to Scheme 2 below, when Y4a is N, the precursor can, in one aspect, be provided according to Scheme 2(A), wherein a halogenated phenyl compound is reacted with a pyrazole, imadazole, 1H-1,2,3-triazole, 1H-tetrazole, or 2H-pentazole. In such an aspect, the halogenated phenyl compound can comprise any halogen (X), including Cl, Br, F, or I, but is preferably I, which is typically more reactive in a coupling reaction. The halogenated phenyl compound and corresponding pyrazole, imadazole, 1H-1,2,3-triazole, 1H-tetrazole, or 2H-pentazole can be coupled using a metallic and/or organometallic coupling agent, such as, for example, Cu2O. During such a coupling reaction, it can, in one aspect, be advantageous to include an acid scavenger, such as, for example, syn-2-pyridinealdoxime, in a small molar ratio, for example, about 20 mol %.
In another aspect, when Y4a is C, a different protocol can be used to provide the precursor. With reference to Scheme 2(B) below, a halogenated phenyl, as discussed above can be reacted with a tetrazole, 1,2,3-triazole, pyrazole, or pyrrole to achieve a carbon-carbon bond coupling, as opposed to a carbon-nitrogen bond coupling as shown in Scheme 2(A). In one aspect, the carbon-carbon bond coupling can also be achieved using an organometallic catalyst, such as, for example, a Pd(II) catalyst (e.g., Pd(OAc)2) in a small molar ratio. In one aspect, such an organometallic catalyst can optionally be used together with an excess of a salt mixture, such as KI and/or CuI. As one of skill in the art can appreciate, when employing each of the coupling reactions shown in Scheme 2, it can, in various aspects, be advantageous to perform the reactions in a dry atmosphere, for example under argon, or even in a dry box to minimize and/or avoid moisture or oxygen inclusion.
In one aspect, the compounds of the invention can be useful in a variety of optical applications. When utilized as light emitting materials, the inventive compounds can be useful in organic light emitting diodes (OLED)s, luminescent devices and displays, and/or other light emitting devices. With reference to
The emission (and absorption) profile of the compounds can be tuned by varying the structure of the ligand surrounding the metal center. For example, compounds having a ligand with electron withdrawing substituents can, in one aspect, generally exhibit different optical properties, including emission and absorption, than compounds having a ligand with electron donating substituents. Generally, a chemical structural change can affect the electronic structure of the compound, thereby affecting the absorption and emission properties of the compound. Thus, the compounds of the present invention can be tailored or tuned to a specific application that desires a particular emission or absorption characteristic. One of skill in the art, in possession of this disclosure, could readily design and/or select an appropriate multidentate palladium compound, in accordance with the various aspects described herein, to use in a particular application.
In one embodiment, the compounds can be used in an OLED.
In such an embodiment, the layer of light processing material 108 can comprise one or more compounds of the present invention optionally together with a host material. The host material, if present, can be any suitable host material known in the art. The emission color of an OLED can be determined by the emission energy (optical energy gap) of the light processing material 108, which as discussed above can be tuned by tuning the electronic structure of the emitting compounds and/or the host material. Both the hole-transporting material in the HTL layer 106 and the electron-transporting material(s) in the ETL layer 110 can comprise any suitable hole-transporter known in the art. A selection of which is well within the purview of those skilled in the art.
It will be apparent that the compounds of the present invention can exhibit phosphorescence. Phosphorescent OLEDs (i.e., OLEDs with phosphorescent emitters) typically have higher device efficiencies that other OLEDs, such as fluorescent OLEDs. Light emitting devices based on electrophosphorescent emitters are described in more detail in WO2000/070655 to Baldo et al., which is incorporated herein by this reference for its teaching of OLEDs, and in particular phosphorescent OLEDs.
The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.), but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in ° C. or is at ambient temperature, and pressure is at or near atmospheric.
