Synthetic jet actuators are a widely-used technology that generates a synthetic jet of fluid to influence the flow of that fluid over a surface to disperse heat away therefrom. A typical synthetic jet actuator comprises a housing defining an internal chamber. An orifice is present in a wall of the housing. The actuator further includes a mechanism in or about the housing for periodically changing the volume within the internal chamber so that a series of fluid vortices are generated and projected in an external environment out from the orifice of the housing. Examples of volume changing mechanisms may include, for example, a piston positioned in the jet housing to move fluid in and out of the orifice during reciprocation of the piston or a flexible diaphragm as a wall of the housing. The flexible diaphragm is typically actuated by a piezoelectric actuator or other appropriate means.
Typically, a control system is used to create time-harmonic motion of the volume changing mechanism. As the mechanism decreases the chamber volume, fluid is ejected from the chamber through the orifice. As the fluid passes through the orifice, sharp edges of the orifice separate the flow to create vortex sheets that roll up into vortices. These vortices move away from the edges of the orifice under their own self-induced velocity. As the mechanism increases the chamber volume, ambient fluid is drawn into the chamber from large distances from the orifice. Since the vortices have already moved away from the edges of the orifice, they are not affected by the ambient fluid entering into the chamber. As the vortices travel away from the orifice, they synthesize a jet of fluid, i.e., a “synthetic jet.”
It is recognized that vibration propagation and acoustic noise are negative aspects of synthetic jet operation. With respect specifically to vibration propagation, it is highly desirable to prevent vibrations from be transmitted from the moving surfaces of the synthetic jet to a mounting structure to which it is attached and/or passed on to the surrounding structures or surfaces the mounting structure is attached to. While providing a mounting structure that minimizes vibration propagation is achievable, such mounting structures also should be designed so as not to dampen the airflow output of the synthetic jet actuator, as can occur if the synthetic jet actuator is restrained rigidly to a fixed stationary surface.
It would therefore be desirable to provide a mounting structure that provides vibration dampening by limiting the amount of undesirable vibrations transmitted from the moving surfaces of the synthetic jet to the mounting structure and to the surfaces the mounting structure is attached to. It would also be desirable for the mounting structure to allow the synthetic jet to function with less dampening on the airflow output than if it was restrained more rigidly to a fixed stationary surface.
According to one aspect of the invention, a synthetic jet assembly includes a synthetic jet having a first plate, a second plate spaced apart from the first plate, a spacer element positioned between the first and second plates to maintain the first and second plates in a spaced apart relationship, the spacer element including an orifice formed therein, and an actuator element coupled to at least one of the first and second plates to selectively cause deflection thereof such that a fluid flow is generated and projected out from the orifice. The synthetic jet assembly also includes a mounting bracket positioned about the synthetic jet to support the synthetic jet and a plurality of suspension tabs coupling the synthetic jet to the mounting bracket in a suspended arrangement.
In accordance with another aspect of the invention, a method of manufacturing a synthetic jet assembly includes providing a synthetic jet configured to generate and project a series of fluid vortices, the synthetic jet comprising a first plate, a second plate spaced apart from the first plate, a spacer element including an orifice formed therein and positioned between the first and second plates to maintain the first and second plates in a spaced apart relationship, and an actuator element coupled to at least one of the first and second plates to selectively cause deflection thereof such that the series of fluid vortices is generated and projected out from the orifice. The method also includes positioning a mounting bracket partially about the synthetic jet and forming a plurality of suspension tabs between the synthetic jet body and the mounting bracket, the plurality of suspension tabs mounting the synthetic jet body to the mounting bracket in a suspended arrangement.
In accordance with yet another aspect of the invention, a synthetic jet assembly includes a synthetic jet having a body with a cavity and an orifice formed therein, and at least one actuator element coupled to the body to selectively cause deflection of the body and thereby generate and project a fluid flow out from the orifice. The synthetic jet assembly also includes a U-shaped mounting bracket comprising a plurality of legs and being positioned partially about the synthetic jet to support the synthetic jet and a plurality of suspension tabs coupling the synthetic jet to the mounting bracket and being arranged such that at least one suspension tab is located on each leg of the U-shaped bracket.
