The invention relates in general to a rope construction and in particular to a synthetic fiber rope construction.
Existing synthetic fibre rope solutions for the applications in hoisting and pulling e.g. winches and cranes have generally utilised braided rope constructions partially or entirely made from high modulus polyethylene (HMPE). Due to strand cross-overs, followed by lower packing factors and lower radial stability, such constructions may have intrinsically inferior performance properties, e.g. lower strength and inferior fatigue life. The use of braided constructions has also tended to limit material choices to HMPE, liquid crystal polymer (LCP) or HMPE/LCP blends since the internal abrasion generated by the strand cross-over in braided constructions may not be optimal for aramid materials and lead to premature failure compared with a braided HMPE rope. To overcome radial stiffness issue, some braided rope designs have utilised non-load bearing central cores (e.g. continuous filament polyester bundles or extruded polyurethane) to the otherwise hollow braided constructions to improve radial stability. However, this addition is at the expense of global material fill factor.
Specialised construction of synthetic fiber ropes are desired for high fiber strength conversion efficiency and fatigue resistance.
It is a main object of the present invention to develop a synthetic fiber rope in particular suitable for critical applications, e.g. applications with high operating temperatures, high tensions (safety factors below 3), low bending radius and high duty cycles.
It is another object of the present invention to devise a synthetic fiber rope having considerably increased strength, increased resistance to fatigue and having increased radial stability.
According to a first aspect of the present invention, there is provided a synthetic fiber rope comprising
a core, said core being a laid or braided synthetic fiber strand,
a polymer layer, said polymer layer covering said core,
a first layer, said first layer having at least six first synthetic fiber strands laid in a first direction surround said polymer layer, and
a second layer, said second layer having at least twelve second synthetic fiber strands laid in a second direction surround said first layer.
Herein, “layer” is also referred as jacket, cover or coating in prior art. The core of the synthetic fiber rope may have an area in a range of 5 to 10% of the total net polymeric cross-section area of the synthetic fiber rope. Herein, “net polymeric cross-section area” is load bearing material area or polymeric material area. The core can be a laid rope similar in shape and function to an independent wire rope core (also known as an IWRC wire rope) in a steel wire rope. The core can also have a braided layer before the application of the covering polymer layer.
The core of the synthetic fiber rope is covered, e.g. by extrusion, by a polymer layer. The polymer layer may be extruded in either round or fluted formation or of a special profile, and manufactured from a variety of materials including polypropylene (PP), polyethylene (PE), PP/PE blends, nylon (polyamide), Hytrel® and Arnitel®. The thickness of the extruded polymer layer is preferably in the range of 0.1 to 5 mm. More preferably, the thickness is greater than 0.5 mm. The extruded polymer layer increases transverse rigidity and bending stiffness of the synthetic fiber rope and reduces rotation too.
The first layer can be formed of between 6 and 12, preferably from 6 to 9 strands laid around the core. The second layer can be formed of between 12 and 24, preferably from 16 to 24 strands laid around the first layer. The number of strands in the second layer is selected according to rope diameter to maximise a high area contact and minimize contact pressure. The first layer or the second layer may have a load bearing area in a range of 40 to 60% of the total load bearing cross section area of the synthetic fiber rope.
A lay direction indicates the direction in which the strands of the rope are laid around the center strand. “S” direction or “S-lay” means the outer strands are laid in left hand direction around the center strand. “Z” direction or “Z-lay” means the outer strands are laid in right hand direction around the center strand. According to the invention, the first synthetic fiber strands and the second synthetic fiber strands are preferably laid in opposite directions: When the first synthetic fiber strands are laid in “S” direction, the second synthetic fiber strands are laid in “Z” direction; When the first synthetic fiber strands are laid in “Z” direction, the second synthetic fiber strands are laid in “S” direction.
Lay factor is the ratio of the lay length to the external diameter of the corresponding layer of strands or members in the stranded rope. Herein, lay length (length of lay) is the axial length for one revolution of a strand or member in a layer of a stranded rope.
In the present invention, the core, the first layer and the second layer has a lay factor in a range from 3 to 15, preferably from 5 to 8, and more preferably from 5.5 to 6.5. It is even more preferable that the core has a lowest lay factor, and the first layer has a lower lay factor than the second layer. As an example, the core has a lay factor of 5.5 to 6, the first layer has a lay factor of 6.25 and the second layer has a lay factor of 6.5. The selection of these lay factors gives each layer of the rope near identical load-elongation properties ensuring that all fibers are nearly loaded equally.
According to the invention, the first layer and/or the second layer may be covered with a protective layer. The protective layer can be braided and/or extruded. This would make the synthetic fiber rope easy to handle. This also provides abrasion and snag protection to the synthetic fiber rope.
In addition, the first synthetic fiber strands and the second synthetic fiber strands can be individually covered with a braided or extruded layer.
Alternatively, the first synthetic fiber strands and the second synthetic fiber strands are not individually covered with a braided or extruded layer. This can minimise void spaces and optimum fiber density. This design has a higher packing factor than the design with strands individually covered. In traditional wire rope constructions, each additional layer has six more strands than the layer below, so that nesting provides optimum fiber density, e.g. 1-6-12-18 construction. The invention construction does not follow this approach. Eliminating the need for nesting allows lay length and number of strands in outer layer to be independent of inner layer. Numbers of strands need not be multiple of previous layer and/or multiple of six. For instance, in the present invention the second layer could contain twenty strands while the first layer contains six strands. This in turn improves the torque/turn response of the design (and the possibility for optimisation), particularly the non-linear response from constructional stretch in bedding process. In this respect, nesting is a negative requirement of historical designs and not necessary in the invention construction.