Under a nitrogen atmosphere, a pressure vessel was charged with a magnetic stir bar, resorcinol (110 mmol), 2-bromopyridine (100 mmol), 1-methylimidazole (5 mmol), and potassium carbonate (200 mmol). Pyridine (80 mL) was added and bubbled with nitrogen for 20 minutes before copper(I) iodide (10 mmol) was added and bubbled 10 minutes further. The vessel was sealed and heated to 140° C. while stirring. After 2 days, the solution was allowed to cool. The solids were filtered off and rinsed with a 50:50 mixture of toluene and methanol. The filtrate was reduced by rotary evaporation and 150 ml of water containing 10 mL glacial acetic acid was added and shaken vigorously. The water was decanted off and 50 mL of DCM was added, forming an off white precipitate which was collected by vacuum filtration and dried with ether, resulting in the pure product 3-(pyridin-2-yloxy)phenol with a 55% yield. 1H NMR (CDCl3): 5.98 (s, 1H), 6.59 (s, 1H), 6.62-6.69 (m, 2H), 6.94 (d, 1H), f 7.02 (dd, 1H), 7.23 (vt, 1H), 7.70 (dd, 1H), 8.23 (b, 1H)
Under a nitrogen atmosphere, a pressure vessel was charged with a magnetic stir bar, 3-(pyridin-2-yloxy)phenol (50 mmol), 2,6-dibromopyridine (50 mmol), 1-methylimidazole (25 mmol), and potassium carbonate (100 mmol). Toluene (80 mL) was added and bubbled with nitrogen for 20 minutes before copper(I) iodide (5 mmol) was added and the solution bubbled for 10 minutes further. The vessel was sealed and heated to 140° C. while stirring. After 2 days, the solution was allowed to cool and the solids were filtered off and rinsed with dichloromethane. The filtrate was added to a separatory funnel containing DCM and water. The water phase was washed 3 times with 75 mL DCM, and the combined organic layers were washed once with pure water. The organic layer was collected, dried with magnesium sulfate, filtered, and the filtrate reduced by rotary evaporation. The resulting oil was purified by column chromatography using DCM over silica resulting in the pure product 2-(3-(3-bromophenoxy)phenoxy)pyridine with a 60% yield. 1H NMR (CDCl3): 6.80-6.85 (m, 2H), 6.91 (s, 1H), 6.94 (s, 1H), 6.97-7.03 (m, 2H), 7.19 (vt, 1H), 7.21-7.24 (m, 2H), 7.36 (vt, 1H), 7.70 (dd, 1H), 8.21 (dd, 1H).
Under a nitrogen atmosphere, an oven dried three neck flask was charged with a magnetic stir bar, 2-(3-(3-bromophenoxy)phenoxy) (10 mmol), and 2-(tripropylstannyl)pyridine (10 mmol). Dry toluene (100 mL) was added and bubbled with nitrogen for 20 minutes before Tetrakis(triphenylphosphine)palladium(0) (0.5 mmol) was added, bubbled 10 minutes further, and brought to reflux for 2 days. After cooling, the contents of the flask were filtered, the liquid reduced by rotary evaporation, and the resulting oil was purified by column chromatography using DCM over silica to yield the pure product 2-(3-(3-(pyridin-2-yl)phenoxy)phenoxy)pyridine with a 65% yield. 1H NMR (CDCl3): 6.84 (vt, 1H), 6.85-6.89 (m, 2H), 6.91 (d, 1H), 6.98 (dd, 1H), 7.11 (dd, 1H), 7.24 (dd, 1H), 7.34 (vt, 1H), 7.44 (vt, 1H), 7.66-7.78 (m, 5H), 8.19 (dd, 1H), 8.67 (dd, 1H).
A mixture of 2-(3-(3-(pyridin-2-yl)phenoxy)phenoxy)pyridine (1 mmol), K2PdCl4 (1 mmol), and acetic acid (10 mL) was refluxed for 3 days. The mixture was allowed to cool to room temperature. The resulting white complex was filtered off and washed with H2O, MeOH, and Et2O, and dried under vacuum to 2-(3-(pyridin-2-yl)phenoxy)-6-(pyridin-2-yloxy)phenyl]Pd(II). The product was purified by sublimation for further testing.