These and other advantages and features will be more readily understood from the following detailed description of preferred embodiments of the invention that is provided in connection with the accompanying drawings.
The drawings illustrate embodiments presently contemplated for carrying out the invention.
In the drawings:
Embodiments of the invention are directed to suspension tabs that provide a semi-flexible connection between the operational (moving) portion of the synthetic jet actuator and a stationary mounting bracket. The tabs provide vibration dampening by limiting the amount of undesirable vibrations transmitted from the moving surfaces of the synthetic jet to the stationary bracket and on to the surfaces the mounting bracket is attached to, while having a minimal affect on an airflow output from the synthetic jet.
Referring to
Referring now to
According to various embodiments, first and second plates 24, 26 may be formed from a metal, plastic, glass, and/or ceramic. Likewise, spacer element 28 may be formed from a metal, plastic, glass, and/or ceramic. Suitable metals include materials such as nickel, aluminum, copper, and molybdenum, or alloys such as stainless steel, brass, bronze, and the like. Suitable polymers and plastics include thermoplastics such as polyolefins, polycarbonate, thermosets, epoxies, urethanes, acrylics, silicones, polyimides, and photoresist-capable materials, and other resilient plastics. Suitable ceramics include, for example, titanates (such as lanthanum titanate, bismuth titanate, and lead zirconate titanate) and molybdates. Furthermore, various other components of synthetic jet 12 may be formed from metal as well.
Actuators 34, 36 are coupled to respective first and second plates, 24, 26 to form first and second composite structures or flexible diaphragms 38, 40, which are controlled by driver 18 via a controller assembly or control unit system 42. For example, each flexible diaphragm 38, 40 may be equipped with a metal layer and a metal electrode may be disposed adjacent to the metal layer so that diaphragms 38, 40 may be moved via an electrical bias imposed between the electrode and the metal layer. As shown in
In one embodiment, actuators 34, 36 are piezoelectric motive (piezomotive) devices that may be actuated by application of a harmonic alternating voltage that causes the piezomotive devices to rapidly expand and contract. During operation, control system 42 transmits an electric charge, via driver 18, to piezoelectric actuators 34, 36, which undergo mechanical stress and/or strain responsive to the charge. The stress/strain of piezomotive actuators 34, 36 causes deflection of respective first and second plates 24, 26 such that a time-harmonic or periodic motion is achieved that changes the volume of the internal chamber 20 between plates 24, 26. According to one embodiment, spacer element 28 can also be made flexible and deform to change the volume of internal chamber 20. The resulting volume change in internal chamber 20 causes an interchange of gas or other fluid between internal chamber 20 and exterior volume 32, as described in detail with respect to
Piezomotive actuators 34, 36 may be monomorph or bimorph devices, according to various embodiments of the invention. In a monomorph embodiment, piezomotive actuators 34, 36 may be coupled to plates 24, 26 formed from materials including metal, plastic, glass, or ceramic. In a bimorph embodiment, one or both piezomotive actuators 34, 36 may be bimorph actuators coupled to plates 24, 26 formed from piezoelectric materials. In an alternate embodiment, the bimorph may include single actuators 34, 36, and plates 24, 26 are the second actuators.
The components of synthetic jet 12 may be adhered together or otherwise attached to one another using adhesives, solders, and the like. In one embodiment, a thermoset adhesive or an electrically conductive adhesive is employed to bond actuators 34, 36 to first and second plates, 24, 26 to form first and second composite structures 38, 40. In the case of an electrically conductive adhesive, an adhesive may be filled with an electrically conductive filler such as silver, gold, and the like, in order to attach lead wires (not shown) to synthetic jet 12. Suitable adhesives may have a hardness in the range of Shore A hardness of 100 or less and may include as examples silicones, polyurethanes, thermoplastic rubbers, and the like, such that an operating temperature of 120 degrees or greater may be achieved.
In an embodiment of the invention, actuators 34, 36 may include devices other than piezoelectric motive devices, such as hydraulic, pneumatic, magnetic, electrostatic, and ultrasonic materials. Thus, in such embodiments, control system 42 is configured to activate respective actuators 34, 36 in corresponding fashion. For example, if electrostatic materials are used, control system 42 may be configured to provide a rapidly alternating electrostatic voltage to actuators 34, 36 in order to activate and flex respective first and second plates 24, 26.
