SYNTHETIC LEATHER ARTICLE AND METHOD FOR PREPARING THE SAME

Abstract
A synthetic leather article comprising a top coating derived from externally emulsified PUD and a 2K non-solvent PU foam is provided. The leather article exhibits high delamination resistance while retaining superior mechanical properties and appearance comparable with those derived from the organic solvent-based PU. A method for preparing the synthetic leather article is also provided.
Description
FIELD OF THE INVENTION

The present disclosure relates to a synthetic leather article and a method for preparing the same, in particular a multi-layer synthetic leather article based on a combination of 2K non-solvent polyurethane matrix and an externally stabilized polyurethane skin layer disposed thereon.


INTRODUCTION

Synthetic leather gets popular applications in people's daily life, from clothes, footwear, bag and luggage, home upholstery to seats in automobile. It provides similar performance and hand feeling to natural leather with much better cost advantage. Synthetic leather is fabricated by coating polymer on a fabric substrate or impregnating polymer into a fabric substrate, and the most commonly used polymer is polyurethane. Traditional processes are performed with the solution of polyurethane resin in volatile organic solvents such as dimethylformamide (DMF), methylethyl ketone (MEK) and toluene. Porous structure of PU is created by precipitating PU polymer chain in a controlled manner through leading the coated or impregnated fabric substrate into water bath. Such a porous structure is very critical and essential to endow the synthetic leather with a similar hand feeling as that of natural leather. However, the volatile organic solvents are very hazardous to plant operators, consumers and environment. Therefore, synthetic leather industry is pushed to solvent free fabrication process, to minimize the use of volatile organic solvents in the manufacturing of PU synthetic leather.


Aqueous polyurethane dispersion (PUD) is a green alternative to PU solution in the volatile organic solvents such as DMF. It has been demonstrated to be able to replace the solution of PU in DMF solvent in dry process (i.e. no water bath). Dry process is a technology in which the PUD is applied onto fabrics, and the water or other solvents are removed (e.g. by evaporation) to form a PU film on the fabrics. Both non-porous skin layer and porous foam layer can be formed from PUD via dry process. Foam structure is usually generated by frothing air bubbles into PUD first, applying the frothed dispersion onto textile and then getting dried. Foam layer is roughly 6-10 times thicker than non-porous skin layer, therefore, dry process to make foam layer is considered to be expensive due to additional energy consumed to remove water from frothed PUD. Such excessively high energy consumption inhibits the adoption of PUD foam layer. Non-solvent two-component polyurethane (2k PU) composite is supposed to be a cost-effective alternative technology. However, it is difficult to adopt 2k PU composite as non-porous skin layer due to two reasons. First, the skin layer shall have a rather long operation time for the formulating operation (e.g. for the addition of colorant and other additives), which goes much beyond the pot-life of 2k PU composite. The formulating operation is critical to meet different style and appearance requirement. In contrast, PUD has hours of open time, making the formulating work easy. As for the second, shifting from one lot of skin layer to another lot is frequent in manufacturing, it is more frequent to shift formulated skin layer paste between lots than foam layer material. Cleaning container, blade and roller during shifting between lots is very difficult for 2k PU composite, requiring the use of volatile organic solvent. On the contrary, it is easy for cleaning PUD, which can be conveniently rinsed with water. Great effort had been made to develop an Eco Hybrid solution comprising a PUD skin layer and a non-solvent 2k PU foam layer, wherein the PUD skin layer provides additional features including patterns, color, gloss, and abrasion resistance. However, the described Eco process has not been able to be realized as all of the previous researches were based on commercially available PUD emulsified by internal emulsifier, and the interfacial adhesion between dried PUD skin layer and cured 2k PU foam layer was found to be very low. In extreme case, the release paper could not be separated from skin layer while retaining the PUD skin layer and the cured 2k PU foam layer together. Therefore, how to solve the above indicated issue so as to enable the Eco process remains a big challenge in the synthetic leather industry. Besides, the externally emulsified PUD have hitherto been known as a candidate material for preparing the PU matrix, but there has been no report about using the externally emulsified PUD for the skin layer in an Eco process.


After persistent exploration, we surprisingly found that, PUD emulsified by external emulsifier could work as skin layer to provide strong interfacial adhesion with non-solvent 2k PU foam layer. The invention documents the finding of using externally emulsified PUD as skin layer with non-solvent 2k PU foam layer to make synthetic leather as cost-effective Eco Hybrid solution. Furthermore, the synthetic leather of the present disclosure exhibits superior mechanical properties and appearance comparable with those derived from the organic solvent-based PUD.


SUMMARY OF THE INVENTION

The present disclosure provides a novel synthetic leather article with superior peeling strength between the skin layer and the foamed matrix.


