Synthetic aperture radar imaging apparatus and methods for moving targets

Information

  • Patent Grant
  • 11378682
  • Patent Number
    11,378,682
  • Date Filed
    Wednesday, May 23, 2018
    6 years ago
  • Date Issued
    Tuesday, July 5, 2022
    a year ago
Abstract
A synthetic aperture radar (SAR) system may employ SAR imaging to advantageously estimate or monitor a transit characteristic (e.g., velocity, acceleration) of a vehicle, for example a ground based vehicle or water based vehicle. A dual-beam SAR antenna illuminate a moving target with a first radar beam and a second radar beam at an angular offset relative to the first radar beam. Pulses may be transmitted and backscattered energy received simultaneously by the SAR transceiver via the first and second radar beams. A SAR data processor may generate a first image from the first radar beam and a second image from the second radar beam, co-registering the first and second images, comparing the location of the moving target in the first and second images, and estimate a velocity of the moving target based at least in part on the angular offset.
Description
BACKGROUND
Technical Field

The present application relates generally to synthetic aperture radar (SAR) and, more particularly, to operating modes suitable for estimating the velocity of a moving target.


Description of the Related Art

A synthetic aperture radar (SAR) is an imaging radar. The SAR exploits the relative motion of the radar and a target of interest to obtain high azimuthal resolution. The SAR is typically flown on an aircraft, a spacecraft, unmanned aerial vehicle (UAV) such as a drone, or another suitable platform. The target of interest is typically on the ground (e.g. on land, water, ice or snow), and can be a point target or a distributed target. The SAR can be a component of a SAR imaging system, the system also including at least one of data processing and data distribution components.


In conventional operation of a SAR imaging system, the system is tasked to obtain images of a target or a swath. Data is collected on-board the platform. In the case of a spaceborne SAR, the data is collected on-board the spacecraft, and either processed on-board the spacecraft and downlinked to the ground, or downlinked and processed on the ground to generate the images. The images are distributed to the user, typically via a network. In some implementations, the main elements of a space-borne SAR platform can include:


Satellite Platform: includes the following subsystems and units: Structure, Power, On-board Data Handling, a Payload Data Handling Unit, Telemetry and Telecommands;

    • Communications (TT&C), X-Band High-rate Downlink, Attitude and Orbit Control subsystem, Thermal Control, and Propulsion;
    • SAR Instrument; and/or
    • A SAR Processing Unit: performs onboard SAR data processing.


BRIEF SUMMARY

Some embodiments of SAR systems can incorporate the following advanced SAR features into a single SAR instrument:

    • a shared aperture;
    • multi-aperture (e.g., in one implementation, six apertures for a SAR operating at X-band, three apertures for a SAR operating at L-band);
    • digital beam-forming (with multiple beams in elevation and azimuth);
    • quad-polarization and compact polarization; and/or
    • modular multi-aperture technology with digital interfaces of SAR


Data.


In the case of a dual-band SAR, the SAR can have simultaneous dual-frequency capability (e.g., L-band and X-band).


SAR systems can include multiple digital and RF components. In some implementations, a SAR system includes a SAR antenna, sensor electronics, and Transmit Receive Modules (TRMs) mounted on an antenna panel.


A SAR Processing Unit (SPU) can be part of an On-Board Data Handling subsystem. The SPU may house processing boards, power boards, cabling, and an associated backplane. Each processing board in the SPU can include multiple ultra-high performance FPGA boards, for example, that can perform real-time processing tasks. The processing functions performed by the SPU can include the following:

    • on-board SAR Data Processing;
    • target detection; and/or
    • compression/packetization/encryption/forward error correction encoding for communications links.


A method of operation of a synthetic aperture radar (SAR) system to estimate the velocity of a moving target may be summarized as including a dual-beam SAR antenna, a SAR transceiver and a SAR data processor, the SAR transceiver communicatively coupled to the dual-beam SAR antenna and to the SAR data processor; the method including directing a first radar beam to illuminate the moving target in a region on a surface of the Earth by the dual-beam SAR antenna; directing a second radar beam to illuminate the moving target by the dual-beam SAR antenna, the second radar beam at an angular offset relative to the first radar beam; transmitting pulses and receiving backscattered energy simultaneously via the first and second radar beams by the SAR transceiver; generating, by the SAR data processor, a first image from the first radar beam and a second image from the second radar beam; co-registering the first and the second images by the SAR data processor; comparing, by the SAR data processor, the location of the moving target in the first image and the second image; and estimating, by the SAR data processor, a velocity of the moving target based at least in part on the angular offset. Directing a first radar beam to illuminate the moving target may include directing a forward-looking radar beam to illuminate the moving target, and directing a second radar beam to illuminate the moving target may include directing an aft-looking radar beam to illuminate the moving target. Directing a first radar beam to illuminate the moving target may include directing a radar beam comprising a main lobe of an antenna beam pattern to illuminate the moving target, and directing a second radar beam to illuminate the moving target may include directing a radar beam comprising a grating sidelobe of the antenna beam pattern to illuminate the moving target. Directing a radar beam including a main lobe of an antenna beam pattern to illuminate the moving target and directing a radar beam including a grating sidelobe of the antenna beam pattern to illuminate the moving target may include applying a phase ramp across an aperture of the dual-beam SAR antenna. Applying a phase ramp across an aperture of the dual-beam SAR antenna may include causing a magnitude of the grating sidelobe of the antenna beam pattern to be approximately the same as a magnitude of the main lobe of the antenna beam pattern.


The method may further include forming two or more elevation beams; and generating a SAR image with multi-looking in range. Transmitting pulses and receiving backscattered energy simultaneously via the first and second radar beams by the SAR transceiver may include transmitting pulses and receiving backscattered energy in a ScanSAR imaging mode.


A synthetic aperture radar (SAR) system may be summarized as including a SAR platform including at least one SAR antenna; and at least one processor; and at least one nontransitory processor-readable medium communicatively coupled to the at least one processor which stores at least one of processor-executable instructions or data which, when executed by the at least one processor, may cause the at least one processor to perform any of the above methods.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not necessarily drawn to scale, and some of these elements may be arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not necessarily intended to convey any information regarding the actual shape of the particular elements, and may have been solely selected for ease of recognition in the drawings.



FIG. 1 is a graph of an example dual-beam azimuth antenna pattern at L-band, in accordance with the systems and methods of the present application.



FIG. 2 is a graph of an example dual-beam azimuth antenna pattern at X-band, in accordance with the systems and methods of the present application.



FIG. 3 is a graph of relative performance of single-beam and dual-beam SAR systems, in accordance with the systems and methods of the present application.



FIG. 4 is a block diagram of an example SAR system, in accordance with the systems and methods of the present application.



FIG. 5 is an isometric view of a SAR antenna in the form of a planar phased array antenna assembly, in accordance with the systems and methods described in the present application.





DETAILED DESCRIPTION

Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its broadest sense, that is as meaning “and/or” unless the content clearly dictates otherwise.


The Abstract of the Disclosure provided herein is for convenience only and does not interpret the scope or meaning of the embodiments.


Different imaging modes for a SAR are described below. Particular emphasis is given to wide-swath and ultra-high resolution modes, surveillance modes that can be used for target detection, and experimental modes that include very small target detection and target velocity estimation modes. The surveillance and experimental modes can be used, in particular, for maritime surveillance, for example where the targets are ships.


SAR-XL Imaging Modes—StripMap Imaging and ScanSAR


StripMap imaging mode: SAR can use a single fixed beam with a single aperture to acquire a continuous image strip.


ScanSAR imaging mode: SAR can use electronic beam steering to periodically switch within a set of adjacent beams which are later processed into a wide continuous swath at a lower resolution as compared to StripMap.


In a dual-band SAR, StripMap image modes can be available in X-, L- or simultaneous X- and L-band, and, in some implementations, in a variety of transmit and receive polarizations including quad-polarization (HH, VV, HV, and VH, where H is horizontal polarization and V is vertical polarization). In StripMap modes, the image resolution typically varies from 1.0 m to 20 m, and the swath width typically varies from 7.5 km to 50 km, depending on the specific mode. These modes can provide high image quality in terms of conventional image quality metrics, e.g., NESZ (Noise Equivalent Sigma Zero), Range Ambiguity to Signal Ratio (RASR) and Azimuth Ambiguity to Signal Ratio (AASR).


A conventional ScanSAR mode typically uses multiple beams to get a wider swath width than the StripMap modes. The swath width can vary from 100 km to 500 km depending on incidence angle, with a 30 m resolution.


SAR Imaging Modes—Surveillance Modes


The flexibility of advanced SAR systems can enable the generation of application-specific modes unavailable in conventional less-advanced SAR systems. For example, enhanced ScanSAR modes can be tailored specifically for target detection (e.g., watercraft, ship, or vehicle detection), and can provide almost uniform target detection performance across an accessible area. For example, in the case of maritime surveillance, modes can be tailored specifically for ship detection, and can provide almost uniform target detection performance with a Minimum Detectable Ship Length (MDSL) of 25 m or better across an accessible area.


In some implementations, an advanced SAR system includes a dual-band SAR, i.e., a SAR operable to generate SAR images at two different frequency bands. In some implementations of a dual-band SAR, enhanced ScanSAR modes tailored specifically for target detection can include two L-band modes and three X-band modes that collectively can provide access to a ground range swath of between 150 km off-nadir to 575 km off-nadir.


In some implementations, L-band modes can be tailored for maritime surveillance and ship detection in near-range, and can utilize HV cross-polarization for improved clutter suppression covering incidence angles of 19.7 degrees to 45.2 degrees. HV cross-polarized images can be generated by including transmitting radar pulses in horizontal (H) polarization and receiving backscattered radar pulses in vertical (V) polarization. X-band modes can take advantage of additional X-band antenna gain and wider bandwidth. In an example implementation of a dual-band XL (X-band and L-band) SAR system, X-band modes can cover incidence angles from 31.0 degrees to 55.5 degrees. Examples of various target detection modes for a dual-band XL SAR are tabulated below in Table 1. Other suitable modes can be constructed.









