Synthetic fiber ball

Information

  • Patent Grant
  • 11993876
  • Patent Number
    11,993,876
  • Date Filed
    Tuesday, March 31, 2015
    9 years ago
  • Date Issued
    Tuesday, May 28, 2024
    6 months ago
Abstract
A synthetic fiber ball and method of manufacturing the same is disclosed. The fiber ball includes a plurality of fibers having a predetermined length bound together with a fastening fiber at a central core. The plurality of fibers extend outwardly from the fastening fiber at the central core to form a generally spherical shaped ball. The plurality of fibers are heat shrunk in a spinning oven from a generally cylindrical shaped fiber bundle having a predetermined diameter to form the fiber ball.
Description
FIELD OF THE INVENTION

The present invention relates generally to a ball, and more particularly, to a synthetic fiber ball that looks, feels, and sounds like a snowball.


BACKGROUND

Playing with snowballs is a childhood past time that many children that have the opportunity do. Unless there is snow on the ground, children, and adults for that matter, cannot play with snowballs. In addition, children must go outside to play with snowballs if snow is on the ground and weather conditions may make such ventures unhealthy. As such, a need exists for a way to play with a snowball like object without the need to have snow and venture outside in dangerous weather conditions.


SUMMARY

A fiber ball is disclosed that looks like a snowball, feels like a snowball and sounds like a snowball when compressed. In addition, a method of manufacturing a fiber snowball is disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is further elucidated in the following on the basis of an exemplary embodiment shown in the drawings.



FIG. 1 illustrates a fiber snowball.



FIG. 2 illustrates a cross-section of the fiber snowball illustrated in FIG. 1.



FIG. 3 illustrates a fiber bundle strand.



FIG. 4 illustrates a cut fiber bundle.



FIG. 5 illustrates the steps used to manufacture the fiber ball.



FIG. 6 illustrates the machines used to manufacture the fiber ball.





DETAILED DESCRIPTION

Referring to FIG. 1, a synthetic or non-synthetic fiber ball 10 is disclosed that includes all of the qualities of a regular soft packed ball that can be used for a variety of indoor or outdoor games and entertainment. In one form, the synthetic ball 10 is formed having a generally circular or ball shape, but other shapes are envisioned, such as a football shape, for example. The synthetic ball 10 is soft, resilient, machine washable, and can be formed in a variety of sizes. In one form, the synthetic ball 10 is sold as a bundle of balls 10 that can be used in a simulated ball fight game that can be held indoors throughout the year. The synthetic balls 10 are soft and scrunchy that no matter how fast they are thrown, they will cause no discomfort upon impact. The synthetic balls 10 are designed to compress or deform upon impact to disperse energy and then recover to their original form after impact.


Synthetic fibers are fibers that are generally created as the result of research to improve naturally occurring animal and plant fibers. In general, synthetic fibers are created by forcing, usually through extrusion, fiber forming materials through holes (called spinnerets) into the air, forming a bead. Synthetic fibers can also be made from synthesized polymers or small molecules. Non-synthetic fibers are fibers that are formed from animals (such as cotton) and plant fibers.


Referring to FIG. 2, the synthetic ball 10 comprises a fastening fiber 12 that is located at a central core of the ball 10. In one form, the fiber ball 10 has a radius from the central core of the fiber ball 10 of about 1.5 inches. As such, the diameter of the fiber ball 10 is about 3 inches. Extending outwardly from the fastening fiber 12 are a plurality of fibers 14. The fibers 14 extend outwardly from the fastening fiber 12 such that a generally spherical shaped ball is formed. As set forth in greater detail below, the balls 10 are formed through a unique manufacturing process that creates a unique look and feel to the balls 10.


Referring to FIG. 3-6, the first step in creating the balls 10 is a process called fiber bundling 20. At this step, a fiber bundling machine 30 is used to bundle the fibers 14 to a predetermined size thereby creating a fiber bundle strand 22. As such, the fiber bundling machine 30 bundles the fibers 14 together by gathering each single fiber 14 on each fiber reel 32 together up into the fiber bundle strand 22. It should be appreciated that a plurality of fiber reels 32 are used to create the fiber bundle strand 22. In the preferred form, the fiber bundle 22 has a generally cylindrical or tubular shape with a diameter of about 2 inches. After the fiber bundle strand 22 is formed, the fastening fiber 12 is placed at predetermined points 24 along the fiber bundle strand 22. In one form, the fiber bundling machine 30 is used to place the fastening fiber 12.


The next step in forming the balls 10 is a process of bundle cutting 40. In this step, a bundle cutting machine 34 is used to cut the fiber bundle strand 22 at a required length. The distance from the fastening fiber 12 to both cut ends 26 must be equal. In one form, the distance from the fastening fiber 12 to both cut ends 26 is about 2.5 inches. Equal distance makes the fiber ball 10 round after the shaping oven process is complete. Non-equal distance will result in non-round fiber balls. As a result of this step, a generally cylindrical shaped cut fiber bundle 28 is formed which is illustrated in FIG. 4.