The present application is a Continuation of U.S. patent application Ser. No. 14/145,461, filed Dec. 31, 2013, now U.S. Pat. No. 9,382,273, which is a Continuation of U.S. patent application Ser. No. 13/695,337, filed Mar. 13, 2013, now abandoned, which claims priority to and is a U.S. National Phase Application of International Application No. PCT/US2011/034776, filed May 2, 2011, which claims priority to U.S. Patent Application No. 61/329,684, filed Apr. 30, 2010, all of which application are incorporated herein fully by this reference.
Number | Name | Date | Kind |
---|---|---|---|
4769292 | Tang et al. | Sep 1988 | A |
5707745 | Forrest et al. | Jan 1998 | A |
5844363 | Gu et al. | Dec 1998 | A |
6200695 | Arai et al. | Mar 2001 | B1 |
6303238 | Thompson et al. | Oct 2001 | B1 |
6780528 | Tsuboyama et al. | Aug 2004 | B2 |
7002013 | Chi et al. | Feb 2006 | B1 |
7037599 | Culligan et al. | May 2006 | B2 |
7279704 | Walters et al. | Oct 2007 | B2 |
7332232 | Ma et al. | Feb 2008 | B2 |
7442797 | Itoh et al. | Oct 2008 | B2 |
7501190 | Ise | Mar 2009 | B2 |
7655322 | Forrest et al. | Feb 2010 | B2 |
7947383 | Ise et al. | May 2011 | B2 |
8389725 | Li et al. | Mar 2013 | B2 |
8617723 | Stoessel | Dec 2013 | B2 |
8816080 | Li et al. | Aug 2014 | B2 |
8871361 | Xia et al. | Oct 2014 | B2 |
8927713 | Li et al. | Jan 2015 | B2 |
8946417 | Li et al. | Feb 2015 | B2 |
9059412 | Zeng et al. | Jun 2015 | B2 |
9224963 | Li et al. | Dec 2015 | B2 |
9238668 | Li et al. | Jan 2016 | B2 |
9312505 | Brooks et al. | Apr 2016 | B2 |
9324957 | Li et al. | Apr 2016 | B2 |
9382273 | Li | Jul 2016 | B2 |
9385329 | Li et al. | Jul 2016 | B2 |
9425415 | Li et al. | Aug 2016 | B2 |
9461254 | Tsai et al. | Oct 2016 | B2 |
9550801 | Li et al. | Jan 2017 | B2 |
9617291 | Li et al. | Apr 2017 | B2 |
20020068190 | Tsuboyama et al. | Jun 2002 | A1 |
20030062519 | Yamazaki et al. | Apr 2003 | A1 |
20030186077 | Chen | Oct 2003 | A1 |
20050170207 | Ma et al. | Aug 2005 | A1 |
20050260446 | Mackenzie et al. | Nov 2005 | A1 |
20060073359 | Ise et al. | Apr 2006 | A1 |
20060094875 | Itoh et al. | May 2006 | A1 |
20060202197 | Nakayama et al. | Sep 2006 | A1 |
20060210831 | Sano et al. | Sep 2006 | A1 |
20060263635 | Ise | Nov 2006 | A1 |
20060286406 | Igarashi et al. | Dec 2006 | A1 |
20070057630 | Nishita et al. | Mar 2007 | A1 |
20070059551 | Yamazaki | Mar 2007 | A1 |
20070082284 | Stoessel et al. | Apr 2007 | A1 |
20070103060 | Itoh et al. | May 2007 | A1 |
20080001530 | Ise et al. | Jan 2008 | A1 |
20080036373 | Itoh et al. | Feb 2008 | A1 |
20080054799 | Satou | Mar 2008 | A1 |
20080079358 | Satou | Apr 2008 | A1 |
20080241518 | Satou et al. | Oct 2008 | A1 |
20080241589 | Fukunaga et al. | Oct 2008 | A1 |
20090026936 | Satou et al. | Jan 2009 | A1 |
20090026939 | Kinoshita et al. | Jan 2009 | A1 |
20090032989 | Karim et al. | Feb 2009 | A1 |
20090039768 | Igarashi et al. | Feb 2009 | A1 |
20090079340 | Kinoshita et al. | Mar 2009 | A1 |
20090128008 | Ise et al. | May 2009 | A1 |
20090218561 | Kitamura et al. | Sep 2009 | A1 |