TABLE 1







Example Dual-Band SAR Target Detection


ScanSAR Modes Characteristics
















Ground
Ground
Swath






Start
End
Width
Number



Band
Pol
(km)
(km)
(km)
of Beams

















SD Mode A
L-Band
HV
150
378
228
4


SD Mode B
L-Band
HV
200
410
210
5


SD Mode C
X-Band
VV
250
455
205
8


SD Mode D
X-Band
VV
300
533
233
8


SD Mode E
X-Band
VV
350
575
225
8









SAR beam modes can be tuned to suit a particular surveillance scenario. For example, modes can be tuned to suit maritime surveillance based at least in part on an understanding of the effects of different beam choices on the likely detectability of vessels in cluttered and noisy SAR imagery.


For example, a model can be built for ship detectability that may include inputs such as any one or more of the following:

    • frequency band (e.g., L or X);
    • polarization (HH, VV, HV or VH);
    • sea state (e.g., 3 or 5);
    • wind direction relative to beam (e.g., an angle between 0° to 90°);
    • incidence angle (e.g., from 20° to 60°);
    • K-distribution shape parameter (e.g., 4, as in RD-1);
    • effective number of independent looks (e.g., 2 or 4);
    • probability of false alarm (e.g., 10−9 or 10−6);
    • probability of detection (e.g., 90% or 80%); and/or
    • NESZ, azimuth and ground-range resolutions of the SAR beam(s) at the given incidence angle(s).


The output of the modeling can be, for example, a Minimum Detectable Ship Length (MDSL), for which the computed probability of detection is above a threshold value, and the backscattered power in a given frequency band and polarization is above a threshold value for the probability of false alarm of K-distributed sea clutter under ocean conditions specified in the inputs to the model.


Target Velocity Estimation Approach


In one example scenario, the systems and methods described in the present application can be used for maritime surveillance. The SAR system can use a wide-swath SAR imaging mode such as a ScanSAR mode, and can process the wide-swath SAR data, on-board or on the ground, to detect moving targets (e.g., ships and other watercraft) and estimate their velocity (e.g., speed and heading). In other scenarios, the systems and methods described in the present application can be used to detect land, snow, or ice-based targets, and estimate their velocity.


To estimate the velocity of watercraft, vehicles, and other moving targets, special beams can be developed within the SAR modes identified above. An operational approach for using these special beams can include a dual-beam SAR imaging approach for measuring target motion directly (i.e., from an analysis of the dual-beam SAR images).


In some implementations, a SAR antenna consists of multiple azimuth phase centers. Each of the multiple phase centers has sensor electronics that can control the phase of signals being fed to radiating elements of the SAR antenna. A phase ramp can be applied across an antenna aperture to steer an antenna beam. The extent to which the antenna beam can be steered can be limited by the beam pattern of a single antenna phase center. As the beam is steered towards the edge of the beam pattern of the single antenna phase center, a grating lobe can appear, and the grating lobe can become larger relative to the main lobe the more the beam is steered.


An azimuth beam can be steered to an angle at which the gain of the grating lobe is approximately the same magnitude as the gain of the main lobe, for example by steering the azimuth beam by a steering angle of one half of the beam width of a single azimuth phase center, as follows:

θ=0.5×0.886×λ/A

where λ is a wavelength of illumination, and A is an azimuth dimension of an azimuth phase center.


In one example implementation, at X-band, A=1 m, and θ=0.8°, and at L-band, A=2 m, and θ=3.0°. The grating lobe appears at the negative of this angle, and the separation between the beams is approximately twice this angle.


A SAR in dual-beam operation can transmit and receive simultaneously through both beams, albeit at half the antenna gain relative to a single-beam system. Data can be simultaneously received from both forward-looking and aft-looking beams, for example. The two beams can have an angular offset between one another. In one implementation, one beam is forward of a broadside direction relative to a ground track of the SAR and another beam is aft of the broadside direction. In one implementation, two beams are both forward of a broadside direction, one beam more forward than the other. In one implementation, two beams are both aft of a broadside direction, one beam more aft than the other. In some implementations, a first beam is in a broadside side direction and a second beam is either forward or aft of the first beam. In the present application, the most forward-looking beam of the two beams is referred to as a forward-looking beam, and the other beam of the two beams is referred to as an aft-looking beam.


A SAR processor can generate separate images from the SAR data received from each beam. When processing the SAR data from a first beam of the two beams, signals from a second beam of the two beams can appear as an interference to the first beam, but signals from the second beam will not focus at least in part because range walk in the second beam is in the opposite direction to range walk in the first beam. Range walk is an effect in which a moving target may straddle more than one range cell during a single coherent processing time interval.


Using a dual-beam approach described in the present application, an aft-looking beam can illuminate a region on the Earth's surface that overlaps at least a portion of a region illuminated by a forward-looking beam, at a later time than the at least a portion of the region was illuminated by the forward-looking beam. The images formed by the forward-looking and the aft-looking beams are offset in time from one another. In some implementations, the offset in time (also referred to in the present application as the time offset) can be several seconds. When the two images of the overlapping area are co-registered, and the locations of the same target in the overlapping area are compared, the time offset can be sufficient to provide information about the motion of a target that is detected in both images. For example, the two images can be co-registered and analyzed to determine an estimate of a velocity (e.g., speed and heading) of the target.


The systems and methods described in the present application can include forming one or more images of a target or region on the Earth's surface, for example, on land, water, snow or ice. Targets can include point targets and distributed targets. Targets can include stationary targets and moving targets. Targets can include vehicles, ships, submarines, and other man-made objects.



FIG. 1 is a graph 100 of an example dual-beam azimuth antenna pattern 102 at L-band, in accordance with the systems and methods of the present application.


At a slant range of approximately 500 km, an angular offset between the two beams of ±3.0° can correspond to a distance of approximately ±26 km. The SAR antenna on a spaceborne platform in a low Earth orbit can take approximately 7.2 s to travel that distance, during which time a target travelling at a speed of 10 m/s can travel approximately 72 m. The time offset can provide sufficient time to measure a speed and heading of the target.


An accuracy of a velocity estimate (denoted by σν), derived from a relative position shift in the SAR images, as a function of a positioning error σm, and a time offset T between the measurements, can be expressed as follows:

σν=√{square root over (2)}×σm/T


Accuracy of the measurement can depend, at least in part, on a SAR resolution, which can, in turn, depend on characteristics of a ScanSAR mode used to acquire the SAR data. For example, accuracy of the measurement can depend on the number of elevation beams used, and on use of multi-looking. In some implementations, a higher accuracy and improved results can be achieved by using range multi-looking.


Typically, a SAR with resolution (ρ) can be lead to a positioning error of:

σm=ρ/√{square root over (12)}


For example, an L-band ScanSAR mode with a resolution of 10 m can lead to a positioning error of approximately 2.9 m, and a velocity estimation error of approximately 0.6 m/s. The positioning error can be in the along-track and the across-track direction.


In some implementations, the positioning error can be improved. For example, a zero-padded Fast Fourier Transform (FFT) can be used, in some cases in combination with other processing methods, to improve the accuracy with which a target can be located by finding the location of a scattering center within a resolution cell.



FIG. 2 is a graph 200 of an example dual-beam azimuth antenna pattern 202 at X-band, in accordance with the systems and methods of the present application.


At a slant range of approximately 500 km, an angular offset between the two beams of ±0.8° can correspond to a distance of approximately ±7 km. The SAR antenna on a spaceborne platform in a low Earth orbit can take approximately 1.9 s to travel that distance, during which time a 10 m/s target can travel approximately 19 m.


An X-band ScanSAR mode with a resolution of 10 m can lead to a positioning error of approximately 2.9 m, and a velocity estimation error of approximately 2.2 m/s. In one implementation, the radial component of the velocity estimate is improved by fusing a velocity estimate derived using the technology described above with a radial velocity estimate derived from a conventional method such as Along-Track Interferometry (ATI).


While use of a dual-beam system, as described above, can result in a loss in antenna gain of 3 dB on both transmit and receive, the loss applies equally to both target and clutter. So, in the case of a clutter limited performance, there is no overall change to performance resulting from the 3 dB loss in antenna gain.


Though use of a dual-beam system, as described above, can increase a clutter level by a factor of two causing a 3 dB degradation, the degradation can be offset by other factors. For example, by using both beams of the dual-beam system to detect a target, a dual-beam system can have an improved false alarm rate. The false alarm can be improved by the dual-beam approach over conventional approaches by a factor of a square root. For example, if the single-beam false alarm rate is 10−10, the dual-beam false alarm rate can be of the order of 10−5 to achieve approximately the same overall false target rate. Similarly, the probability of detection for the dual-beam can be 0.95 to achieve a two-out-of-two detection probability of 0.9.



FIG. 3 is a graph 300 of relative performance of single-beam and dual-beam SAR systems, according to the present disclosure. Graph 300 includes a single-beam plot 302 of required radar cross-section (RCS) for a probability of detection of 0.9 versus ground range, and a dual-beam plot 304 of required radar cross-section (RCS) for a probability of detection of 0.9 versus ground range. Graph 300 can be generated by simulation, for example.


As shown in FIG. 3, an overall loss in detection of a dual-beam system (also referred to in the present application as a dual azimuth beam system) compared to a single-beam system (also referred to in the present application as a single azimuth beam system) can be of the order of 2 dB, in a clutter-limited case. The loss in detection can increase the Minimum Detectable Ship Length (MDSL) by approximately 25%. For example, in the case of a ScanSAR mode with a MDSL capability of 16 m with a single azimuth beam, performance can be degraded to a MDSL of 20 m with a dual azimuth beam. A benefit of a dual azimuth beam system is that it can provide a direct measurement of both target speed and heading.


Though in a noise-limited case a loss between single-beam and dual-beam can be of the order 4 dB, detection performance for the noise-limited case can be better than for a clutter-limited case, and the additional performance margin afforded by the better detection performance can generally be able to absorb the loss.


One approach to avoiding a performance penalty that could, for example, result in an increase in the MDSL by 25%, is to adjust the characteristics of the SAR beams to maintain the MDSL performance capability at the expense of SAR swath width.