In a first aspect of the present disclosure, the present disclosure provides a synthetic leather article, comprising, from top to bottom:


(A) a top coating layer derived from an externally emulsified polyurethane dispersion, wherein the externally emulsified polyurethane dispersion comprising one or more external emulsifiers and a first externally emulsified polyurethane at least derived from (Ai) one or more first isocyanate components comprising at least two isocyanate groups and (Aii) one or more first isocyanate-reactive components comprising at least two isocyanate-reactive groups, wherein the external emulsifiers or the residues of the external emulsifiers are not covalently attached to the backbone chain of the first polyurethane;


(B) a polyurethane foam layer comprising a second foamed polyurethane derived from a solvent-free system comprising (Bi) one or more second isocyanate components comprising at least two isocyanate groups, (Bii) one or more second isocyanate-reactive components comprising at least two isocyanate-reactive groups, and (Biii) one or more foaming agents; and


(C) a backing substrate.


According to a preferable embodiment of the present disclosure, the first externally emulsified polyurethane in the externally emulsified polyurethane dispersion does not comprise cationic or anionic hydrophilic pendant group or a group which can be converted into the cationic or anionic hydrophilic pendant group covalently attached to the backbone chain of the prepolymer


In a second aspect of the present disclosure, the present disclosure provides a method for producing the synthetic leather article of the first aspect, comprising:


(1) providing a first externally emulsified dispersion comprising particles of the first polyurethane and applying the first dispersion onto a release layer so as to form the top coating layer on the release layer;


(2) applying the solvent-free system onto the opposite side of the top coating layer from the release layer, then heating and foaming the solvent-free system to form viscous polyurethane foam layer on the top coating layer;


(3) applying the backing substrate onto the opposite side of the polyurethane foam layer from the top coating layer, then heating to conduct fully curing of the polyurethane foam layer.


In a third aspect of the present disclosure, the present disclosure provides the use of an externally emulsified polyurethane dispersion as top coating layer on and in directly contact with the 2K non-solvent PU foam.


The synthetic leather article disclosed herein is cost effective, comprises minimized amount of hazardous volatile organic solvent, exhibits superior delamination resistance and is useful as synthetic leather in applications such as automotive, footwear, textiles, garment, furniture, etc.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a cross-section of one embodiment of a synthetic leather article described herein.



FIG. 2 is a schematic illustration of an embodiment of the process for preparing a synthetic leather article described herein.





DETAILED DESCRIPTION OF THE INVENTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Also, all publications, patent applications, patents, and other references mentioned herein are incorporated by reference.


As disclosed herein, the term “composition”, “formulation” or “mixture” refers to a physical blend of different components, which is obtained by mixing simply different components by a physical means.


As disclosed herein, “and/or” means “and, or as an alternative”. All ranges include endpoints unless otherwise indicated.


As disclosed herein, adhesion strength or peeling strength of a multilayer structure refers to interlayer adhesion strength or peeling strength between any two adjacent layers of the multilayer structure.



FIG. 1 is a schematic illustration of a cross-section of one embodiment of a synthetic leather article described herein. In this embodiment of the present disclosure, the synthetic leather article comprises, from top to bottom, a top coating layer formed by an externally emulsified polyurethane dispersion (externally emulsified PUD), a 2K non-solvent PU foam layer, and a backing substrate (e.g. a fabric). Please note that the leather articles in all the figures are not necessarily shown in actual proportion, and the dimensions of one or more layers may be exaggerated so as to clearly show the configuration thereof.


The method for preparing the synthetic leather article described herein mainly comprises the steps of:


providing a first externally emulsified dispersion comprising particles of the externally emulsified polyurethane, applying the first dispersion onto a release layer, and heating/drying the coating of the first dispersion so as to form the top coating layer on the release layer; applying the two part raw materials for the 2K non-solvent PU foam onto the opposite side of the top coating layer from the release layer, subsequently curing and foaming the two part raw materials system so as to form the polyurethane foam on the top coating layer;


applying the back substrate onto the opposite side of the polyurethane foam layer from the release layer; heating for fully curing, and optionally, removing the release layer.


According to an embodiment of the present disclosure, the first isocyanate components (Ai) and the second isocyanate components (Bi) are independently select from the group consisting of:


a) C4-C12 aliphatic polyisocyanates comprising at least two isocyanate groups, C6-C15 cycloaliphatic or aromatic polyisocyanates comprising at least two isocyanate groups, C7-C15 araliphatic polyisocyanates comprising at least two isocyanate groups, and a combination thereof; and