Synthetic yarns that may be used in the synthetic fiber rope according to the invention include all yarns, which are known for their use in fully synthetic ropes. Such yarns may include yarns made of fibers of polypropylene, nylon, polyester. Preferably, yarns of high modulus fibers or blended high modulus synthetic fibers are used, for example yarns of fibers of ultra-high molecular weight polyethylene (UHMwPE or UHMPE) such as Dyneema® or Spectra®, high molecular weight polyethylene (HMwPE or HMPE), aramid such as poly(p-phenylene terephthalamide) (PPTA, known as Kevlar® and Twaron®), co-poly-(paraphenylene/3,4′-oxydiphenylene terephthalamide) (known as Technora®), liquid crystal polymer (LCP) and poly(p-phenylene-2,6-benzobisoxazole (PBO). The high modulus fibers preferably have a break strength of at least 2 GPa and tensile modulus preferably above 100 GPa.
Synthetic fibers, i.e. the material used in the synthetic fiber rope can be combined in one or more of the ways below:
i) The two materials are combined during twisting of rope yarns (Rope yarn is multiple flat yarns (supplied from yarn manufacturer) twisted together).
ii) A proportion of the rope yarns are replaced during stranding with identically sized rope yarns of alternate material.
iii) A king yarn of different material may be included in the strand. King yarn is the rope yarn at the centre of a strand.
iv) Layers of rope are of different materials.
As an example synthetic fiber rope, at least one of the core, the first layer or the second layer comprises two different high modulus synthetic fibers. As another example the core, the first layer and the second layer are made from different high modulus synthetic fibers.
In the invention rope constructions, the ropes are made up of strands. The strands are made up of rope yarns, which contain synthetic fibers. In the present invention, preferably a synthetic fiber filament has a diameter in the range of 10 to 30 μm, a rope yarn has a diameter in the range of 0.1 mm to 4 mm, a strand has a diameter in the range of 4 mm to 10 mm, and a rope has a diameter more than 10 mm. Methods of forming yarns from fiber, strands from yarn and ropes from strands are known in the art. Strands themselves may also have a plaited, braided, laid, twisted or parallel construction, or a combination thereof. In the invention, preferably at least one of the first synthetic fiber strands and the second synthetic fiber strands in the invention is made from twisted yarns and comprises two or three layers or more of rope yarns. More preferably, all the first synthetic fiber strands and all the second synthetic fiber strands are twisted rope yarn strands. Such a strand is made up of multiple rope yarns stranded around a king rope yarn or inner layer of strand. Most preferably, the two or three layers of laid yarn are laid in different directions, e.g. laid in “SZ”, “ZS”, “SZS” or “ZSZ” directions.
A synthetic rope according to the present invention can be used on winches, cranes and other pulling and hoisting devices e.g. abandonment and recovery (A&R), knuckle boom crane, riser pull in, riser tensioners, drag shovel hoist, anchor lines and deep shaft hoisting drum and friction winding applications. In these applications, particular demands are placed on a rope as it passes over sheaves and pulleys, is wound under tension onto a drum containing multiple layers or is progressively loaded by friction through a traction drive. The design of the present invention enables it to be integrated onto such systems designed for steel wire rope with minimal system modification and reduces internal wear and fretting mechanisms, where duty cycles or tensions are high.
The invention enables synthetic fiber ropes of stranded construction to be manufactured with a combination of various materials and with low and predictable rotation properties, high bending fatigue resistance, high strength and high radial stability and stiffness and in high continuous lengths for the relevant applications (e.g. 5 km or more).
The invention will be better understood with reference to the detailed description when considered in conjunction with the non-limiting examples and the accompanying drawings, in which:
The extruded polymer layer 14 can be in a tubular formation and can be manufactured from a variety of materials including polypropylene (PP), polyethylene (PE), PP/PE blends, nylon, Hytrel® and Arnitel®.
The lay factors and the closing directions of each layer are shown in table 1 below. In this content, closing direction “A” or “B” refers to either left or right twist directions (“S” or “Z”), and “A” and “B” refer to different twist directions.
Here, the first synthetic fiber strands 17 and the second synthetic fiber strands 19 have two or three layers or levels. As shown in
Each strand can be applied without cover or coating. Alternatively, each strand can also have a protective cover of braided layer or coating/extrusion applied.
Rope yarn may have a lay factor of 15-25 in all layers, except for king yarns which use a lay factor of between 6-10 for the core inner and 8-12 for the core outer, the first layer and second layer.
A series of twist directions as shown in table 3 and 4 reduce internal contact angles (increased resistance to internal wear), maximise external wear resistance, reduce torque and rotation characteristics and give optimised strength conversion.
The invention synthetic fiber rope has a number of features to give the advances in performance with a combination of low and predictable rotation properties, high bending fatigue resistance, high strength and high radial stability and stiffness.
It should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the inventions embodied herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention.
10, 40 synthetic fiber rope
12, 42 fiber core
14, 44 extruded polymer layer
17, 46 first layer
16 valley between first synthetic fiber strands
19, 48 second layer
18 valley between second synthetic fiber strands
30 strand
32 king yarn
34 inner level
35, 37 rope yarn
36 outer level
Number | Date | Country | Kind |
---|---|---|---|
18250010.8 | Mar 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/057298 | 3/22/2019 | WO | 00 |