Starting from the ScanSAR modes described in Table 1, a new set of beams was developed to maintain an MDSL of 25 m while reducing the SAR swath width to 150 km for each of the ScanSAR modes. The new set of beams is referred to in the present application as dual-azimuth target detection Scan SAR modes, and are described in Table 2 (below). An estimated velocity error for the L-band modes is 0.6 m/s (across-track and along-track). An estimated velocity error for the X-band modes is 2.2 m/s (across-track and along-track).









TABLE 2







Dual-Azimuth Target Detection ScanSAR Mode Characteristics
















Ground
Ground
Swath






Start
End
Width
Number



Band
Pol
(km)
(km)
(km)
of Beams

















SD Mode A
L-Band
HV
200
350
150
3


SD Mode B
L-Band
HV
250
400
150
3


SD Mode C
X-Band
VV
300
450
150
5


SD Mode D
X-Band
VV
350
500
150
5


SD Mode E
X-Band
VV
425
575
150
5









While the systems and methods described in the present application are particularly suited to maritime surveillance and ship detection and velocity estimation, the systems and methods described in the present application can apply to SAR surveillance more generally, including surveillance of water, land, snow, and ice, and to moving target detection of watercraft, vehicles, and other moving targets.


A method for estimating the velocity of a moving target according to the present disclosure can include the following acts:


a) directing a first radar beam to illuminate a moving target in a region on a surface of the Earth by a dual-beam SAR antenna;


b) directing a second radar beam to illuminate the moving target by the dual-beam SAR antenna where the second radar beam is at an angular offset from the first radar beam;


c) transmitting radar pulses and receiving backscattered energy simultaneously via the first and second radar beams by the SAR transceiver;


d) generating, by the SAR data processor, a first image from the first radar beam and a second image from the second radar beam;


e) co-registering the first and the second images by the SAR data processor;


f) comparing, by the SAR data processor, the location of the moving target in the first image and the second image;


g) estimating, by the SAR data processor, a velocity of the moving target based at least in part on the angular offset between the first and the second radar beams. The angular offset between the first and the second beam can result in a time offset between the first and the second image, which can cause a moving target to appear at different locations in the first and the second image.



FIG. 4 is a block diagram of an example SAR system 400, in accordance with the systems and methods of the present application. SAR system 400 can be a multi-band SAR system, for example a dual-band XL SAR system. SAR system 400 can be on-board a SAR platform such as an aircraft or spacecraft. SAR system 400 comprises a SAR antenna 402, a SAR transceiver 404, a SAR controller 406, a SAR processor 408 (e.g., hardware circuitry), and a communications antenna 410.


SAR antenna 402 can be a shared aperture antenna. SAR antenna 402 can be a planar phased array such as described in International Patent Application Publication WO 2017/044168 entitled “EFFICIENT PLANAR PHASED ARRAY ANTENNA ASSEMBLY”, for example. SAR antenna 402 can be bi-directionally communicatively coupled to SAR transceiver 404. SAR transceiver 404 can be bi-directionally communicatively coupled to data processor 408 and optionally to a data storage (not shown in FIG. 4). SAR transceiver 404 can include one or more transceiver circuits, for example operable to transmit pulses and receive returned pulses in respective ones of two or more different frequency bands via one or more antenna such as SAR antenna 402. The transceiver circuits can, for example be commonly housed or on a common circuit board, or housed individually or on respective individual circuit boards. In some implementations, SAR transceiver 404 includes, or consists of, a separate transmitter and receiver, commonly housed or separately housed.


SAR antenna 402 is communicatively coupled to transceiver 404. SAR transceiver 404 can transmit and receive pulses at one or more frequency bands. In some implementations, SAR transceiver is a dual-band SAR transceiver, and can transmit and receive pulses at two frequency bands, for example at X-band and L-band. In some implementations, SAR transceiver 404 can transmit and receive pulses at two or more frequency bands at the same time. The pulses can be synchronized with each other.


SAR transceiver 404 can transmit and receive pulses for one or more imaging modes such as ScanSAR mode and strip-map mode. SAR transceiver 504 can transmit and receive pulses in one or more beams, and in one or more sub-beams. In one example, SAR transceiver 404 transmits and receives L-band pulses in a wide-swath SAR imaging mode, and transmits and receives X-band pulses in a high-resolution imaging mode at the same time (i.e., within the same acquisition window).


SAR controller 406 can comprise one or more processors. SAR controller 406 can include at least one of a Field-Programmable Gate Array (FPGA), an Application Specific Integrated Circuit (ASIC), a microcontroller, and a microprocessor, and one or more programs or firmware stored on one or more nontransitory computer- or processor-readable media.


SAR processor 408 can process SAR data acquired by SAR antenna 402 and SAR transceiver 404. SAR processor 408 can process data in real-time or near-real-time. SAR processor 408 can perform one or more of a variety of processing tasks that may include range compression, azimuth compression, target detection and identification, chip extraction, velocity estimation, and image classification. SAR processor 408 can process data for one or more imaging modes of SAR system 400, for example SAR processor 408 can process one or more of wide-swath ScanSAR mode data, Strip-map mode data, high-resolution Strip-map, and Spotlight mode data.


Communications antenna 410 can transmit and receive data, for example communications antenna 410 can transmit acquired SAR data, processed SAR targets, target detections, identifications, and/or image classifications from SAR system 400 to a ground terminal. Communications antenna 410 can receive commands and/or ancillary data from a ground terminal. The ground terminal (not shown in FIG. 4) can include a communications antenna and a transceiver.



FIG. 5 is an isometric view of a SAR antenna in the form of a planar phased array antenna assembly 500, in accordance with the systems and methods described in the present application. The size of planar phased array antenna assembly 500 can be tailored to meet the gain and bandwidth requirements of a particular application. An example application is a dual-band, dual-polarization SAR antenna. A dual-band SAR antenna can operate at L-band and X-band, for example. A dual-polarization SAR antenna can transmit and receive horizontal (H) and vertical (V) polarizations for example.


In an example implementation of a dual-band, dual-polarization SAR antenna, assembly 500 is approximately 2.15 m wide, 1.55 m long and 50 mm deep, and weighs approximately 30 kg. In another implementation, SAR antenna comprises a single panel of dimensions 6 m by 2 m. In yet another implementation, SAR antenna 502 comprises six panels, each panel of dimensions 1 m by 2 m.


While some embodiments described in this document relate to dual X-band and L-band SAR antennas, and the technology is particularly suitable for space-based SAR antennas for reasons described elsewhere in this document, a similar approach can also be adopted for other frequencies, polarizations, configurations, and applications including, but not limited to, single-band and multi-band SAR antennas at different frequencies, and microwave and mm-wave communication antennas.


Antenna assembly 500 comprises a first face sheet 502 on a top surface of antenna assembly 500, containing slots for the L-band and X-band radiating elements. Antenna assembly 500 comprises microwave structure 504 below first face sheet 502. Microwave structure 504 comprises one or more subarrays such as subarray 504-1, each subarray comprising L-band and X-band radiating elements.


Microwave structure 504 can be a metal structure that is self-supporting without a separate structural subassembly. Microwave structure 504 can be machined or fabricated from one or more metal blocks, such as aluminum blocks or blocks of another suitable conductive material. The choice of material for microwave structure 504 determines, at least in part, the losses and therefore the efficiency of the antenna.


Antenna assembly 502 comprises second face sheet 506 below microwave structure 504, second face sheet 506 closing one or more L-band cavities at the back. Second face sheet 506 comprises one or more sub-array face sheets such as 506-1.


Antenna assembly 500 comprises third face sheet 508 below second face sheet 506, third face sheet 508 comprising waveguide terminations. Third face sheet 508 also provides at least partial structural support for antenna assembly 500.


In some implementations, antenna assembly 500 comprises a multi-layer printed circuit board (PCB) (not shown in FIG. 5) below third face sheet 508, the PCB housing a corporate feed network for the X-band and L-band radiating elements.


The various embodiments described above can be combined to provide further embodiments. The contents of provisional application U.S. Ser. No. 62/510,182 entitled “SYSTEMS AND METHODS FOR A SYNTHETIC APERTURE RADAR WITH MULTI-APERTURE ANTENNA”, filed on May 23, 2017 and listing as inventors Peter Fox and Stephen Lilley; the contents of International Patent Application Publication WO 2017/044168 entitled “EFFICIENT PLANAR PHASED ARRAY ANTENNA ASSEMBLY”, and the contents of provisional application U.S. Ser. No. 62/510,191 entitled “SYNTHETIC APERTURE RADAR IMAGING APPARATUS AND METHODS FOR MOVING TARGETS”, filed on May 23, 2017 are each incorporated herein by reference in their entirety. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.


The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via Application Specific Integrated Circuits (ASICs). However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more controllers (e.g., microcontrollers) as one or more programs running on one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of ordinary skill in the art in light of this disclosure.


While particular elements, embodiments and applications of the present technology have been shown and described, it will be understood, that the technology is not limited thereto since modifications can be made by those skilled in the art without departing from the scope of the present disclosure, particularly in light of the foregoing teachings.