b) an isocyanate prepolymer prepared by reacting one or more polyisocyanates of a) with one or more isocyanate-reactive components selected from the group consisting of C2-C16 aliphatic polyhydric alcohols comprising at least two hydroxy groups, C6-C15 cycloaliphatic or aromatic polyhydric alcohols comprising at least two hydroxy groups, C7-C15 araliphatic polyhydric alcohols comprising at least two hydroxy groups, polyester polyols having a molecular weight from 500 to 5,000, polycarbonate diols having a molecular weight from 200 to 5,000, polyetherdiols having a molecular weight from 200 to 5,000, C2 to C10 polyamine comprising at least two amino groups, C2 to C10 polythiol comprising at least two thiol groups, C2-C10 alkanolamine comprising at least one hydroxyl group and at least one amino groups, and a combination thereof, with the proviso that the isocyanate prepolymer comprise two or more free isocyanate groups; and the first isocyanate-reactive component (Aii) and the second isocyanate-reactive component (Bii) are independently selected from the group consisting of: C2-C16 aliphatic polyhydric alcohols comprising at least two hydroxy groups, C6-C15 cycloaliphatic or aromatic polyhydric alcohols comprising at least two hydroxy groups, C7-C15 araliphatic polyhydric alcohols comprising at least two hydroxy groups, polyester polyols having a molecular weight from 500 to 5,000, polycarbonate diols having a molecular weight from 200 to 5,000, polyetherdiols having a molecular weight from 200 to 5,000, C2 to C10 polyamine, C2 to C10 polythiol comprising at least two thiol groups, C2-C10 alkanolamine comprising at least one hydroxyl group and at least one amino groups, and a combination thereof.


Release Layer


Suitable release layers are typically known in the prior art as “release paper”. Examples of suitable release layers include foils of metal, plastic or paper. In one preferred embodiment of the present disclosure, the release layer is a paper layer optionally coated with a plastic membrane. Preferably, the paper layer disclosed herein is coated with a polyolefin, more preferably polypropylene. Alternatively, the paper layer is preferably coated with silicone. In an alternative embodiment, the release layer used herein is a PET layer optionally coated with plastic membrane. Preferably, the PET layer can be is coated with a polyolefin, more preferably polypropylene. Alternatively, the PET layer is preferably coated with silicone. Examples of suitable release layers are commercially available. Examples of renowned manufacturers in the prior art include Binda (Italy), Arjo Wiggins (UK/USA) and Lintec (Japan). The release layers used in the present disclosure may have a flat, embossed or patterned surface so that corresponding or complementary surface profile can be formed on the outermost surface of the synthetic leather article. Preferably, the release layer is textured in the mode of leather grain so as to impart the synthetic leather article with good haptic property comparable with that of high grade natural leather. The release layer generally has a thickness of 0.001 mm to 10 mm, preferably from 0.01 mm to 5 mm, and more preferably from 0.1 mm to 2 mm.


The material and the thickness of the release layer can be properly adjusted, as long as the release layer is able to endure the chemical reaction, mechanical processing and thermal treatments experienced during the manufacturing procedures and can be readily peeled from the resultant synthetic leather without bringing about the delamination between the top layer and the foam layer.


Externally Emulsified Polyurethane Dispersion


The top coating is formed by applying an externally emulsified polyurethane dispersion (PUD) on the release layer, followed by removing the solvent from the dispersion by e.g. thermal treatment or evaporation under decreased pressure, hence the top coating is basically formed by the polyurethane particles dispersed in the dispersion together with any residual nonvolatile additives. According to one embodiment of the present disclosure, the PUD may comprise particles of externally emulsified polyurethane, solvent (preferably water), colorant masterbatch and other additives.


According to one preferable embodiment, the externally emulsified polyurethane dispersion is aqueous and is basically free of any organic solvent intentionally added therein. Generally, the aqueous dispersion has at most about 1 percent by weight of organic solvent, based on the total weight of the dispersion. Preferably, the aqueous dispersion has at most about 2000 parts per million by weight (ppm), more preferably at most about 1000 ppm, even more preferably at most about 500 ppm and most preferably at most a trace amount of organic solvent.


The expression “externally emulsified polyurethane dispersion” as described herein refers to a polyurethane dispersion comprising limited amount of internally emulsifying ionic components and thus mainly relying on the emulsifying function of “external emulsifier” (i.e. ionically or nonionically emulsifiers that are not covalently bonded to the backbone chain within the polyurethane particles dispersed in the liquid medium, especially via the urethane bond derived from the reaction between an isocyanate group and an isocyanate-reactive group (such as a hydroxyl group)) so as to stabilize the polyurethane dispersion.


According to one embodiment of the present disclose, the externally emulsified polyurethane dispersion is prepared by (i) reacting one or more monomeric or prepolymeric polyisocyanates with one or more compounds having at least two isocyanate-reactive groups as stated above to form a prepolymer comprising an urethane prepolymer chain and at least one, preferably at least two free isocyanate groups; (ii) dispersing the prepolymer obtained in step (i) in an aqueous solvent (e.g. water) with the presence of the external emulsifier to form an emulsion; and optionally (iii) further adding one or more compounds having at least two isocyanate-reactive groups into the emulsion to react with the prepolymer obtained in step (ii) and form the externally emulsified polyurethane dispersion. According to one embodiment of the present disclosure, the prepolymer prepared in the step (i) does not comprise any ionic internal emulsifier or residual moieties of the ionic internal emulsifier covalently bonded to the urethane prepolymer chain. According to another embodiment of the present disclosure, the polyurethane chain in the prepolymer prepared in the step (i) does not comprise any cationic or anionic pendant group. According to another embodiment of the present disclosure, the polyurethane chain in the prepolymer prepared in step (i) does comprise polyethylene glycol group.