20090261721 | Murakami et al. | Oct 2009 | A1 |
20090267500 | Kinoshita et al. | Oct 2009 | A1 |
20100000606 | Thompson et al. | Jan 2010 | A1 |
20100013386 | Thompson et al. | Jan 2010 | A1 |
20100171111 | Takada et al. | Jul 2010 | A1 |
20120095232 | Li et al. | Apr 2012 | A1 |
20120181528 | Takada et al. | Jul 2012 | A1 |
20120215001 | Li et al. | Aug 2012 | A1 |
20120223634 | Xia et al. | Sep 2012 | A1 |
20120302753 | Li | Nov 2012 | A1 |
20130048963 | Beers et al. | Feb 2013 | A1 |
20130168656 | Tsai et al. | Jul 2013 | A1 |
20130203996 | Li et al. | Aug 2013 | A1 |
20130237706 | Li | Sep 2013 | A1 |
20130341600 | Lin et al. | Dec 2013 | A1 |
20140014922 | Lin et al. | Jan 2014 | A1 |
20140027733 | Zeng et al. | Jan 2014 | A1 |
20140084261 | Brooks et al. | Mar 2014 | A1 |
20140114072 | Li et al. | Apr 2014 | A1 |
20140203248 | Zhou et al. | Jul 2014 | A1 |
20140330019 | Li et al. | Nov 2014 | A1 |
20140364605 | Li et al. | Dec 2014 | A1 |
20150008419 | Li | Jan 2015 | A1 |
20150028323 | Xia et al. | Jan 2015 | A1 |
20150069334 | Xia et al. | Mar 2015 | A1 |
20150105556 | Li et al. | Apr 2015 | A1 |
20150162552 | Li et al. | Jun 2015 | A1 |
20150194616 | Li et al. | Jul 2015 | A1 |
20150228914 | Li et al. | Aug 2015 | A1 |
20150287938 | Li et al. | Oct 2015 | A1 |
20150318500 | Li | Nov 2015 | A1 |
20150349279 | Li et al. | Dec 2015 | A1 |
20160028028 | Li et al. | Jan 2016 | A1 |
20160043331 | Li et al. | Feb 2016 | A1 |
20160072082 | Brooks et al. | Mar 2016 | A1 |
20160133862 | Li et al. | May 2016 | A1 |
20160197291 | Li | Jul 2016 | A1 |
20160285015 | Li et al. | Sep 2016 | A1 |
20160359120 | Li | Dec 2016 | A1 |
20160359125 | Li et al. | Dec 2016 | A1 |
20170012224 | Li et al. | Jan 2017 | A1 |
20170047533 | Li et al. | Feb 2017 | A1 |
20170066792 | Li et al. | Mar 2017 | A1 |
20170069855 | Li | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
1777663 | May 2006 | CN |
1894269 | Jan 2007 | CN |
101142223 | Mar 2008 | CN |
101667626 | Mar 2010 | CN |
102449108 | May 2012 | CN |
102892860 | Jan 2013 | CN |
102971396 | Mar 2013 | CN |
104232076 | Dec 2014 | CN |
104693243 | Jun 2015 | CN |
105367605 | Mar 2016 | CN |
105418591 | Mar 2016 | CN |
1808052 | Jul 2007 | EP |
1874893 | Jan 2008 | EP |
1874894 | Jan 2008 | EP |
1919928 | May 2008 | EP |
2036907 | Mar 2009 | EP |
2096690 | Sep 2009 | EP |
2417217 | Feb 2012 | EP |
2112213 | Jul 2012 | EP |
2711999 | Mar 2014 | EP |
2005267557 | Sep 2005 | JP |
200531073 | Nov 2005 | JP |
2006047240 | Feb 2006 | JP |
2006232784 | Sep 2006 | JP |
2006242080 | Sep 2006 | JP |
2006242081 | Sep 2006 | JP |
2006256999 | Sep 2006 | JP |
2006257238 | Sep 2006 | JP |
2006261623 | Sep 2006 | JP |
2006290988 | Oct 2006 | JP |
2006313796 | Nov 2006 | JP |
2006332622 | Dec 2006 | JP |
2006351638 | Dec 2006 | JP |
2007019462 | Jan 2007 | JP |
2007042875 | Feb 2007 | JP |
2007053132 | Mar 2007 | JP |
2007066581 | Mar 2007 | JP |
2007073620 | Mar 2007 | JP |
2007073845 | Mar 2007 | JP |
2007073900 | Mar 2007 | JP |
2007080593 | Mar 2007 | JP |