In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. A method of operation of a synthetic aperture radar (SAR) system to estimate the velocity of a moving target, the SAR system comprising: a dual-beam SAR antenna, a SAR transceiver and a SAR data processor, the SAR transceiver communicatively coupled to the dual-beam SAR antenna and to the SAR data processor;the method comprising:directing a first radar beam to illuminate the moving target in a region on a surface of the Earth by the dual-beam SAR antenna;directing a second radar beam to illuminate the moving target by the dual-beam SAR antenna, the second radar beam at an angular offset relative to the first radar beam;transmitting pulses and receiving backscattered energy simultaneously via the first and second radar beams by the SAR transceiver;generating, by the SAR data processor, a first image from the first radar beam and a second image from the second radar beam;co-registering the first and the second images by the SAR data processor;comparing, by the SAR data processor, the location of the moving target in the first image and the second image; andestimating, by the SAR data processor, a velocity of the moving target based at least in part on the angular offset.
  • 2. The method of claim 1 wherein directing a first radar beam to illuminate the moving target includes directing a forward-looking radar beam to illuminate the moving target, and directing a second radar beam to illuminate the moving target includes directing an aft-looking radar beam to illuminate the moving target.
  • 3. The method of claim 1 wherein directing a first radar beam to illuminate the moving target includes directing a radar beam comprising a main lobe of an antenna beam pattern to illuminate the moving target, and directing a second radar beam to illuminate the moving target includes directing a radar beam comprising a grating sidelobe of the antenna beam pattern to illuminate the moving target.
  • 4. The method of claim 3 wherein directing a radar beam comprising a main lobe of an antenna beam pattern to illuminate the moving target and directing a radar beam comprising a grating sidelobe of the antenna beam pattern to illuminate the moving target includes applying a phase ramp across an aperture of the dual-beam SAR antenna.
  • 5. The method of claim 4 wherein applying a phase ramp across an aperture of the dual-beam SAR antenna includes causing a magnitude of the grating sidelobe of the antenna beam pattern to be approximately the same as a magnitude of the main lobe of the antenna beam pattern.
  • 6. The method of claim 1, further comprising: forming two or more elevation beams; andgenerating a SAR image with multi-looking in range.
  • 7. The method of claim 1 wherein transmitting pulses and receiving backscattered energy simultaneously via the first and second radar beams by the SAR transceiver includes transmitting pulses and receiving backscattered energy in a ScanSAR imaging mode.
  • 8. A synthetic aperture radar (SAR) system, comprising: a SAR platform that includes at least one dual-beam SAR antenna, the at least one dual-beam SAR antenna to: generate a first radar beam to illuminate a moving target in a region on a surface of the Earth; andgenerate a second radar beam to illuminate the moving target, the second radar beam at an angular offset relative to the first radar beam;a SAR transceiver coupled to the at least one dual-beam SAR antenna, the SAR transceiver to: transmit one or more pulses and receive backscattered energy simultaneously via the first and second radar beams; andat least one SAR data processor coupled to the SAR transceiver; andat least one nontransitory processor-readable medium communicatively coupled to the at least one SAR data processor which stores at least one of processor-executable instructions or data which, when executed by the at least one SAR data processor, causes the at least one SAR data processor to: generate a first image from the first radar beam and a second image from the second radar beam;co-register the first and the second images;compare the location of the moving target in the first image and the second image; andestimate a velocity of the moving target based at least in part on the angular offset.
  • 9. The SAR system of claim 8: wherein to generate a first radar beam to illuminate a moving target in a region on a surface of the Earth the at least one dual-beam SAR antenna to further: direct a forward-looking radar beam to illuminate the moving target; andwherein to generate a second radar beam to illuminate the moving target, the at least one dual-beam SAR antenna to further: direct an aft-looking radar beam to illuminate the moving target.
  • 10. The SAR system of claim 8: wherein to generate a first radar beam to illuminate a moving target in a region on a surface of the Earth, the at least one dual-beam SAR antenna to further: direct a radar beam comprising a main lobe of an antenna beam pattern to illuminate the moving target; andwherein to generate a second radar beam to illuminate the moving target, the at least one dual-beam SAR antenna to further: direct a radar beam comprising a grating sidelobe of the antenna beam pattern to illuminate the moving target.
  • 11. The SAR system of claim 10 wherein to direct the radar beam comprising the main lobe of the antenna beam pattern to illuminate the moving target and direct the radar beam comprising the grating sidelobe of the antenna beam pattern to illuminate the moving target, the at least one dual-beam SAR antenna to further: apply a phase ramp across an aperture of the at least one dual-beam SAR antenna.
  • 12. The SAR system of claim 11 wherein to apply the phase ramp across the aperture of the at least one dual-beam SAR antenna, the at least one dual-beam SAR antenna to further: cause a magnitude of the grating sidelobe of the antenna beam pattern to be approximately the same as a magnitude of the main lobe of the antenna beam pattern.
  • 13. The SAR system of claim 8, the at least one dual-beam SAR antenna to further: form two or more elevation beams; andwherein the at least one nontransitory processor-readable medium further includes instructions that cause the at least one SAR data processor to: generate a SAR image with multi-looking in range.
  • 14. The SAR system of claim 8 wherein to transmit pulses and receive backscattered energy simultaneously via the first and second radar beams, the SAR transceiver to further: transmit pulses and receive backscattered energy in a ScanSAR imaging mode.
CROSS-REFERENCE TO RELATED APPLICATIONS