According to one embodiment of the present disclosure, the compounds having at least two isocyanate-reactive groups used in step (i) are diols, and the compounds having at least two isocyanate-reactive groups used in step (iii) are C2-C10 alkanolamine comprising at least one hydroxyl group and at least one amino groups.


The “anionic internally emulsifying component” or “cationic internally emulsifying component” is generally used in the commercial PUD and refers to a copolymerizable comonomer comprising at least one isocyanate groups or isocyanate-reactive groups and at least one ionic hydrophilic groups or at least one groups which can be converted into a ionic hydrophilic group (i.e. potentially hydrophilic groups). The ionic internally emulsifying component, when present, can react with the isocyanate groups or isocyanate-reactive groups of the raw materials so as to incorporate ionic pendant hydrophilic group attached to the backbone chain of the polyurethane polymer in the particles dispersed within the PUD. The (potentially) hydrophilic groups in the internally emulsifying component are ionic or (potentially) ionic hydrophilic groups. The ionic hydrophilic groups comprise anionic groups such as sulfonate, carboxylate and phosphate in the form of their alkali metal or ammonium salts and also cationic groups such as ammonium groups, especially protonated tertiary amino groups or quaternary ammonium groups. Potentially ionic hydrophilic groups comprise those which can be converted by simple neutralization, hydrolysis or quaternization reactions into the above mentioned ionic hydrophilic groups, for example carboxylic acid groups, anhydride groups or tertiary amino groups. The (potentially) cationic internal emulsifiers preferably comprise copolymerizable monomers having tertiary amino groups, for example: tris(hydroxyalkyl)amines, N,N′-bis(hydroxyalkyl)-alkylamines, N-hydroxyalkyldialkylamines, tris(aminoalkyl)amines, N,N′-bis(aminoalkyl)alkylamines, N-aminoalkyldialkylamines, wherein the alkyl radicals and alkanediyl units of these tertiary amines independently comprise from 1 to 6 carbon atoms. These tertiary amines are converted into the ammonium salts either with acids, preferably strong mineral acids such as phosphoric acid, sulfuric acid, hydrohalic acids or strong organic acids or by reaction with suitable quaternizing agents such as C1 to C6 alkyl halides or benzyl halides, for example bromides or chlorides. The internal emulsifiers having (potentially) anionic groups preferably include aliphatic, cycloaliphatic, araliphatic or aromatic carboxylic acids, carbonic acids and sulfonic acids which bear at least one alcoholic hydroxyl group or at least one primary or secondary amino group. Preference is given to dihydroxyalkylcarboxylic acids having from 3 to 10 carbon atoms, such as dihydroxymethyl propionic acid (DMPA), dimethylolbutanoic acid (DMBA), dihydroxysulfonic acids, dihydroxyphosphonic acids such as 2,3-dihydroxypropanephosphonic acid. If internal emulsifiers having potentially ionic groups are present, they may be converted into the ionic form before, during, but preferably after the isocyanate addition polymerization. The sulfonate or carboxylate groups are particularly preferably present in the form of their salts with an alkali metal ion or an ammonium ion as counterion.


According to the knowledge of the prior art, a typical process for preparing an internally emulsified PUD comprises the steps of (i) reacting an monomeric isocyanate or a prepolymer of the monomeric isocyanate with polyols and cationic or anionic precursor which has at least one isocyanate-reactive groups (e.g. the above stated ionic internal emulsifier) to form a PUD prepolymer comprising pendant cationic or anionic hydrophilic groups attached to the PU chain; (ii) dispersing the PUD prepolymer into an aqueous solvent (e.g. water), with the cationic or anionic hydrophilic group attached to the PU chain as main emulsifier, optionally with the assistance of external emulsifier in this step; and optionally (iii) reacting the emulsion with additional chain extender to form the ionic internally emulsified polyurethane dispersion. It can be clearly seen that the externally emulsified PUD used in the present disclosure is completely different from the ionic internally emulsified PUD of the prior art both in the preparation process and the composition of the resultant polyurethane particles.


In one embodiment of the present disclosure, the above stated ionic internal emulsifying component (emulsifier) is not added during the preparation of the externally emulsified PUD. In a preferable embodiment of the present disclosure, the externally emulsified polyurethane dispersion is free of anionic or cationic salt group in the backbone chain of the polyurethane prepolymer particles dispersed in the externally emulsified PUD.