Once the generally cylindrical shaped cut fiber bundles 28 are formed, the next step in the process of creating the fiber balls 10 is shaping 50. At this step, a spinning oven 36 is used to shape the generally cylindrical shaped cut fiber bundles 28 into the fiber ball 10. This process is very critical to make the fiber ball 10 feel like a snowball and sound like a snowball. In one form, the spinning oven 36 is set up at 80° C. and the cut fiber bundles 28 are heated for about 10-12 minutes. In another form, the spinning oven 36 is set up at 100° C. and the cut fiber bundles are heated for about 8 minutes. In yet another form, the spinning oven 36 is set up at 120° C. and the cut fiber bundles are heated for about 6 minutes. The spinning oven 36 is also set at a predetermined spinning speed to properly form the fiber ball 10.


The temperature and timing is critical to make the fiber ball 10 at just the right size and hardness. If the temperature is set up to high or the timing is longer, then the fiber ball 10 will be too hard and will not remain in a good looking snowball type shape and will not feel like a snowball or sound like a snowball. If the temperature is set too low or the timing is too short, then the fiber ball 10 will come out too soft and will not remain in a good looking shape and cannot come back to a ball shape after impact. The spinning oven 36 must also continuously spin during the shaping process. During the shaping process, the cut fiber bundles 28 shrink to form the fiber ball 10.


Although embodiments of the invention have been described using specific terms, such description is for illustrative purposes only, and it is to be understood that changes and variations obvious to the skilled artisan are to be considered within the scope of the claims that follow and their equivalents.

Claims
  • 1. A synthetic fiber ball that mimics the look and feel of a snowball by emitting scrunchy tactile sensations when manually compressed, comprising a fiber ball made from a cut fiber bundle made by bundling a plurality of individual fiber beads formed by forcing fiber material through a spinneret and binding said bundled fiber beads together with a fastening fiber at a central core and cutting said bundled fiber beads at a predetermined length from said fastening fiber so that said predetermined length of said bundled fiber beads on each side of said fastening fiber is approximately equal, so that said plurality of individual fiber beads extend outwardly and away from said fastening fiber at said central core to form a generally spherical shaped ball having a predetermined diameter of about three inches after said cut fiber bundle is heated in a spinning oven at a predetermined temperature wherein said predetermined temperature is in the range of about 80° C. to about 120° ° C. and for a predetermined duration wherein the predetermined duration is in the range of about 6 minutes to about 12 minutes.
  • 2. The fiber ball of claim 1, wherein said predetermined temperature is about 100° C.
  • 3. The fiber ball of claim 1, wherein said predetermined duration is about 8 minutes.
  • 4. The fiber ball of claim 1, wherein said predetermined temperature is about 100° C., and said predetermined duration is about 8 minutes.
  • 5. The fiber ball of claim 1, wherein said predetermined temperature is about 120° C.
  • 6. The fiber ball of claim 1, wherein said predetermined duration is about 6 minutes.
  • 7. The fiber ball of claim 1, wherein said predetermined temperature is about 120° C., and said predetermined duration is about 6 minutes.
  • 8. The fiber ball of claim 1, wherein said fiber ball looks and feels like a snowball such that its size and appearance resemble that of a snowball manually compressed by the user.
  • 9. The fiber ball of claim 1, wherein said fiber ball is operable to compress upon impact and then recover to its original form after impact.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of application Ser. No. 13/909,560 filed on Jun. 4, 2013 and now U.S. Pat. No. 8,992,356.

US Referenced Citations (28)
Number Name Date Kind
1548531 Knight Aug 1925 A
2213013 Owen Aug 1940 A
2450474 Grobner Oct 1948 A
2703433 Holzmann Mar 1955 A
3759518 Mroz Sep 1973 A
4104015 Meyer Aug 1978 A
4131276 Judkins Dec 1978 A
4585676 DeSmet et al. Apr 1986 A
4634812 Nelson et al. Jan 1987 A
4679998 Dreibelbis Jul 1987 A
4724175 LaBrosse et al. Feb 1988 A
4756529 Stillinger Jul 1988 A
4884807 Welch Dec 1989 A
4962926 Chen Oct 1990 A
5002474 Hoekstra Mar 1991 A
5476267 Gertsikov Dec 1995 A
5516099 Strong May 1996 A
5587239 Ueba Dec 1996 A
5932165 Corbett Aug 1999 A
6280356 Sendeen Aug 2001 B1
6500076 Morgan Dec 2002 B1
7857608 Fabbricante et al. Dec 2010 B2
9187850 Sheffer Nov 2015 B1
20020055398 Halko May 2002 A1
20030135968 Veloce Jul 2003 A1
20070270233 Ruston Nov 2007 A1
20100078848 Gabriele et al. Apr 2010 A1
20100311528 Golden-Morace Dec 2010 A1
Foreign Referenced Citations (15)
Number Date Country
2075100 Apr 1991 CN
2075100 Apr 1991 CN
2471573 Jan 2002 CN
2574762 Sep 2003 CN
2574762 Sep 2003 CN
0811710 Dec 1997 EP
2474071 Jul 1981 FR
2 745 593 Sep 1997 FR
2745593 Sep 1997 FR
2384849 Aug 2003 GB
01280056 Nov 1989 JP
04202837 Jul 1992 JP
H04202837 Jul 1992 JP
H0672349 Sep 1994 JP
0811710 Dec 1997 JP
Non-Patent Literature Citations (1)
Entry
Tiny Crafts, LLC Fuzzy Pom Poms product, Date: Unknown Date: Jun. 27, 2023.
Related Publications (2)
Number Date Country
20230002944 A1 Jan 2023 US
20230158370 A9 May 2023 US
Divisions (1)
Number Date Country
Parent 13909560 Jun 2013 US
Child 14675061 US