This present application is a National Phase Application Filed Under 35 U.S.C. 371 claiming priority to PCT/US2018/034146 filed May 23, 2018, which in turn claims priority from U.S. Provisional Application Ser. No. 62/510,191 filed May 23, 2017, the entire disclosures of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/034146 5/23/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2018/217902 11/29/2018 WO A
US Referenced Citations (368)
Number Name Date Kind
3193830 Provencher Jul 1965 A
3241140 Raabe Mar 1966 A
3460139 Rittenbach Aug 1969 A
3601529 Dischert Aug 1971 A
3715962 Yost, Jr. Feb 1973 A
3808357 Nakagaki et al. Apr 1974 A
4163247 Bock et al. Jul 1979 A
4178581 Willey, Sr. Dec 1979 A
4214264 Hayward et al. Jul 1980 A
4246598 Bock et al. Jan 1981 A
4404586 Tabei Sep 1983 A
4514755 Tabei Apr 1985 A
4656508 Yokota Apr 1987 A
4803645 Ohtomo et al. Feb 1989 A
4823186 Muramatsu Apr 1989 A
4924229 Eichel et al. May 1990 A
4951136 Drescher et al. Aug 1990 A
4989008 Fajisaka et al. Jan 1991 A
5057843 Dubois et al. Oct 1991 A
5059966 Fujisaka et al. Oct 1991 A
5093663 Baechtiger et al. Mar 1992 A
5173949 Peregrim et al. Dec 1992 A
5248979 Orme et al. Sep 1993 A
5313210 Gail May 1994 A
5486830 Axline, Jr. et al. Jan 1996 A
5489907 Zink et al. Feb 1996 A
5512899 Osawa et al. Apr 1996 A
5546091 Haugen et al. Aug 1996 A
5552787 Schuler et al. Sep 1996 A
5646623 Walters et al. Jul 1997 A
5745069 Gail Apr 1998 A
5760899 Eismann Jun 1998 A
5790188 Sun Aug 1998 A
5821895 Hounam et al. Oct 1998 A
5883584 Langemann et al. Mar 1999 A
5926125 Wood Jul 1999 A
5945940 Cuomo Aug 1999 A
5949914 Yuen Sep 1999 A
5952971 Strickland Sep 1999 A
5973634 Kare Oct 1999 A
6007027 Diekelman et al. Dec 1999 A
6122404 Barter et al. Sep 2000 A
6241192 Kondo et al. Jun 2001 B1
6255987 Lancashire et al. Jul 2001 B1
6259396 Pham et al. Jul 2001 B1
6347762 Sims et al. Feb 2002 B1
6359584 Cordey et al. Mar 2002 B1
6502790 Murphy Jan 2003 B1
6577266 Axline Jun 2003 B1
6614813 Dudley et al. Sep 2003 B1
6633253 Cataldo Oct 2003 B2
6678048 Rienstra et al. Jan 2004 B1
6741250 Furlan et al. May 2004 B1
6781540 MacKey et al. Aug 2004 B1
6781707 Peters et al. Aug 2004 B2
6831688 Lareau et al. Dec 2004 B2
6861996 Jeong Mar 2005 B2
6864827 Tise et al. Mar 2005 B1
6888490 Brovko et al. May 2005 B1
6914553 Beadle et al. Jul 2005 B1
6919839 Beadle et al. Jul 2005 B1
6970142 Pleva et al. Nov 2005 B1
7015855 Medl et al. Mar 2006 B1
7019777 Sun Mar 2006 B2
7034746 McMakin et al. Apr 2006 B1
7064702 Abatzoglou Jun 2006 B1
7095359 Matsuoka et al. Aug 2006 B2
7123169 Farmer et al. Oct 2006 B2
7149366 Sun Dec 2006 B1
7158878 Rasmussen et al. Jan 2007 B2
7167280 Bogdanowicz et al. Jan 2007 B2
7212149 Abatzoglou et al. May 2007 B2
7218268 VandenBerg May 2007 B2
7242342 Wu et al. Jul 2007 B2
7270299 Murphy Sep 2007 B1
7292723 Tedesco et al. Nov 2007 B2
7298922 Lindgren et al. Nov 2007 B1
7327305 Loehner et al. Feb 2008 B2
7348917 Stankwitz et al. Mar 2008 B2
7379612 Milanfar et al. May 2008 B2
7385705 Hoctor et al. Jun 2008 B1
7412107 Milanfar et al. Aug 2008 B2
7414706 Nichols et al. Aug 2008 B2
7417210 Ax, Jr. et al. Aug 2008 B2
7423577 McIntire et al. Sep 2008 B1
7468504 Halvis et al. Dec 2008 B2
7475054 Hearing et al. Jan 2009 B2
7477802 Milanfar et al. Jan 2009 B2
7486221 Meyers et al. Feb 2009 B2
7536365 Aboutalib May 2009 B2
7545309 McIntire et al. Jun 2009 B1
7548185 Sheen et al. Jun 2009 B2
7570202 Raney Aug 2009 B2
7599790 Rasmussen et al. Oct 2009 B2
7602997 Young Oct 2009 B2
7623064 Calderbank et al. Nov 2009 B2
7646326 Antonik et al. Jan 2010 B2
7698668 Balasubramanian et al. Apr 2010 B2
7705766 Lancashire et al. Apr 2010 B2
7733961 O'Hara et al. Jun 2010 B2
7746267 Raney Jun 2010 B2
7769229 O'Brien et al. Aug 2010 B2
7769241 Adams, Jr. et al. Aug 2010 B2
7781716 Anderson et al. Aug 2010 B2
7825847 Fujimura Nov 2010 B2
7830430 Adams, Jr. et al. Nov 2010 B2
7844127 Adams, Jr. et al. Nov 2010 B2
7855740 Hamilton, Jr. et al. Dec 2010 B2
7855752 Baker et al. Dec 2010 B2
7876257 Vetro et al. Jan 2011 B2
7884752 Hellsten et al. Feb 2011 B2
7897902 Katzir et al. Mar 2011 B2
7911372 Nelson Mar 2011 B2
7924210 Johnson Apr 2011 B2
7936949 Riley et al. May 2011 B2
7940282 Milanfar et al. May 2011 B2
7940959 Rubenstein May 2011 B2
7991226 Schultz et al. Aug 2011 B2
8013778 Grafmueller et al. Sep 2011 B2
8031258 Enge et al. Oct 2011 B2
8040273 Tomich et al. Oct 2011 B2
8045024 Kumar et al. Oct 2011 B2
8049657 Prats et al. Nov 2011 B2
8053720 Han et al. Nov 2011 B2
8059023 Richard Nov 2011 B2
8068153 Kumar et al. Nov 2011 B2
8073246 Adams, Jr. et al. Dec 2011 B2
8078009 Riley et al. Dec 2011 B2
8090312 Robinson Jan 2012 B2
8094960 Riley et al. Jan 2012 B2
8111307 Deever et al. Feb 2012 B2
8115666 Moussally et al. Feb 2012 B2
8116576 Kondo Feb 2012 B2
8125370 Rogers et al. Feb 2012 B1
8125546 Adams, Jr. et al. Feb 2012 B2
8134490 Gebert et al. Mar 2012 B2
8138961 Deshpande Mar 2012 B2
8169358 Bourdelais et al. May 2012 B1
8169362 Cook et al. May 2012 B2
8179445 Hao May 2012 B2
8180851 Cavelie May 2012 B1
8194296 Compton et al. Jun 2012 B2
8203615 Wang et al. Jun 2012 B2
8203633 Adams, Jr. et al. Jun 2012 B2
8204966 Mendis et al. Jun 2012 B1
8212711 Schultz et al. Jul 2012 B1
8274422 Smith et al. Sep 2012 B1
8299959 Vossiek et al. Oct 2012 B2
8358359 Baker et al. Jan 2013 B2
8362944 Lancashire Jan 2013 B2
8384583 Leva et al. Feb 2013 B2
8411146 Twede Apr 2013 B2
8441393 Strauch et al. May 2013 B2
8482452 Chambers et al. Jul 2013 B2
8487996 Mann et al. Jul 2013 B2
8493262 Boufounos et al. Jul 2013 B2
8493264 Sasakawa Jul 2013 B2
8502730 Roche Aug 2013 B2
8532958 Ingram et al. Sep 2013 B2
8543255 Wood et al. Sep 2013 B2
8558735 Bachmann et al. Oct 2013 B2
8576111 Smith et al. Nov 2013 B2
8594375 Padwick Nov 2013 B1
8610771 Leung et al. Dec 2013 B2
8698668 Hellsten Apr 2014 B2
8711029 Ferretti et al. Apr 2014 B2
8723721 Moruzzis et al. May 2014 B2
8724918 Abraham May 2014 B2
8760634 Rose Jun 2014 B2
8768104 Moses et al. Jul 2014 B2
8803732 Antonik et al. Aug 2014 B2
8823813 Mantzel et al. Sep 2014 B2
8824544 Nguyen et al. Sep 2014 B2
8836573 Yanagihara et al. Sep 2014 B2
8854253 Edvardsson Oct 2014 B2
8854255 Ehret Oct 2014 B1
8860824 Jelinek Oct 2014 B2
8861588 Nguyen et al. Oct 2014 B2
8879793 Peterson Nov 2014 B2
8879865 Li et al. Nov 2014 B2
8879996 Kenney Nov 2014 B2
8891066 Bamler et al. Nov 2014 B2
8903134 Abileah Dec 2014 B2
8912950 Adcook Dec 2014 B2
8957806 Schaefer Feb 2015 B2
8977062 Gonzalez et al. Mar 2015 B2
8988273 Marianer et al. Mar 2015 B2
9013348 Riedel et al. Apr 2015 B2
9019143 Obermeyer Apr 2015 B2
9019144 Calabrese Apr 2015 B2
9037414 Pratt May 2015 B1
9063544 Vian et al. Jun 2015 B2
9071337 Hellsten Jun 2015 B2
9106857 Faramarzpour Aug 2015 B1
9126700 Ozkul et al. Sep 2015 B2
9134414 Bergeron Sep 2015 B2
9148601 Fox Sep 2015 B2
9176227 Bergeron et al. Nov 2015 B2
9182483 Liu et al. Nov 2015 B2
9210403 Martinerie et al. Dec 2015 B2
9244155 Bielas Jan 2016 B2
9261592 Boufounos et al. Feb 2016 B2
9291711 Healy, Jr. et al. Mar 2016 B2
9329263 Haynes et al. May 2016 B2
9389311 Moya et al. Jul 2016 B1
9395437 Ton et al. Jul 2016 B2
9400329 Pillay Jul 2016 B2
9411039 Dehlink et al. Aug 2016 B2
9417323 Carande et al. Aug 2016 B2
9426397 Wein Aug 2016 B2
9529081 Whelan et al. Dec 2016 B2
9531081 Huber et al. Dec 2016 B2
9684071 Wishart Jun 2017 B2
9684673 Beckett et al. Jun 2017 B2
10230925 Maciejewski et al. Mar 2019 B2
20010013566 Yung et al. Aug 2001 A1
20020003502 Falk Jan 2002 A1
20020147544 Nicosia et al. Oct 2002 A1
20020196178 Beard Dec 2002 A1
20030006364 Katzir et al. Jan 2003 A1
20040021600 Wittenberg Feb 2004 A1
20040104859 Lo Jun 2004 A1
20040150547 Suess et al. Aug 2004 A1
20040227659 Woodford et al. Nov 2004 A1
20050212692 Iny et al. Sep 2005 A1
20050270299 Rasmussen et al. Dec 2005 A1
20050288859 Golding et al. Dec 2005 A1
20060132753 Nichols et al. Jun 2006 A1
20060273946 Krikorian et al. Dec 2006 A1
20070024879 Hamilton, Jr. et al. Feb 2007 A1
20070051890 Pittman Mar 2007 A1
20070080830 Sacks Apr 2007 A1
20070102629 Richard et al. May 2007 A1
20070120979 Zhang et al. May 2007 A1
20070146195 Wallenberg et al. Jun 2007 A1
20070168370 Hardy Jul 2007 A1
20070192391 McEwan Aug 2007 A1
20070279284 Karayil Thekkoott Narayanan Dec 2007 A1
20080074338 Vacanti Mar 2008 A1
20080081556 Robinson Apr 2008 A1
20080111731 Hubbard May 2008 A1
20080123997 Adams et al. May 2008 A1
20080240602 Adams et al. Oct 2008 A1
20090009391 Fox et al. Jan 2009 A1
20090011777 Grunebach et al. Jan 2009 A1
20090021588 Border et al. Jan 2009 A1
20090046182 Adams, Jr. et al. Feb 2009 A1
20090046995 Kanumuri et al. Feb 2009 A1
20090051585 Krikorian et al. Feb 2009 A1
20090087087 Palum et al. Apr 2009 A1
20090109086 Krieger et al. Apr 2009 A1
20090147112 Baldwin Jun 2009 A1
20090179790 Jahangir Jul 2009 A1
20090226114 Choi et al. Sep 2009 A1
20090256909 Nixon Oct 2009 A1
20090289838 Braun Nov 2009 A1
20100039313 Morris Feb 2010 A1
20100045513 Pett et al. Feb 2010 A1
20100063733 Yunck Mar 2010 A1
20100128137 Guidash May 2010 A1
20100149396 Summa et al. Jun 2010 A1
20100194901 van Hoorebeke et al. Aug 2010 A1
20100232692 Kumar et al. Sep 2010 A1
20100302418 Adams, Jr. et al. Dec 2010 A1