2007080677 | Mar 2007 | JP |
2007088105 | Apr 2007 | JP |
2007088164 | Apr 2007 | JP |
2007096259 | Apr 2007 | JP |
2007110067 | Apr 2007 | JP |
2007110102 | Apr 2007 | JP |
2007258550 | Oct 2007 | JP |
2007324309 | Dec 2007 | JP |
2008010353 | Jan 2008 | JP |
2008091860 | Apr 2008 | JP |
2008103535 | May 2008 | JP |
2008108617 | May 2008 | JP |
2008109085 | May 2008 | JP |
2008109103 | May 2008 | JP |
2008160087 | Jul 2008 | JP |
2008198801 | Aug 2008 | JP |
2008270729 | Nov 2008 | JP |
2008270736 | Nov 2008 | JP |
2009016184 | Jan 2009 | JP |
2009016579 | Jan 2009 | JP |
2009032977 | Feb 2009 | JP |
2009032988 | Feb 2009 | JP |
2009266943 | Nov 2009 | JP |
2009267171 | Nov 2009 | JP |
2009267244 | Nov 2009 | JP |
2009272339 | Nov 2009 | JP |
2009283891 | Dec 2009 | JP |
2010135689 | Jun 2010 | JP |
2012222255 | Nov 2012 | JP |
2013525436 | Jun 2013 | JP |
5604505 | Oct 2014 | JP |
2014221807 | Nov 2014 | JP |
2015081257 | Apr 2015 | JP |
1020060115371 | Nov 2006 | KR |
2007061830 | Jun 2007 | KR |
2007112465 | Nov 2007 | KR |
1020130043460 | Apr 2013 | KR |
200701835 | Jan 2007 | TW |
201307365 | Feb 2013 | TW |
201710277 | Mar 2017 | TW |
WO0070655 | Nov 2000 | WO |
WO2004003108 | Jan 2004 | WO |
WO2004108857 | Dec 2004 | WO |
WO2005042444 | May 2005 | WO |
WO2005042550 | May 2005 | WO |
WO2006033440 | Mar 2006 | WO |
WO2006098505 | Sep 2006 | WO |
WO2006115299 | Nov 2006 | WO |
WO2006115301 | Nov 2006 | WO |
WO2007034985 | Mar 2007 | WO |
WO2007069498 | Jun 2007 | WO |
WO2008066192 | Jun 2008 | WO |
WO2008066195 | Jun 2008 | WO |
WO2008066196 | Jun 2008 | WO |
WO2008117889 | Oct 2008 | WO |
WO2008123540 | Oct 2008 | WO |
WO2009017211 | Feb 2009 | WO |
WO2010118026 | Oct 2010 | WO |
WO2011137429 | Nov 2011 | WO |
WO2011137431 | Nov 2011 | WO |
WO2012112853 | Aug 2012 | WO |
WO2012142387 | Oct 2012 | WO |
WO2012162488 | Nov 2012 | WO |
WO2012163471 | Dec 2012 | WO |
WO2013130483 | Sep 2013 | WO |
WO2014016611 | Jan 2014 | WO |
WO2014031977 | Feb 2014 | WO |
WO2014047616 | Mar 2014 | WO |
WO2014109814 | Jul 2014 | WO |
WO2015027060 | Feb 2015 | WO |
WO2015131158 | Sep 2015 | WO |
WO2016025921 | Feb 2016 | WO |
WO2016029186 | Feb 2016 | WO |
Entry |
---|
Wong; Journal of Organometallic Chemistry 2009, 694, 2644-2647. |
Marc Lepeltier et al., “Efficient blue green organic light-emitting devices based on a monofluorinated heteroleptic ridium(III) complex,” Synthetic Metals, vol. 199, 2015, pp. 139-146. |
Stefan Bernhard, “The First Six Years: A Report,” Department of Chemistry, Princeton University, May 2008, 11 pages. |
Non-Final Rejection dated Jul. 1, 2013 for U.S. Appl. No. 13/695,337, filed May 2, 2011 (Applicants—Arizona Technology Enterprises (AZTE); Inventors—Li et al.; (28 pages). |
Preliminary Amendment filed on Oct. 30, 2012 for U.S. Appl. No. 13/695,337, filed May 2, 2011 (Applicants—Arizona Technology Enterprises (AZTE); Inventors—Li et al.; (4 pages). |