In one embodiment of the present application, the dry thickness of the top coating layer is from 0.01 to 500 μm, preferably from 0.01 to 150 μm, more preferably from 0.01 to 100 μm. The PU particles dispersed in the externally emulsified PUD have a particle size from 20 nm to 5,000 nm, preferably from 50 nm to 2,000 nm, and more preferably from 50 nm to 1,000 nm.


According to one embodiment of the present application, the polyurethane in the externally emulsified PUD is prepared by reacting a polyurethane/urea/thiourea prepolymer with an optional chain-extending reagent (i.e. the above stated isocyanate-reactive component used for reacting with the prepolymer) in an aqueous medium and in the presence of a stabilizing amount of an external emulsifier. The polyurethane/urea/thiourea prepolymer is derived from the one or more first isocyanate components (Ai) and the one or more first isocyanate-reactive components (Aii), and can be prepared by any suitable method such as those well known in the art. The prepolymer is advantageously prepared by contacting a high molecular weight organic compound having at least two active hydrogen atoms with sufficient amount of polyisocyanate, and under such conditions to ensure that the prepolymer is terminated with at least two isocyanate groups. The polyisocyanate is preferably an organic diisocyanate, and may be aromatic, aliphatic, or cycloaliphatic, or a combination thereof. Preferred diisocyanates include 4,4′-diisocyanatodiphenylmethane, 2,4′-diisocyanatodiphenylmethane, isophorone diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, methylene diphenyl diisocyanate, polyphenyl polymethylene polyisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-diisocyanatocyclohexane, hexamethylene diisocyanate, 1,5-naphthalene diisocyanate, 3,3′-dimethyl-4,4′-biphenyl diisocyanate, hydrogenated methylene diphenyl diisocyanate, 4,4′-diisocyanatodicyclohexylmethane, 2,4′-diisocyanatodicyclohexylmethane, and 2,4-toluene diisocyanate, or combinations thereof. More preferred diisocyanates are 4,4′-diisocyanatodicyclohexylmethane, 4,4′-diisocyanatodiphenylmethane, 2,4′-diisocyanatodi-cyclohexylmethane, and 2,4′-diisocyanatodiphenylmethane. Most diisocyanates are 4,4′-diisocyanatodiphenylmethane and 2,4′-diisocyanatodiphenylmethane.


According to one embodiment, the isocyanate-reactive components (Aii) are high molecular weight organic compound with at least two active hydrogen atoms and having a molecular weight of not less than 500 Daltons or a small molecular compound with at least two active hydrogen atoms and having a molecular weight of less than 500 Daltons. The high molecular weight organic compound having at least two active hydrogen atoms may be a polyol (e.g, diol), a polyamine (e.g., diamine), a polythiol (e.g., dithiol) or mixtures thereof (e.g., an alcohol-amine, a thiol-amine, or an alcohol-thiol). Typically the compound has a weight average molecular weight of at least about 500, preferably at least about 750 Daltons, and more preferably at least about 1000 Daltons, at most about 20,000 Daltons, more preferably at most about 15,000 Daltons, more preferably at most about 10,000 Daltons, and most preferably at most about 5,000 Daltons.


According to one embodiment, the isocyanate-reactive components (Aii) comprise polyalkylene ether glycols, polyester polyols, and polycarbonate polyols. Representative examples of polyalkylene ether glycols are polyethylene ether glycols, poly-1,2-propylene ether glycols, polytetramethylene ether glycols, poly-1,2-dimethylethylene ether glycols, poly-1,2-butylene ether glycols, and polydecamethylene ether glycols. Preferred polyester polyols include adipate and succinate based polyesters such as polybutylene adipate, caprolactone based polyester polyols, and aromatic polyesters such as polyethylene terephthalate. Preferred polycarbonate polyols include those derived from butanediol, hexanediol, and cyclohexanedimethanol. Preferably, in the polyurethane/urea/thiourea prepolymer, the molar ratio between the isocyanate group and the isocyanate-reactive groups (NCO:XH, where X is O, N or S), is not less than 1.1:1, more preferably not less than 1.2:1, and preferably not greater than 5:1. The polyurethane prepolymer may be prepared by a batch or a continuous process. Useful methods include methods such as those known in the art. For example, a stoichiometric excess of a diisocyanate and a polyol can be introduced in separate streams into a static or an active mixer at a temperature suitable for controlled reaction of the reagents, typically from about 40° C. to about 120° C., preferably from 70° C. to 110° C. A catalyst, such as an organotin catalyst (e.g., stannous octoate), may be used to facilitate the reaction of the reagents. The reaction is generally carried to substantial completion in a mixing tank to form the prepolymer.