20100309347 Adams, Jr. et al. Dec 2010 A1
20100321234 Goldman Dec 2010 A1
20100321235 Vossiek et al. Dec 2010 A1
20100328499 Sun Dec 2010 A1
20110052095 Deever Mar 2011 A1
20110055290 Li et al. Mar 2011 A1
20110098986 Fernandes Rodrigues et al. Apr 2011 A1
20110115793 Grycewicz May 2011 A1
20110115954 Compton May 2011 A1
20110134224 McClatchie Jun 2011 A1
20110156878 Wu et al. Jun 2011 A1
20110175771 Raney Jul 2011 A1
20110187902 Adams, Jr. et al. Aug 2011 A1
20110199492 Kauker et al. Aug 2011 A1
20110279702 Plowman et al. Nov 2011 A1
20110282871 Seefeld et al. Nov 2011 A1
20120019660 Golan et al. Jan 2012 A1
20120044328 Gere Feb 2012 A1
20120068880 Kullstam et al. Mar 2012 A1
20120076229 Brobston et al. Mar 2012 A1
20120105276 Ryland May 2012 A1
20120127028 Bamler et al. May 2012 A1
20120127331 Grycewicz May 2012 A1
20120133550 Benninghofen et al. May 2012 A1
20120146869 Holland et al. Jun 2012 A1
20120154584 Omer et al. Jun 2012 A1
20120200703 Nadir et al. Aug 2012 A1
20120201427 Jasinski et al. Aug 2012 A1
20120257047 Biesemans et al. Oct 2012 A1
20120271609 Laake et al. Oct 2012 A1
20120274505 Pritt et al. Nov 2012 A1
20120293669 Mann et al. Nov 2012 A1
20120323992 Brobst et al. Dec 2012 A1
20130021475 Canant et al. Jan 2013 A1
20130050488 Brouard et al. Feb 2013 A1
20130063489 Hourie et al. Mar 2013 A1
20130080594 Nourse et al. Mar 2013 A1
20130120205 Thompson et al. May 2013 A1
20130201050 Hellsten Aug 2013 A1
20130234879 Wilson-Langman et al. Sep 2013 A1
20130257641 Ronning Oct 2013 A1
20130321228 Crockett, Jr. et al. Dec 2013 A1
20130321229 Klefenz et al. Dec 2013 A1
20130335256 Smith et al. Dec 2013 A1
20140027576 Boshuizen et al. Jan 2014 A1
20140062764 Reis et al. Mar 2014 A1
20140068439 Lacaze et al. Mar 2014 A1
20140078153 Richardson Mar 2014 A1
20140149372 Sankar et al. May 2014 A1
20140191894 Chen et al. Jul 2014 A1
20140232591 Liu et al. Aug 2014 A1
20140266868 Schuman Sep 2014 A1
20140282035 Murthy et al. Sep 2014 A1
20140307950 Jancsary et al. Oct 2014 A1
20140313071 McCorkle Oct 2014 A1
20140344296 Chawathe et al. Nov 2014 A1
20140361921 Aprile Dec 2014 A1
20150015692 Smart Jan 2015 A1
20150054678 Wakayama Feb 2015 A1
20150080725 Wegner Mar 2015 A1
20150145716 Woodsum May 2015 A1
20150160337 Muff Jun 2015 A1
20150168554 Aharoni et al. Jun 2015 A1
20150247923 LaBarca et al. Sep 2015 A1
20150253423 Liu et al. Sep 2015 A1
20150280326 Arii Oct 2015 A1
20150323659 Mitchell Nov 2015 A1
20150323665 Murata Nov 2015 A1
20150323666 Murata Nov 2015 A1
20150324989 Smith et al. Nov 2015 A1
20150331097 Hellsten Nov 2015 A1
20150346336 Di Giorgio et al. Dec 2015 A1
20150369913 Jung et al. Dec 2015 A1
20150371431 Korb et al. Dec 2015 A1
20150378004 Wilson-Langman et al. Dec 2015 A1
20150378018 Calabrese Dec 2015 A1
20150379957 Roegelein et al. Dec 2015 A1
20160012367 Korb et al. Jan 2016 A1
20160019458 Kaufhold Jan 2016 A1
20160020848 Leonard Jan 2016 A1
20160033639 Jung et al. Feb 2016 A1
20160109570 Calabrese Apr 2016 A1
20160139259 Rappaport et al. May 2016 A1
20160139261 Becker May 2016 A1
20160170018 Yamaoka Jun 2016 A1
20160202347 Malinovskiy et al. Jul 2016 A1
20160204514 Miraftab et al. Jul 2016 A1
20160216372 Liu et al. Jul 2016 A1
20160223642 Moore et al. Aug 2016 A1
20160238696 Hintz Aug 2016 A1
20160282463 Guy et al. Sep 2016 A1
20160300375 Beckett et al. Oct 2016 A1
20160306824 Lopez et al. Oct 2016 A1
20170160381 Cho et al. Jun 2017 A1
20170170567 Bing et al. Jun 2017 A1
20170214889 Maciejewski et al. Jul 2017 A1
20180100920 Thomas, Jr. Apr 2018 A1
20180172823 Tyc Jun 2018 A1
20180172824 Beckett et al. Jun 2018 A1
20180259639 Rubel et al. Sep 2018 A1
20180322784 Schild Nov 2018 A1
20180335518 Fox Nov 2018 A1
20180356516 Fox Dec 2018 A1
20180366837 Fox et al. Dec 2018 A1
Foreign Referenced Citations (86)
Number Date Country
2428513 Jul 2003 CA
2488909 May 2005 CA
2553008 Jan 2007 CA
2827279 Apr 2014 CA
101907704 Dec 2010 CN
102394379 Mar 2012 CN
102983410 Mar 2013 CN
103414027 Nov 2013 CN
103679714 Mar 2014 CN
104201469 Dec 2014 CN
102007039095 Feb 2009 DE
202009003286 May 2009 DE
0 924 534 Jun 1999 EP
0 846 960 Mar 2004 EP
1 504 287 Feb 2005 EP
1698856 Sep 2006 EP
1509784 Feb 2008 EP
1746437 Sep 2008 EP
1966630 Sep 2008 EP
2 230 533 Sep 2010 EP
2 242 252 Oct 2010 EP
2392943 Jul 2011 EP
2416174 Aug 2012 EP
2560144 Feb 2013 EP
2610636 Jul 2013 EP
2762916 Aug 2014 EP
2778635 Sep 2014 EP
2 828 685 Jan 2015 EP
2 875 384 May 2015 EP
2662704 Jan 2016 EP
2743727 Jan 2016 EP
2759847 Jan 2016 EP
2762917 Jan 2016 EP
2767849 Jan 2016 EP
2896971 Mar 2016 EP
3012658 Apr 2016 EP
3032648 Jun 2016 EP
3 060 939 Aug 2016 EP
3056922 Aug 2016 EP
2 784 537 Oct 2016 EP
3 077 985 Oct 2016 EP
3 077 986 Oct 2016 EP
3 214 460 Sep 2017 EP
S56108976 Aug 1981 JP
60-257380 Dec 1985 JP
2001-122199 May 2001 JP
10-2010-0035056 Apr 2010 KR
10-2012-0000842 Jan 2012 KR
101461129 Nov 2014 KR
10-2016-0002694 Jan 2016 KR
2349513 Mar 2009 RU
00055602 Sep 2000 WO
0218874 Mar 2002 WO
02056053 Jul 2002 WO
03005059 Jan 2003 WO
03040653 May 2003 WO
03005080 Jul 2003 WO
03096064 Nov 2003 WO
2007076824 Jul 2007 WO
2009025825 Feb 2009 WO
2009030339 Mar 2009 WO
2009085305 Jul 2009 WO
2010052530 May 2010 WO
2010122327 Oct 2010 WO
2011138744 Nov 2011 WO
2011154804 Dec 2011 WO
2012120137 Sep 2012 WO
2012143756 Oct 2012 WO
2012148919 Nov 2012 WO
2013112955 Aug 2013 WO
2013162657 Oct 2013 WO
2014012828 Jan 2014 WO
2014089318 Jun 2014 WO
2014097263 Jun 2014 WO
2015059043 Apr 2015 WO
2015112263 Jul 2015 WO
2015130365 Sep 2015 WO
2015192056 Dec 2015 WO
2016022637 Feb 2016 WO
2016132106 Aug 2016 WO
2016202662 Dec 2016 WO
2016205406 Dec 2016 WO
2017044168 Mar 2017 WO
2017048339 Mar 2017 WO
2017091747 Jun 2017 WO
2017094157 Jun 2017 WO
Non-Patent Literature Citations (147)
Entry
China office action and search report from related case CN 201680045476.4 dated Jan. 6, 2020, with English translation.
U.S. office action from related case U.S. Appl. No. 15/561,437 dated Jan. 27, 2020.
International Preliminary Report on Patentability from related matter PCT/US2018/034144 dated Nov. 26, 2019.
International Preliminary Report on Patentability from related matter PCT/US18/34146 dated Nov. 26, 2019.
Extended European Search Report from related application 18806689.8 dated Oct. 1, 2020.
Extended European Search Report from related application 18806829.8 dated Sep. 28, 2020.
Mettermayer et al., “Conceptual Studies for exploiting the TerraSAR-X dual receive antennea”, IEEE International Geoscience and Remote Sensing Sym., Jul. 21, 2003.
Grafmulleret al, “The TerraSAR-X Antenna System”, IEEE International Radar Conference Record, May 12, 2005.
Gebele, et al., Comparison of Techniques for Future Spacebome GMTI, 8th European Conference on Synthetic Aperture Radar, Jun. 10, 2020.
Mittermayer et al., Approach to Velocity and Acceleration Measurement in the Bi-Directional SAR Imaging Mode, IEEE Jul. 22, 2012.
Mittermayer et al., “Bidirectional SAR Imaging Mode”, IEEE Transactions on Geoscience and Remote Sensing, Jan. 1, 2013.
International Preliminary Report on Patentability issued in PCT Application No. PCT/US2016/037666, dated Dec. 28, 2017, 7 pages.
International Preliminary Report on Patentability issued in PCT Application No. PCT/US2016/037675, dated Dec. 28, 2017, 9 pages.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2016/037681, dated Sep. 23, 2016, 10 pages.
Supplementary Partial Search Report issued in European Application No. 16846990.6, dated May 18, 2018, 16 pages.
Extended European Search Report issued in European Application No. 16844829.8, dated Apr. 25, 2018, 9 pages.
Extended European Search Report issued in European Application No. 16812363.6, dated May 14, 2018, 8 pages.
Larson & J R Wertz (EDS): “Orbit Maintenance,” Space Mission Analysis and Design, Jan. 1, 1997, pp. 153-154, 177 (XP002214373), 15 pages.
“Envi Tutorials,” Sep. 1, 2000, URL:http://heim.ifi.uio.no/″inf160/tutorial.pdf (XP055472060), 590 pages.
Partial Supplementary Search Report issued in European Application No. 15829734.1, dated Dec. 21, 2017, 16 pages.
Extended European Search Report issued in European Application No. 16846990.6, dated Aug. 16, 2018, 16 pages.
Caltagirone et al., “The COSMO-SkyMed Dual Use Earth Observation Program: Development, Qualification, and Results of the Commissioning of the Overall Constellation”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, USA, vol. 7, No. 7, Jul. 1, 2014, (XP011557179), 9 pages.
Preliminary Amendment filed in Application No. PCT/US2015/043739, dated Feb. 7, 2017, 12 pages.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2015/043739, dated Nov. 11,2015, 12 pages.
Preliminary Amendment filed in U.S. Appl. No. 15/561,437, dated Sep. 25, 2017, 11 pages.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2016/022841, dated Jun. 3, 2016, 10 pages.
Preliminary Amendment filed in U.S. Appl. No. 15/737,065, dated Dec. 15, 2017, 8 pages.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2016/037666, dated Mar. 27, 2017, 8 pages.
Preliminary Amendment filed in U.S. Appl. No. 15/737,016, dated Dec. 15, 2017, 8 pages.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2016/037675, dated Feb. 16, 10 pages.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2016/063630, dated Feb. 13, 2017, 8 pages.