International Preliminary Report on Patentability dated Nov. 6, 2012 for Intl. Pat. App. No. PCT/US2011/034776 filed May 2, 2011 and published as WO 2011/137429 dated Nov. 3, 2011 (Applicants—Arizona Board of Regents Acting for and on behalf of Arizona State University; Inventors—Li et al.; (6 pages). |
International Search Report dated Feb. 9, 2012 for Intl. Pat. App. No. PCT/US2011/034776 filed May 2, 2011 and published as WO 2011/137429 dated Nov. 3, 2011 (Applicants—Arizona Board of Regents Acting for and on behalf of Arizona State University; Inventors—Li et al.; (3 pages). |
Written Opinion dated Feb. 9, 2012 for Intl. Pat. App. No. PCT/US2011/034776 filed May 2, 2011 and published as WO 2011/137429 dated Nov. 3, 2011 (Applicants—Arizona Board of Regents Acting for and on behalf of Arizona State University; Inventors—Li et al.; (5 pages). |
First Office Action (and English Translation) for Chinese Application No. 201180023966.1, dated Feb. 7, 2014, 14 pages. |
Second Office Action (and English Translation) for Chinese Application No. 201180023966.1, dated Dec. 22, 2014, 8 pages. |
Official Action (and English Translation) issued by the Japanese Patent Office dated Mar. 11, 2015 for Pat. App. No. 2013-508082 filed May 2, 2011, 16 pages. |
Third Office Action (and English Translation) for Chinese Application No. 201180023966.1, dated Sep. 1, 2015, 7 pages. |
Final Rejection (and English Translation) issued by the Japanese Patent Office dated Oct. 30, 2015 for Pat. App. No. 2013-508082, 6 pages. |
Wong; Challenges in organometallic research—Great opportunity for solar cells and OLEDs, Journal of Organometallic Chemistry, 2009, 694, 2644-2647. |
JP2009267244, English Translation from EPO, dated Nov. 2009, 80 pages. |
JP2010135689, English translation from EPO, dated Jun. 2010, 95 pages. |
Chi et al.; Transition-metal phosphors with cyclometalating ligands: fundamentals and applications, Chemical Society Reviews, vol. 39, No. 2, Feb. 2010, pp. 638-655. |
Dorwald; Side Reactions in Organic Synthesis: A Guide to Successful Synthesis Design, 2005, Wiley-VCH. |
Satake et al., “Interconvertible Cationic and Neutral Pyridinylimidazole η3-Allylpalladium Complexes. Structural Assignment by 1H, 13C, and 15N NMR and X-ray Diffraction”, Organometallics, vol. 18, No. 24, 1999, pp. 5108-5111. |
Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, Sep. 10, 1998, pp. 151-154. |
Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Applied Physics Letters, vol. 75, No. 1, Jul. 5, 1999, pp. 4-6. |
Ying Yang et al., “Induction of Circularly Polarized Electroluminescence from an Achiral Light-Emitting Polymer via a Chiral Small-Molecule Dopant,” Advanced Materials, vol. 25, Issue 18, May 14, 2013, pp. 2624-2628. |
Ayan Maity et al., “Room-temperature synthesis of cyclometalated iridium(III) complexes; kinetic isomers and reactive functionalities” Chem. Sci., vol. 4, pp. 1175-1181 (2013). |
Shiro Koseki et al., “Spin-orbit coupling analyses of the geometrical effects on phosphorescence in Ir(ppy)3 and its derivatives”, J. Phys. Chem. C, vol. 117, pp. 5314-5327 (2013). |