The external emulsifier may be cationic, anionic, or nonionic, and is preferably anionic. Suitable classes of emulsifiers include, but are not restricted to, sulfates of ethoxylated phenols such as poly(oxy-1,2-ethanediyl)α-sulfo-ω(nonylphenoxy) salt; alkali metal fatty acid salts such as alkali metal oleates and stearates; alkali metal C12-C16alkyl sulfates such as alkali metal lauryl sulfates; amine C12-C16alkyl sulfates such as amine lauryl sulfates, more preferably triethanolamine lauryl sulfate; alkali metal C12-C16alkylbenzene sulfonates such as branched and linear sodium dodecylbenzene sulfonates; amine C12-C16alkyl benzene sulfonates such as triethanolamine dodecylbenzene sulfonate; anionic and nonionic fluorocarbon emulsifiers such as fluorinated C4-C16alkyl esters and alkali metal C4-C16perfluoroalkyl sulfonates; organosilicon emulsifiers such as modified polydimethylsiloxanes. It can be seen that these emulsifiers do not comprise any copolymerizable groups, hence no chemical reaction will occur to them and they may be termed as “non-reactive external emulsifier” or “inert external emulsifier”. As disclosed herein, the externally emulsified PUD only comprises non-reactive external emulsifier, i.e. the external emulsifier used for the preparation of the externally emulsified PUD does not comprise the isocyanate groups or the isocyanate-reactive groups. According to another embodiment of the present application, the external emulsifier does not comprise any copolymerizable groups.


According to an embodiment of the present disclosure, the amount of the external emulsifier is about 0.1% to 10%, preferably 0.5% to 5% by weight, based on the total weight of the externally emulsified PUD.


Preferably, the external stabilizing emulsifier is one that can react with a multivalent cation present in a neutral salt to form an insoluble multivalent cation water insoluble salt of an organic acid. Exemplary preferred emulsifiers include disodium octadecyl sulfosuccinate, sodium dodecylbenzene sulfonate, sodium stearate and ammonium stearate. The polyurethane dispersion may be prepared by any suitable method such as those well known in the art.


When preparing the externally emulsified polyurethane dispersion, the prepolymer may be extended by water solely, or may be extended using a chain extender such as those known in the art. According to one embodiment of the present disclosure, the definition of the so called chain extender overlaps with the isocyanate-reactive components (Aii) stated above. When used, the chain extender may be an isocyanate reactive diamine or an amine compound having another isocyanate reactive group and a molecular weight of up to about 450, but is preferably selected from the group consisting of: an aminated polyether diol; piperazine, aminoethylethanolamine, ethanolamine, ethylenediamine and mixtures thereof. Preferably, the amine chain extender is dissolved in the water used to make the dispersion.


In a preferred method of preparing the externally emulsified polyurethane dispersion, a flowing stream containing the prepolymer is merged with a flowing stream containing water with sufficient shear to form the polyurethane dispersion. An amount of an external emulsifier is also present, either in the stream containing the prepolymer, in the stream containing the water, or in a separate stream. The relative rates of the stream containing the prepolymer and the stream containing the water are preferably such that the polydispersity of the emulsion (the ratio of the volume average diameter and the number average diameter of the particles or droplets, or Dv/Dn) is not greater than about 4, more preferably not greater than about 3, more preferably not greater than about 2, more preferably not greater than about 1.5, and most preferably not greater than about 1.3; or the volume average particle size is not greater than about 5 microns, more preferably not greater than about 2 micron, more preferably not greater than about 1 micron, and most preferably not greater than about 0.8 micron. The PU particles dispersed in the externally emulsified PUD have a particle size from 20 nm to 5,000 nm, preferably from 50 nm to 2,000 nm, and more preferably from 50 nm to 1,000 nm.


The external emulsifier is sometimes used as a concentrate in water. In this case, a stream containing the emulsifier is advantageously first merged with a stream containing the prepolymer to form a prepolymer/emulsifier mixture. Although the polyurethane dispersion can be prepared in this single step, it is preferred that a stream containing the prepolymer and the emulsifier be merged with a water stream to dilute the emulsifier and to create the aqueous polyurethane dispersion.


The externally emulsified PUD may have any suitable solids loading of polyurethane particles, but generally the solids loading is between about 1% to about 70% solids by weight of the total dispersion weight, preferably at least about 2%, more preferably at least about 4%, more preferably at least about 6%, more preferably at least about 15%, more preferably at least about 25%, most preferably at least about 35%, to at most about 70%, preferably at most 68%, more preferably at most about 65%, more preferably at most about 63% and most preferably at most about 60% by weight.


The externally emulsified PUD may also contain a rheological modifier such as thickeners that enhance the dispersability and stability of the dispersion. Any suitable rheological modifier may be used such as those known in the art. Preferably, the rheological modifier is one that does not cause the dispersion to become unstable. More preferably, the rheological modifier is a water soluble thickener that is not ionized. Examples of useful rheological modifiers include methyl cellulose ethers, alkali swellable thickeners (e.g., sodium or ammonium neutralized acrylic acid polymers), hydrophobically modified alkali swellable thickeners (e.g., hydrophobically modified acrylic acid copolymers) and associative thickeners (e.g., hydrophobically modified ethylene-oxide-based urethane block copolymers). Preferably the rheological modifier is a methylcellulose ether. The amount of thickener is from at least about 0.2% to about 5% by weight of the total weight of the externally emulsified PUD, preferably from about 0.5% to about 2% by weight.