Analog Devices, MT-085 Tutorial, “Fundamentals of Direct Digital Synthesis (DDS)”, 2008, pp. 1-9.
Bordoni, Federica, et al.: “Calibration Error Model for Multichannel Spacebome SAR Systems Based on Digital Beamforming”, Proceedings of the 10th European Radar Conference, Oct. 9-11, 2013, pp. 184-187.
D'Aria, D., et al.: “A Wide Swath, Full Polarimetric, L band spaceborne SAR”, IEEE, 2008, 4 pages.
El Sanhoury, Ahmed, et al.: “Performance Improvement of Pulsed OFDM UWB Systems Using ATF coding”, ICCCE, May 11-13, 2010, IEEE, 4 pages.
Freeman: IEEE Transactions on Geoscience and Remote Sensing, vol. 38, No. 1, Jan. 1, 2000, pp. 320-324.
Freeman, Anthony, et al.: On the Detection of Faraday Rotation in Linearly Polarized L-Band SAR Backscatter Signatures, IEEE Transactions on Geoscience and Remote Sensing, vol. 42, No. 8, Aug. 2004, pp. 1607-1616.
Giuli, D., et al.: “Radar target scattering matrix measurement through orthogonal signals” IEE Proceedings-F, vol. 140, No. 4, Part F, Aug. 1993, pp. 233-242.
Hossain, Md Anowar, et al.: “Multi-Frequency Image Fusion Based on MIMO UWB OFDM Synthetic Aperture Radar”, New Advances in Image Fusion, INTECH Open Science/Open Minds, 2013, 21 pages.
Kankaku, Y., et al.: “The Overview of the L-band SAR Onboard ALOS-2”, Progress in Electromagnetics Research Symposium Proceedings, Moscow, Russia, Aug. 18-21, 2009, pp. 735-738.
Lombardo, P., et al.: “Monitoring and surveillance potentialities obtained by splitting the antenna of the COSMO-SkyMed SAR into multiple sub-apertures”, The Institution of Engineering and Technology, IEE Proceedings, Apr. 2006, pp. 104-116.
Meyer, Franz J., et al.: “Prediction, Detection, and Correction of Faraday Rotation in Full-Polarimetric L-Band SAR Data”, IEEE Transactions on Geoscience and Remote Sensing, vol. 46, No. 10, Oct. 2008, pp. 3076-3086.
Raney, Keith R.: “Hybrid-Polarity SAR Architecture”, IEEE Transactions on Geoscience and Remote Sensing, vol. 45, No. 11, Nov. 2007, pp. 3397-3404.
Rouse, Shane, et al.: “Swathbuckler Wide Area SAR Processing Front End”, IEEE 2006, pp. 673-678.
Rudolf, Hans: “Increase of Information by Polarimetric Radar Systems”, Doctoral Dissertation, 2000, 5 pages.
Sakiotis, N.G., et al.: Proceedings of the I.R.E., 1953, pp. 87-93.
Souissi, B., et al.: “Investigation of the capabaility of the Compact Polarimetry mode to Reconstruct Full Polarimetry mode using RADARSAT2 data”, Advanced Electromagnetics, vol. 1, No. 1, May 2012, 10 pages.
Space Dynamics Laboratory, “RASAR”, 2013, 2 pages.
Van Zyl, Jakob, et al.: “Synthetic Aperture Radar Polarimetry”, JPL Space Science and Technology Series, 2010, 333 pages.
Werninghaus, Rolf, et al.: “The TerraSAR-X Mission”, 2004, 4 pages.
Wolff: “Radar Basics-Exciter”, Radartutorial.eu, http://www.radartutorial.eu/08.transmitters/Exciter.en.html, downloaded Mar. 6, 2018, 2 pages.
Wright, P.A., et al.: “Faraday Rotation Effects on L-Band Spaceborne SAR Data”, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, No. 12, Dec. 2003, pp. 2735-2744.
Zhang, T., et al.: “OFDM Synthetic Aperture Radar Imaging With Sufficient Cyclic Prefix”, IEEE Transactions on Geoscience and Remote Sensing, vol. 53, No. 1, Jan. 2015, pp. 394-404.
European Communication issued in European Application No. 14883549.9, dated Nov. 24, 2017, 8 pages.
European Office Action from related application EP16846990.6 dated Jun. 4, 2020.
Notice of Allowance, dated Sep. 18, 2019, for U.S. Appl. No. 15/737,065, Peter Allen Fox et al., “Efficient Planar Phased Array Antenna Assembly”, 9 pages.
Office Action, dated Oct. 4, 2019, for U.S. Appl. No. 15/737,044, Keith Dennis Richard Beckett et al., “System and Methods for Enhancing Synthetic Aperture Radar Imagery”, 9 pages.
Office Action, dated Oct. 18, 2019, for U.S. Appl. No. 15/737,016, George Tyc., “Systems and Methods for Remote Sensing of the Earth from Space”, 18 pages.
Foody, Gile M., “Status of Land Cover Classification Accuracy Assessment”, University of Southampton, Jul. 21, 2001, 17 pages.
European Examination Report from related application 16812363.6, dated Feb. 6, 2020.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/034144, dated Sep. 13, 2018, 15 pages.
International Preliminary Report on Patentability issued in PCT Application No. PCT/US2016/037681, dated Dec. 28, 2017, 7 pages.
International Preliminary Report on Patentability issued in PCT Application No. PCT/US2016/022841, dated Oct. 5, 2017, 8 pages.
Kraus et al., “TerraSAR-X Staring Spotlight Mode Optimization and Global Performance Predictions” in IEEE Journal of Selected Topics in Application Earth Observations and Remote Sensing, vol. 9, No. 3, Mar. 2016, pp. 1015-1027.
Office Action, for U.S. Appl. No. 16/616,362, dated Sep. 20, 2021, 34 pages.
“ISR Systems and Technology,” Lincoln Laboratory, Massachusetts Institute of Technology, archived Jan. 19, 2017. URL=https://www.ll.mit.edu/mission/isr/israccomplishments.html, download date Oct. 8, 2018, 2 pages.
“Northrop's SABR radar completes auto target cueing capability demonstration,” May 20, 2013, URL=https://www.airforce-technology.com/news/newsnorthrops-sabr-radar-completes-auto-target-cueing-capability-demonstration/, download date Oct. 8, 2018, 3 pages.
Amendment, filed Jan. 17, 2019, for U.S. Appl. No. 15/101,336, Lopez et al., “Systems and Methods for Earth Observation,” 25 pages.
Amendment, filed Sep. 5, 2018, for U.S. Appl. No. 15/316,469. Maciejewski et al., “Systems and Methods for Processing and Providing Terrestrial and/or Space-Based Earth Observation Video,” 9 pages.
Beckett et al., “Systems and Methods for Enhancing Synthetic Aperture Radar Imagery,” U.S. Appl. No. 62/180,449, filed Jun. 16, 2015, 34 pages.
Beckett, “UrtheCast Second-Generation Earth Observation Sensors,” 36th International Symposium on Remote Sensing of Environment, Berlin, Germany, May 11-15, 2015, pp. 1069-1073.
Bickel et al., “Effects of Magneto-Ionic Propagation on the Polarization Scattering Matrix,” Proceedings of the IEEE 53(8): 1089-1091, 1965.
Bidigare, “MIMO Capacity of Radar as a Communications Channel,” Adaptive Sensor and Array Processing Workshop, Lexington, Massachusetts, USA, Mar. 11-13, 2003, 19 pages.
Boccia, “Bathymetric Digital Elevation Model Generation from L-band and X-band Synthetic Aperture Radar Images in the Gulf of Naples, Italy: Innovative Techniques and Experimental Results,” doctoral thesis, University of Naples Federico II, Naples, Italy, 2015, 161 pages.
Bordoni et al., “Ambiguity Suppression by Azimuth Phase Coding in Multichannel SAR Systems,” International Geoscience and Remote Sensing Symposium, Vancouver, Canada, Jul. 24-29, 2011, 16 pages.
Brysk, “Measurement of the Scattering Matrix with an Intervening Ionosphere,” Transactions of the American Institute of Electrical Engineers 77(5):611-612, 1958.
Di Iorio et al., “Innovation Technologies and Applications for Coastal Archaeological sites FP7—ITACA,” 36th International Symposium on Remote Sensing of Environment, Berlin, Germany, May 11-15, 2015, pp. 1367-1373.
Evans, “Venus, Unmasked: 25 Years Since the Arrival of Magellan at Earth's Evil Twin,” Aug. 10, 2015, URL=http://www.americaspace.com/2015/08/10/venus-unmasked-25-years-since-the-arrival-of-magellan-at-earths-evil-twin/, download date Oct. 8, 2018, 4 pages.
Extended European Search Report, dated Mar. 27, 2018, for European Application No. 15829734.1-1206, 18 pages.
Extended European Search Report, dated Oct. 24, 2016, for European Application No. 14880012.1-1951, 10 pages.
Extended European Search Report, dated Oct. 24, 2016, for European Application No. 14883549.9-1951, 10 pages.
Fard et al., “Classifier Fusion of High-Resolution Optical and Synthetic Aperture Radar (SAR) Satellite Imagery for Classification in Urban Area,” 1st International Conference on Geospatial Information Research, Tehran, Iran, Nov. 15-17, 2014, 5 pages.
Forkuor et al., “Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa,” Remote Sensing 6(7):6472-6499, 2014.
Fox et al., “Apparatus and Methods for a Synthetic Aperture Radar With Multi-Aperture Antenna,” U.S. Appl. No. 62/510,182, filed May 23, 2017, 42 pages.
Fox et al., “Apparatus and Methods for a Synthetic Aperture Radar with Self-Cueing,” U.S. Appl. No. 62/510,132, filed May 23, 2017, 39 pages.
Fox et al., “Range Ambiguity Suppression in Digital Multibeam,” U.S. Appl. No. 62/590,153, filed Nov. 22, 2017, 19 pages.
Fox et al., “Synthetic Aperture Radar Imaging Apparatus and Methods for Moving Targets,” U.S. Appl. No. 62/510,191, filed May 23, 2017, 24 pages.
Fox, “Apparatus and Methods for Quad-Polarized Synthetic Aperture Radar,” U.S. Appl. No. 62/035,279, filed Aug. 8, 2014, 52 pages.
Fox, “Efficient Planar Phased Array Antenna Assembly,” U.S. Appl. No. 62/180,421, filed Jun. 16, 2015, 33 pages.
Fox, “Synthetic Aperture Radar Imaging Apparatus and Methods,” U.S. Appl. No. 62/260,063, filed Nov. 25, 2015, 41 pages.
Fox, “Synthetic Aperture Radar Imaging Apparatus and Methods,” U.S. Appl. No. 62/510,123, filed May 23, 2017, 74 pages.
Hadjis, “Automatic Modulation Classification of Common Communication and Pulse Compression Radar Waveforms Using Cyclic Features,” master's thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, USA, Mar. 2013, 96 pages.
