The present technology relates to synthetic flooring and more particularly to devices and methods for absorbing a load placed on a top surface of a modular synthetic floor tile.
Suspended flooring and modular floor tiles have been used for numerous years in connection with improved safety, appearance, and function. In recent years, synthetic modular flooring products have been used for these purposes and more frequently used in connection with sporting events. Many of these flooring products, however, offer little to no impact absorbing characteristics resulting in increased fatigue or injury from walking, running, jumping, or other activities on the flooring. Namely, in order to ensure the top surface of the floor is sufficiently firm to provide “ball-bounce” characteristics and provide sufficient friction, synthetic floor tiles are made from a rigid or semi-rigid material which yields very little under normal use.
Attempts have been made to improve the impact absorbing characteristics of synthetic flooring products. Examples include, but are not limited to U.S. Pat. Nos. 7,587,865, 7,748,177, and 8,505,256, but each technology described in those cases contains deficiencies. It is therefore desirable to have a synthetic flooring product with improved impact absorbing characteristics.
The present technology will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings merely depict exemplary aspects of the present technology, they are therefore not to be considered limiting of its scope. It will be readily appreciated that the components of the present technology, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Nonetheless, the technology will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The following detailed description of exemplary aspects of the technology makes reference to the accompanying drawings, which form a part hereof and in which are shown, by way of illustration, exemplary aspects in which the technology may be practiced. While these exemplary aspects are described in sufficient detail to enable those skilled in the art to practice the technology, it should be understood that other aspects may be realized and that various changes to the technology may be made without departing from the spirit and scope of the present technology. Thus, the following more detailed description of the aspects of the present technology is not intended to limit the scope of the technology, as claimed, but is presented for purposes of illustration only and not limitation to describe the features and characteristics of the present technology and to sufficiently enable one skilled in the art to practice the technology. Accordingly, the scope of the present technology is to be defined solely by the appended claims.
The following detailed description and exemplary aspects of the technology will be best understood by reference to the accompanying drawings, wherein the elements and features of the technology are designated by numerals throughout.
The present technology describes an improved modular floor tile having a top surface comprising a plurality of rib or structural members defining openings between the rib members. “Openings” refers to holes, gaps, or spaces through which a fluid or other object may pass. A perimeter of the tile is defined by outer edge surfaces. A support system is integrally formed from and disposed at least partially beneath the top surface. Generally speaking, the support system is capable of maintaining the top surface elevated above a ground surface. The support system comprises a primary support member disposed within the openings between the rib members. That primary support member is operably connected to a plurality of arms extending outward from the primary support member. The primary support member is configured for vertical movement within the opening when a load is applied to the top surface causing the arms to flex. A plurality of secondary support members, which are elevated above the ground surface when the tile is in an unbiased state, limit the vertical movement of the primary support member within the opening thereby limiting the downward movement of the tile when placed under a load. In this manner, loads placed on the top of the tile are absorbed by the flexing arms and further absorbed by the secondary support members.
With specific reference to
The modular tile 10 includes a top surface 15 with an opposite bottom side 20. The top surface 15 can be smooth, perforated, grid-like, bumped, textured, or have any other configuration as suits a particular purpose for a synthetic floor covering. The top surface 15 includes a periphery with a square or rectangular shape defining a front side 25, a rear side 26, and opposing first and second sides 27, 28. Other suitable peripheral shapes for the tiles are contemplated herein such as triangular, hexagonal, etc. Each of the front side, rear side, and first and second sides include side walls 30 with one or more male or female coupling members 35, 36 for adjoining adjacent tiles. Male member 35 comprises a downward post structure 37 with a laterally extending tab 38. The female member 36 comprises a loop 39 configured to receive the post structure 37 therein with the tab member 38 positioned beneath the sidewall 40.
Additional male and female coupling members are disposed about the sides of the tiles and configured to provide additional connection for the tiles. Male post member 41 is disposed about the bottom side 20 of the tile 10 and is configured to be positioned within the opening 42 in female member 43. Female member 43 is configured for placement within aperture 44 in sidewall 30. Male post member 41 comprises a general I-shape having a longitudinal axis substantially equivalent in length to the longitudinal length of the opening 42 in female member 43. The height of the aperture 44 is equivalent to the height of the female member 43.