The operation of synthetic jet 12 is described with reference to
While the synthetic jet of
Referring back again to
According to an exemplary embodiment of the invention, the suspension tabs 56 are constructed of a semi-flexible material that provides a connection between the body 16 of the synthetic jet 12 and the rigid stationary mounting bracket 14. According to an exemplary embodiment, the suspension tabs 56 form a connection between the spacer element 28 (
The amount of vibration dampening provided by suspension tabs 56 is a function not only of the material composition of the tabs, but also the size, location and quantity of the suspension tabs 56. Accordingly the size, location and quantity of the suspension tabs 56 employed to affix the synthetic jet 12 to the mounting bracket 14 may be selected during fabrication/manufacturing of the synthetic jet assembly 10 to selectively control vibration dampening. Various embodiments and arrangements of the tabs are illustrated in
Referring first to
Referring next to
Additional embodiments of synthetic jet assemblies 10 employing still other suspension tab arrangements are shown in
While the material composition, size, location and quantity of the suspension tabs 56 in the synthetic jet assemblies 10 of
It is recognized that synthetic jet assemblies 10 that employ suspension tabs 56 for affixing the synthetic jet 12 to a mounting bracket 14 are not limited to structures that include square/rectangular synthetic jets 12 and a u-shaped mounting bracket 14, such as are shown in
While embodiments of the invention described above are directed to synthetic jet assemblies 10 that incorporate a mounting bracket 14 and arrangement of suspension tabs 56 for purposes of restraining the synthetic jet in a specified location relative to a stationary surface, it is envisioned that other mounting mechanisms might be employed. For example, as one alternative to the mounting bracket and suspension tabs described above, the synthetic jet 12 could be mounted on “tabs” or soft protrusions extending out from the moving portion of the synthetic jet to support the device without need of an actual mounting bracket. In this case, the protrusions wouldn't be connecting the moving portion of the synthetic jet to a mounting bracket, but would still be providing suspension of the device from a stationary surface.
Beneficially, embodiments of the invention thus provide a synthetic jet assembly including an arrangement of suspension tabs that function to suspend the synthetic jet with respect to the mounting bracket so as to isolate the moving parts of the synthetic jet assembly from the stationary part of the synthetic jet assembly 10. The suspension tabs provide a low cost method of restraining the synthetic jet in a specified location (i.e., locating the synthetic jet in a specific desired location) with less constraints than if the synthetic jet's moving surfaces were attached to a fixed mounting surface more rigidly. The suspension tabs also allow the synthetic jet to function with minimal impact regarding dampening the positive airflow the synthetic jet generates (i.e., the airflow output), as compared to if it was restrained more rigidly to a fixed stationary surface. Still further, the material composition, size, location and quantity of the suspension tabs can be tailored to have a specific desired effect on the modal shape of the synthetic jet's actuation.
Therefore, according to one embodiment of the invention, a synthetic jet assembly includes a synthetic jet having a first plate, a second plate spaced apart from the first plate, a spacer element positioned between the first and second plates to maintain the first and second plates in a spaced apart relationship, the spacer element including an orifice formed therein, and an actuator element coupled to at least one of the first and second plates to selectively cause deflection thereof such that a fluid flow is generated and projected out from the orifice. The synthetic jet assembly also includes a mounting bracket positioned about the synthetic jet to support the synthetic jet and a plurality of suspension tabs coupling the synthetic jet to the mounting bracket in a suspended arrangement.
According to another aspect of the invention, a method of manufacturing a synthetic jet assembly includes providing a synthetic jet configured to generate and project a series of fluid vortices, the synthetic jet comprising a first plate, a second plate spaced apart from the first plate, a spacer element including an orifice formed therein and positioned between the first and second plates to maintain the first and second plates in a spaced apart relationship, and an actuator element coupled to at least one of the first and second plates to selectively cause deflection thereof such that the series of fluid vortices is generated and projected out from the orifice. The method also includes positioning a mounting bracket partially about the synthetic jet and forming a plurality of suspension tabs between the synthetic jet body and the mounting bracket, the plurality of suspension tabs mounting the synthetic jet body to the mounting bracket in a suspended arrangement.