Heege et al., “Mapping of water depth, turbidity and sea state properties using multiple satellite sensors in aquatic systems,” Hydro 2010, Rostock, Germany, Nov. 2-5, 2010, 27 pages.
Hoogeboom et al., “Integrated Observation Networks of the Future,” 4th Forum on Global Monitoring for Environment and Security, Baveno, Italy, Nov. 26-28, 2003, 14 pages.
Hounam et al., “A Technique for the Identification and Localization of SAR Targets Using Encoding Transponders,” IEEE Transactions on Geoscience and Remote Sensing 39(1):3-7, 2001.
Huang et al., “Analog Beamforming and Digital Beamforming on Receive for Range Ambiguity Suppression in Spaceborne SAR,” International Journal of Antennas and Propagation 2015:182080, 2015. (7 pages).
Huang et al., “ASTC-MIMO-TOPS Mode with Digital Beam-Forming in Elevation for High-Resolution Wide-Swath Imaging,” Remote Sensing 7(3):2952-2970, 2015.
International Preliminary Report on Patentability, dated Dec. 15, 2016, for International Application No. PCT/US2015/035628, 8 pages.
International Preliminary Report on Patentability, dated Feb. 14, 2017, for International Application No. PCT/US2015/043739, 10 pages.
International Preliminary Report on Patentability, dated Jun. 7, 2016, for International Application No. PCT/US2014/068642, 10 pages.
International Preliminary Report on Patentability, dated Jun. 7, 2016, for International Application No. PCT/US2014/068645, 14 pages.
International Preliminary Report on Patentability, dated May 29, 2018, for International Application No. PCT/US2016/063630, 6 pages.
International Search Report and Written Opinion, dated Aug. 27. 2015, for International Application No. PCT/US2014/068642, 13 pages.
International Search Report and Written Opinion, dated Sep. 13, 2018, for International Application No. PCT/US2018/033970, 15 pages.
International Search Report and Written Opinion, dated Sep. 13, 2018, for International Application No. PCT/US2018/033971, 13 pages.
International Search Report and Written Opinion, dated Sep. 13, 2018, for International Application No. PCT/US2018/034144, 11 pages.
International Search Report and Written Opinion, dated Sep. 13, 2018, for International Application No. PCT/US2018/034146, 8 pages.
International Search Report and Written Opinion, dated Sep. 2, 2015, for International Application No. PCT/US2014/068645, 16 pages.
International Search Report and Written Opinion, dated Sep. 21, 2015, for International Application No. PCT/US2015/035628, 10 pages.
Kimura, “Calibration of Polarimetric PALSAR Imagery Affected by Faraday Rotation Using Polarization Orientation,” IEEE Transactions on Geoscience and Remote Sensing 47(12):3943-3950, 2009.
Krieger et al., “CEBRAS: Cross Elevation Beam Range Ambiguity Suppression for High-Resolution Wide-Swath and MIMO-SAR Imaging,” International Geoscience and Remote Sensing Symposium, Milan, Italy, Jul. 26-31, 2015, pp. 196-199.
Krieger et al., “Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing,” IEEE Transactions on Geoscience and Remote Sensing 46(1):31-46, 2008.
Linne von Berg, “Autonomous Networked Multi-Sensor Imaging Systems,” Imaging Systems and Applications, Monterey, California, USA, Jun. 24-28, 2012, 2 pages.
Linne von Berg, “Multi-Sensor Airborne Imagery Collection and Processing Onboard Small Unmanned Systems,” Proceedings of SPIE 7668(1):766807, 2010. (11 pages).
Livingstone et al., “RADARSAT-2 System and Mode Description,” Systems Concepts and Integration Symposium, Colorado Springs, Colorado, USA, Oct. 10-12, 2005, 22 pages.
Lopez et al., “Systems and Methods for Earth Observation,” U.S. Appl. No. 61/911,914, filed Dec. 4, 2013, 177 pages.
Ma, “Application of RADARSAT-2 Polarimetric Data for Land Use and Land Cover Classification and Crop Monitoring in Southwestern Ontario,” master's thesis, The University of Western Ontario, Canada, 2013, 145 pages.
Maciejewski et al., “Systems and Methods for Processing and Providing Video,” U.S. Appl. No. 62/011,935, filed Jun. 13, 2014, 52 pages.
Makar et al., “Real-Time Video Streaming With Interactive Region-of-Interest,” Proceedings of 2010 IEEE 17th International Conference on Image Processing, Hong Kong, China, Sep. 26-29, 2010, pp. 4437-4440.
Meilland et al., “A Unified Rolling Shutter and Motion Blur Model for 3D Visual Registration,” IEEE International Conference on Computer Vision, Sydney, Australia, Dec. 1-8, 2013, pp. 2016-2023.
National Instruments, “Direct Digital Synthesis,” white paper, Dec. 30, 2016, 5 pages.
Notice of Allowance, dated Mar. 9, 2017, for U.S. Appl. No. 15/101,344, Beckett et al., “Systems and Methods for Processing and Distributing Earth Observation Images,” 9 pages.
Notice of Allowance, dated October 18, 2018, for U.S. Appl. No. 15/316,469, Maciejewski et al., “Systems and Methods for Processing and Providing Terrestrial and/or Space-Based Earth Observation Video,” 8 pages.
Office Action, dated Apr. 23, 2018, for U.S. Appl. No. 15/316,469, Maciejewski et al., “Systems and Methods for Processing and Providing Terrestrial and/or Space-Based Earth Observation Video,” 21 pages.
Office Action, dated Aug. 6, 2018, for U.S. Appl. No. 15/101,336, Lopez et al., “Systems and Methods for Earth Observation,” 25 pages.
Office Action, dated Feb. 11, 2019, for U.S. Appl. No. 15/502,468, Fox, “Apparatus and Methods for Quad-Polarized Synthetic Aperture Radar,” 42 pages.
Pleskachevsky et al., “Synergy and fusion of optical and synthetic aperture radar satellite data for underwater topography estimation in coastal areas,” Ocean Dynamics 61(12):2099-2120, 2011.
Preliminary Amendment, filed Dec. 15, 2017, for U.S. Appl. No. 15/737,044, Beckett et al., “Systems and Methods for Enhancing Synthetic Aperture Radar Imagery,” 10 pages.
Preliminary Amendment, filed December 5. 2016, for U.S. Appl. No. 15/316,469, Maciejewski et al., “Systems and Methods for Processing and Providing Terrestrial and/or Space-Based Earth Observation Video,” 9 pages.
Preliminary Amendment, filed June 2. 2016, for U.S. Appl. No. 15/101,336, Lopez et al., “Systems and Methods for Earth Observation,” 9 pages.
Preliminary Amendment, filed Jun. 2, 2016, for U.S. Application No. 15/101,344, Beckett et al., “Systems and Methods for Processing and Distributing Earth Observation Images,” 11 pages.
Preliminary Amendment, filed May 22, 2018, for U.S. Appl. No. 15/778,188. Fox, “Synthetic Aperture Radar Imaging Apparatus and Methods,” 9 pages.
Raouf et al., “Integrated Use of SAR and Optical Data for Coastal Zone Management,” Proceedings of the 3rd European Remote Sensing Symposium vol. 2, Florence, Italy, Mar. 14-21, 1997, pp. 1089-1094.
Richardson, “By the Doppler's sharp stare,” Oct. 1, 2003, Armada International, URL=https://www.thefreelibrary.com/_/print/PrintArticle.aspx?id=111508265, download date Oct. 8, 2018, 7 pages.
Rosen et al., “Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data,” International Geoscience and Remote Sensing Symposium, Vancouver, British Columbia, Canada, Jul. 24-29, 2011, pp. 1501-1504.
Rossler, “Adaptive Radar with Application to Joint Communication and Synthetic Aperture Radar (CoSAR),” doctoral dissertation, The Ohio State University, Columbus, Ohio, USA, 2013, 117 pages.
Sano et al., “Synthetic Aperture Radar (L band) and Optical Vegetation Indices for Discriminating the Brazilian Savanna Physiognomies: A Comparative Analysis,” Earth Interactions 9(15)05, 2005. (15 pages).
{hacek over (S)}indelá{hacek over (r)} et al., “A Smartphone Application for Removing Handshake Blur and Compensating Rolling Shutter,” IEEE International Conference on Image Processing, Paris, France, Oct. 27-30, 2014, pp. 2160-2162.
{hacek over (S)}indelá{hacek over (r)} et al., “Image deblurring in smartphone devices using built-in inertial measurement sensors,” Journal of Electronic Imaging 22(1):011003, 2013. (22 pages).
Stofan et al., “Overview of Results of Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR),” IEEE Transactions on Geoscience and Remote Sensing 33(4):817-828, 1995.
Stralka, “Applications of Orthogonal Frequency-Division Multiplexing (OFDM) to Radar,” doctoral dissertaion, Johns Hopkins University, Baltimore, Maryland, USA, Mar. 2008, 196 pages.
Tyc, “Systems and Methods for Remote Sensing of the Earth From Space,” U.S. Appl. No. 62/180,440, filed Jun. 16, 2015, 29 pages.
Wall et al., “User Guide to the Magellan Synthetic Aperture Radar Images,” Jet Propulsion Laboratory, Pasadena, California, USA, Mar. 1995, 210 pages.
Wu et al., “Simultaneous transmit and receive polarimetric synthetic aperture radar based on digital beamforming,” 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, Xi'an, China, Dec. 12-13, 2015, pp. 1283-1288.
Xia et al., “Classification of High Resolution Optical and SAR Fusion Image Using Fuzzy Knowledge and Object-Oriented Paradigm,” Geographic Object-Based Image Analysis vol. XXXVIII-4/C7, Ghent, Belgium, Jun. 29-Jul. 2, 2010, 5 pages.
Office Action from related U.S. Appl. No. 16/616,362, dated Mar. 10, 2022.
Canadian Office Action from related matter 2,980,920, dated Mar. 15, 2020.
Related Publications (1)
Number Date Country
20200096630 A1 Mar 2020 US