With reference generally to
In one aspect of the technology, the post structure is generally cross-shaped. However, the use of different shapes and configurations (cylindrical, rectangular, triangular, etc.) are contemplated for use herein so long as the support function is accomplished. The primary support post 60 is formed from the same material used for the top surface 15 of the tile 10 and arms 61. In one aspect of the technology, the support posts 60 are formed from the same mold used to form the entire tile 10. The primary support posts 60 are coupled to the tile 10 by a plurality of arms 61 extending outward from primary support posts 60. The primary support posts 60 are disposed within the center of the opening 16 having arms 61 extending laterally away from the post and connecting to the ribs 51 at the vertex 55 of intersecting rib members. The arms 61 are generally rectangular but may also be triangular, circular, or shaped like a rhombus or other desirable shape. In one aspect of the invention, the arms have substantially parallel top and bottom surfaces. The top surface is narrower than the bottom surface and substantially centered over the top surface. The side surface tapers outwardly from the top surface to the bottom surface.
When moving on a conventional floor, the force associated with jumping, walking, or running on the floor is transferred directly between the floor and the foot of the person. This results in fatigue and possible injury. Advantageously, with aspects of the present technology, when a load is placed on the top surface 15 of the tile 10, the arms 61 flex, allowing the tile 10 to move downward. Because the top 62 of the primary support posts 60 is located within the opening 16 and is unencumbered by a rigid material above the structure, the ribs 51 move downward over the primary support posts 60 as the arms 61 flex. The flexing operation of the arms absorbs some of the impact associated with the load placed on the top of the tile and thereby lessens the transfer of force from the ground to the foot of the person.
In one aspect of the technology, a top 62 of the primary post structure 60 is disposed below the upper plane of the opening 16 but above the bottom plane of the opening 16. The arms 61 are connected to the primary post 60 near the top 62 of each portion of the cross 64 forming the primary support post 60. A taper on the top 65 and bottom 66 portion of each arm 61 is formed as a transition between the arm 61 and primary support posts 60. A bottom of the arm 61 is coplanar with a bottom 53 of the ribs 51. However, in another aspect, a top of the arm 61 is coplanar with a top 52 of the ribs 51. In one aspect of the technology, the arms 61 extend outward from the primary support post 60 near the top 62 or directly from the top 62, though the arms 61 may connect to the primary support post 60 at any location along the support posts 60 as suits a particular design.
For example, with reference generally to
With reference now to
With reference generally to
In another aspect of the technology, the top 62 of the primary support post 60 can be disposed beneath the opening 16 when the tile 10 is in an unbiased state. When a load “L” is placed on the top 15 of the tile, the top 62 of the primary support post 60 can advance upward to beneath the upper surface 52 of ribs 51, co-planar with the upper surface 52 (as shown in FIG. 7), or above the upper surface 52 of the ribs 51 as suits a particular application. The sidewalls 40 about the perimeter of the tile 10 are also configured to have a length similar to the length of the secondary support posts 70. In this manner, the sidewalls 40 also limit the vertical travel of the primary support post 60. In addition, while the top 62 of the primary support post 60 is shown as planar, it may also have a dome-like structure. In this manner, if it is desired that the top 62 of the primary support post 60 terminate in its vertical travel slightly above the top surface 52 of the rib members 51, additional traction may be created without creating unwanted abrasion.
In accordance with one aspect of the technology, and by way of example only, the rib members 51 range from approximately 0.05 to 0.25 inches wide and 0.05 to 0.5 inches in height. The primary post structure 60 ranges from 0.25 to 1 inch in height and the secondary post structures 70 range from 0.25 to 1 inch in height. The area within the openings 16 can range from 0.15 square inches to 3.25 square inches and can be rectangular as shown in
While specific reference is made herein to an open-top tile configuration, a closed-top tile configuration is also contemplated. In one aspect of the technology, intersecting rib members 51 may not act as the upper contact surface for the end-user of the tile 10. Rather, a substantially planar playing surface may be placed on the rib structure described herein with modifications to the placement and design of the primary support post 60 within the opening 16. In this aspect, the distance between the top 62 of the primary support post 60 and the bottom of the planar surface is greater than the distance 71 between the bottom of secondary support posts 70 and the ground surface. In this manner, the flexing action of arms 61 absorbs impact on the top surface of the tile 10. The vertical travel of the primary support post 60 is limited by the secondary support posts 70, not by any encumbrance between the top 62 of the primary support post 60 and the bottom of the planar playing surface.