Generally, the externally emulsified PUD has a viscosity from at least about 10 cp to at most about 10,000 cp, preferably, from at least about 20 cp to at most about 5000 cp, more preferably, from at least about 30 cp to at most about 3000 cp.


In an embodiment of the present disclosure, the dispersion of the PU particles in the externally emulsified PUD can be promoted by the external emulsifier and high shear stirring action (such as the BLUEWAVE technology developed by DOW Chemical), wherein the shear force and stirring speed can be properly adjusted based on specific requirement.


According to one embodiment of the present disclosure, the externally emulsified PUD may further comprise one or more pigment, dyes and/or colorant, all of which are generally termed as “color masterbatch” in the present disclosure. For example, the color masterbatch may be added so as to impart a transparent or translucent film with a desired color. Examples of pigments dyes and/or colorants may include iron oxides, titanium oxide, carbon black and mixtures thereof. The amount of the pigment, dyes and/or colorant may be 0.1% to 15%, preferably 0.5-10%, more preferably 1% to 5% by weight, based on the total weight of the externally emulsified PUD. Suitable commercially available black pigments useful in the present invention may include for example EUDERM™ black B-N carbon black dispersion available from Lanxess Deutschland GmbH.


According to one embodiment of the present disclosure, the externally emulsified PUD is applied on the release layer, and then the solvent (e.g. water) is removed therefrom, so that the PU particles dispersed in the PUD form the barrier layer. According to an alternative embodiment, the PU particles in the externally emulsified PUD may further comprise blocked isocyanate groups attached to the backbone chain of the PU resin, thus the PU resins in the PUD can further react with crosslinking agents retained in the externally emulsified PUD or additionally added as the top coating layer is being or has been applied. The crosslinking agents may be selected from one or more of those used as isocyanate-reactive component or chain extender in the preparation of the externally emulsified PUD. According to one preferable embodiment, the content of the blocked isocyanate groups remained in the externally emulsified PUD can be up to 10% by mole, preferably up to 8% by mole, more preferably up to 5% by mole, more preferably up to 3% by mole, more preferably up to 2% by mole, more preferably up to 1% by mole, based on the total molar amounts of the isocyanate groups contained in all the raw materials for preparing the externally emulsified PUD.


Two Components Non-Solvent Polyurethane Foam Layer (2K Non-Solvent PU Foam)


The 2K non-solvent PU foam of the present disclosure comprises a continuous PU matrix that defines a plurality of pores and/or cells therein. As disclosed herein, the terms “solvent free”, “solventless” or “non-solvent”, can be used interchangeably for describing the PU foam or any other dispersion, mixture, etc., and shall be interpreted that the mixture of all the raw materials used for preparing the PU foam or PU dispersion comprise less than 3% by weight, preferably less than 2% by weight, preferably less than 1% by weight, more preferably less than 0.5% by weight, more preferably less than 0.2% by weight, more preferably less than 0.1% by weight, more preferably less than 100 ppm by weight, more preferably less than 50 ppm by weight, more preferably less than 10 ppm by weight, more preferably less than 1 ppm by weight of any organic or inorganic solvents, based on the total weight of the mixture of raw materials. As disclosed herein, the term “solvent” refers to organic and inorganic liquids whose function is solely dissolving one or more solid, liquid or gaseous materials without incurring any chemical reaction. In other words, although some organic compounds, e.g. ethylene glycol and propylene glycol, and water, which are generally considered as “solvent” in the polymerization technology, are used in the preparation of PU foam, none of them belongs to “solvent” since they mainly function as isocyanate-reactive functional substance, chain extending agent or foaming agent, etc. by incurring chemical reactions.


According to one embodiment of the present disclosure, the polyurethane foam layer has a thickness in the range from 0.01 μm to 2,000 μm, preferably in the range from 0.05 μm to 1,000 μm, more preferably in the range from 0.1 μm to 750 μm and more preferably in the range from 0.2 μm to 600 μm.