Ji Hyun Seo et al., “Efficient blue-green organic light-emitting diodes based on heteroleptic tris-cyclometalated iridium (III) complexes”. Thin Solid Films, vol. 517, pp. 1807-1810 (2009). |
Barry O'Brien et al.: White organic light emitting diodes using Pt-based red, green and blue phosphorescent dopants. Proc. SPIE, vol. 8829, pp. 1-6, Aug. 25, 2013. |
Vanessa Wood et al., “Colloidal quantum dot light-emitting devices,” Nano Reviews , vol. 1, 2010, 8 pages. |
Glauco Ponterini et al., “Comparison of Radiationless Decay Processes in Osmium and Platinum Porphyrins,” J. Am. Chem. Soc., vol. 105, No. 14, 1983, pp. 4639-4645. |
Shizuo Tokito et al., “Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices,” Applied Physics Letters, vol. 83, No. 3, Jul. 21, 2003, pp. 569-571. |
Brian W. D'Andrade et al., “Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices,” Adv. Mater. , vol. 14, No. 2, Jan. 16, 2002, pp. 147-151. |
Dileep A. K. Vezzu et al., “Highly Luminescent Tetradentate Bis-Cyclometalated Platinum Complexes: Design, Synthesis, Structure, Photophysics, and Electroluminescence Application,” Inorg. Chem., vol. 49, 2010, pp. 5107-5119. |
Evan L. Williams et al., “Excimer-Based White Phosphorescent Organic Light Emitting Diodes with Nearly 100% Internal Quantum Efficiency,” Adv. Mater., vol. 19, 2007, pp. 197-202. |
Shih-Chun Lo et al., “High-Triplet-Energy Dendrons: Enhancing the Luminescence of Deep Blue Phosphorescent Iridium(III) Complexes,” J. Am. Chem. Soc., vol. 131, 2009, pp. 16681-16688. |
Jan Kalinowski et al., “Light-emitting devices based on organometallic platinum complexes as emitters,” Coordination Chemistry Reviews, vol. 255, 2011, pp. 2401-2425. |
Ke Feng et al., “Norbornene-Based Copolymers Containing Platinum Complexes and Bis(carbazolyl)benzene Groups in Their Side-Chains,” Macromolecules, vol. 42, 2009, pp. 6855-6864. |
Chi-Ming Che et al., “Photophysical Properties and OLED Applications of Phosphorescent Platinum(II) Schiff Base Complexes,” Chem. Eur. J., vol. 16, 2010, pp. 233-247. |
Stephen R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature, vol. 428, Apr. 29, 2004, pp. 911-918. |
Nicholas R. Evans et al., “Triplet Energy Back Transfer in Conjugated Polymers with Pendant Phosphorescent Iridium Complexes,” J. Am. Chem. Soc., vol. 128, 2006, pp. 6647-6656. |
Xiaofan Ren et al., “Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices,” Chem. Mater., vol. 16, 2004, pp. 4743-4747. |
Dorwald; “Side Reactions in Organic Synthesis: A Guide to Successful Synthesis Design,” Chapter 1, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Wienheim, 32 pages. |
Murakami; JP 2007258550, English machine translation from EPO, dated Oct. 4, 2007. 80 pages. |
Murakami; JP 2007324309, English machine translation from EPO, dated Dec. 13, 2007, 89 pages. |
Number | Date | Country | |
---|---|---|---|
20170005278 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
61329684 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14145461 | Dec 2013 | US |
Child | 15202058 | US | |
Parent | 13695337 | US | |
Child | 14145461 | US |