According to yet another aspect of the invention, a synthetic jet assembly includes a synthetic jet having a body with a cavity and an orifice formed therein, and at least one actuator element coupled to the body to selectively cause deflection of the body and thereby generate and project a fluid flow out from the orifice. The synthetic jet assembly also includes a U-shaped mounting bracket comprising a plurality of legs and being positioned partially about the synthetic jet to support the synthetic jet and a plurality of suspension tabs coupling the synthetic jet to the mounting bracket and being arranged such that at least one suspension tab is located on each leg of the U-shaped bracket.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
The present application is a non-provisional of, and claims priority to, U.S. Provisional Patent Application Ser. No. 61/783,954, filed Mar. 14, 2013, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6722581 | Saddoughi | Apr 2004 | B2 |
7204615 | Arik et al. | Apr 2007 | B2 |
7387491 | Saddoughi et al. | Jun 2008 | B2 |
7543961 | Arik et al. | Jun 2009 | B2 |
7556406 | Petroski et al. | Jul 2009 | B2 |
7688583 | Arik et al. | Mar 2010 | B1 |
7990705 | Bult et al. | Aug 2011 | B2 |
8006917 | Arik et al. | Aug 2011 | B2 |
8051905 | Arik et al. | Nov 2011 | B2 |
8083157 | Arik et al. | Dec 2011 | B2 |
8120908 | Arik et al. | Feb 2012 | B2 |
8136576 | Grimm | Mar 2012 | B2 |
8136767 | Cueman et al. | Mar 2012 | B2 |
8308078 | Arik et al. | Nov 2012 | B2 |
8342819 | Arik | Jan 2013 | B2 |
8418934 | Arik et al. | Apr 2013 | B2 |
8430644 | Mahalingam et al. | Apr 2013 | B2 |
8434906 | Arik et al. | May 2013 | B2 |
8453715 | Arik et al. | Jun 2013 | B2 |
8496049 | Arik et al. | Jul 2013 | B2 |
8529097 | Arik et al. | Sep 2013 | B2 |
8564217 | Han et al. | Oct 2013 | B2 |
8602607 | Arik et al. | Dec 2013 | B2 |
8646701 | Grimm et al. | Feb 2014 | B2 |
20080006393 | Grimm | Jan 2008 | A1 |
20090084866 | Grimm et al. | Apr 2009 | A1 |
20100044459 | Xu et al. | Feb 2010 | A1 |
20100054973 | Arik et al. | Mar 2010 | A1 |
20110114287 | Arik | May 2011 | A1 |
20110139429 | Salapakkam et al. | Jun 2011 | A1 |
20110139893 | Wetzel et al. | Jun 2011 | A1 |
20110162823 | Sharma et al. | Jul 2011 | A1 |
20110174462 | Arik et al. | Jul 2011 | A1 |
20120018537 | Arik et al. | Jan 2012 | A1 |
20120097377 | Arik et al. | Apr 2012 | A1 |
20120138704 | Saddoughi et al. | Jun 2012 | A1 |
20120170216 | Arik et al. | Jul 2012 | A1 |
20130213618 | Arik et al. | Aug 2013 | A1 |
20130230934 | Arik et al. | Sep 2013 | A1 |
20130264909 | Glaser et al. | Oct 2013 | A1 |
20130336035 | Ramabhadran et al. | Dec 2013 | A1 |
20140034270 | de Bock | Feb 2014 | A1 |
20140049970 | de Bock et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
2008-008230 | Jan 2008 | JP |
5123041 | Jan 2013 | JP |
2013166394 | Nov 2013 | WO |
Entry |
---|
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2014/024011 dated Aug. 5, 2014. |
Moheimani, “A Survey of Recent A Survey of Recent Innovations in Vibration Damping and Control Using Shunted Piezoelectric Transducers”, IEEE Transactions on Control Systems Technology, vol. 11, No. 4, Jul. 2003, pp. 482-494. |
Casella et al., “Modelling and control for vibration suppression in a large flexible structure with jet thrusters and piezoactuators”, IEEE Transactions on Control Systems Technology, vol. 10, No. 4, Jul. 2002, pp. 589-599. |
Number | Date | Country | |
---|---|---|---|
20140263725 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61783954 | Mar 2013 | US |