While specific reference is made herein to a top surface 15 comprising intersecting ribs 51, it is understood and contemplated herein that a number of surface configurations may be used. For example, a substantially solid top surface may be used having a plurality of openings disposed therein. The openings may be circular, rectangular, or triangular, or any other desirable shape, and can be molded as part of the tile. Importantly, whatever the shape of the opening and whatever the configuration of the top surface (be it intersecting ribs or otherwise), a primary support post is disposed substantially within the center of the opening; the primary support post having at least two arms extending outward from the support post and being coupled to the tile in some fashion. As noted above, the arms can couple to the sidewall of the opening, a corner of the opening, secondary support members (also discussed above) or to a bottom portion of the tile and flex in response to a load being placed on a top of the tile, allowing vertical travel of the primary support post.
In one aspect of the technology, a flexible or compressible material (such as rubber or the like) may be placed beneath the tile to further absorb the load. In this aspect, the secondary support members are substantially shorter than the primary support members and the flexible material is placed about the bottom of the tile to further absorb the load placed on the top of the tile and limit the flexing action of the arms. The secondary support posts contact the ground only after the flexible material is compressed.
In accordance with one aspect of the technology, more than one primary support post can be placed within any one opening of the tile. For example, two primary support posts can be placed within the center of a rectangular opening. The two primary support posts can be connected by a single arm. Two arms can extend from each one of the primary support posts and couple with the two closest vertices of the rectangular opening.
A method of absorbing at least a portion of a load applied to a top of a flooring surface is also contemplated herein. The method comprises providing a modular floor tile disposed about a ground surface. The floor tile comprises a substantially flat upper playing surface having a plurality of ribs with spaces between the ribs, a bottom surface, and side surfaces forming a periphery about the tile. A plurality of secondary support posts are formed from and extend downward from the bottom of the floor tile. A plurality of vertically moveable primary support posts are disposed within the opening between the ribs and coupled to the ribs by a plurality of flexible arms extending laterally outward from the primary support posts and integrally formed with the ribs. The flexible arms are biased to position the vertical support members downward such that a bottom of the secondary support posts is elevated a distance above the ground surface when the tile is in an unloaded state. A load is placed on the upper playing surface causing the plurality of arms to flex facilitating upward movement of the vertically moveable primary support posts within the opening of the ribs and concurrent downward movement of the floor tile until the bottom of the secondary support members contact the ground surface. The method further comprises releasing the load on the upper playing surface causing the plurality of arms to return to a biased state, positioning the primary support members downward and elevating the secondary support posts above the ground surface.
The foregoing detailed description describes the technology with reference to specific exemplary aspects. However, it will be appreciated that various modifications and changes can be made without departing from the scope of the present technology as set forth in the appended claims. The detailed description and accompanying drawings are to be regarded as merely illustrative, rather than as restrictive, and all such modifications or changes, if any, are intended to fall within the scope of the present technology as described and set forth herein.
More specifically, while illustrative exemplary aspects of the technology have been described herein, the present technology is not limited to these aspects, but includes any and all aspects having modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the foregoing detailed description. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the foregoing detailed description or during the prosecution of the application, which examples are to be construed as non-exclusive. For example, in the present disclosure, the term “preferably” is non-exclusive where it is intended to mean “preferably, but not limited to.” Any steps recited in any method or process claims may be executed in any order and are not limited to the order presented in the claims. Means-plus-function or step-plus-function limitations will only be employed where for a specific claim limitation all of the following conditions are present in that limitation: a) “means for” or “step for” is expressly recited; and b) a corresponding function is expressly recited. The structure, material or acts that support the means-plus-function are expressly recited in the description herein. Accordingly, the scope of the technology should be determined solely by the appended claims and their legal equivalents, rather than by the descriptions and examples given above.