According to one embodiment of the present disclosure, the foamed polyurethane in the polyurethane foam layer is prepared with a solvent-free polyurethane system comprising (Bi) one or more second isocyanate components, (Bii) one or more second isocyanate-reactive components, (Biii) one or more foaming agent, catalyst and any other additives. The isocyanate component (Bi) includes polyisocyanates and/or isocyanate prepolymers which are used for the isocyanate component (Ai). The polyisocyanates comprise aliphatic, cycloaliphatic and aromatic di- and/or polyisocyanates, and preferable exemplary polyisocyanates can be selected from the group consisting of tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI) and mixtures of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanates (polymeric MDI). The polyisocyanate prepolymers refer to prepolymers prepared by reacting the above indicated polyisocyanates for the isocyanate component (Bi) with compounds having at least two isocyanate-reactive hydrogen atoms. The reaction may be carried out at temperatures of about 50 to 150° C. In an embodiment of the present disclosure, the NCO content of the polyisocyanate prepolymer is in the range from 3% to 33.5% by weight, preferably in the range from 6% to 25% by weight, preferably in the range from 8% to 24% by weight and more preferably in the range from 10% to 20% by weight. A mixture comprising diphenylmethane diisocyanate and polytetrahydrofuran (PTHF), especially PTHF having a number average molecular weight in the range from 500 to 4,000, is used with particular preference as the isocyanate component (Bi). The NCO content of this mixture is preferably in the range from 8% to 22% by weight, and more preferably in the range from 10% to 20% by weight. The isocyanates or isocyanate prepolymers for the isocyanate component (Bi) may be further modified by incorporating uretidione, carbamate, isocyanurate, carbodiimide or allophanate groups therein at an amount of 1% to 20% by weight and more preferably in an amount of 2% to 10% by weight, based on the overall weight of isocyanate component (Bi).


The isocyanate-reactive components (Bii) comprise compounds having two or more isocyanate-reactive groups selected from OH groups, SH groups, NH groups, NH2 groups and carbon-acid groups, for example β-diketo groups. According to one embodiment of the present application, the isocyanate-reactive components (Bii) comprise those used for (Aii). The isocyanate-reactive component (Bii) further includes polyether polyol and/or polyester polyol. The polyester polyol is typically obtained by condensation of polyfunctional alcohols having from 2 to 12 carbon atoms, preferably from 2 to 6 carbon atoms, with polyfunctional carboxylic acids having from 2 to 12 carbon atoms, examples being succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, fumaric acid and preferably phthalic acid, isophthalic acid, terephthalic acid and the isomeric naphthalenedicarboxylic acids. The polyether polyol is generally prepared by polymerization of one or more alkylene oxides selected from propylene oxide (PO) and ethylene oxide (EO), butylene oxide and tetrahydrofuran, with at least difunctional or multi-functional alcohols. The polyether polyol preferably has a number average molecular weight in the range from 100 to 10,000 g/mol, preferably in the range from 200 to 8,000 g/mol and more preferably in the range from 500 to 6,000 g/mol.


In one preferred embodiment of the present disclosure, the isocyanate components (Bi) and the isocyanate-reactive components (Bii) react with each other in the presence of a foaming/blowing agent, and the foaming agent is used in combination with the isocyanate-reactive components. Useful foaming agents include commonly known chemically or physically reactive compounds. Physical blowing agents may be selected from one or more of a group consisting of carbon dioxide, nitrogen, noble gases, (cyclo)aliphatic hydrocarbons having from 4 to 8 carbon atoms, dialkyl ethers, esters, ketones, acetal and fluoroalkanes having from 1 to 8 carbon atoms. The chemically reactive blowing agent preferably comprises water, which is preferably contained as a constituent of the blend with the isocyanate-reactive components (Bii). The amount of the foaming agent is in the range from 0.05 to 10%, preferably in the range from 0.1 to 5%, more preferably from 0.1 to 2%, and most preferably from 0.1 to 0.5% by weight, based on the overall weight of all the raw materials used for preparing the polyurethane foam layer. The 2K polyurethane layer typically has a density of 0.3 to 1.1 kg/liter and preferably has a density of 0.4 to 0.9 kg/liter.


In an embodiment of the present disclosure, the isocyanate components (Bi) reacts with the isocyanate-reactive components (Bii) in the presence of a catalyst selected from organotin compounds, such as tin diacetate, tin dioctoate, dibutyltin dilaurate, and/or strongly basic amines such as diazabicyclooctane, triethylamine, triethylenediamine or bis(N,N-dimethylaminoethyl) ether in an amount from 0.01% to 5% by weight, preferably from 0.05% to 4% by weight, more preferably from 0.05% to 3% by weight, based on the overall weight of all the raw materials used for preparing the polyurethane foam layer.


In an embodiment of the present disclosure, the categories and molar contents of the isocyanate components (Bi) and the isocyanate-reactive components (Bii) are particularly selected so that the overall equivalence ratio of NCO groups to NCO-reactive hydrogen atoms (e.g. hydrogen atom in the hydroxyl group) is in the range from 0.9:1 to 1.8:1, preferably from 0.92:1 to 1.6:1, preferably in the range from 0.95:1 to 1.5:1, and more preferably in the range from 1:1 to 1.45:1, more preferably in the range from 1.05:1 to 1.4:1, and more preferably in the range from 1.10:1 to 1.35:1.


Auxiliary Agents and Additives


The top coating and 2K PU foam layer may independently and optionally comprise any additional auxiliary agents and/or additives for specific purposes.


In one embodiment of the present disclosure, one or more of the auxiliary agents and/or additives may be selected from the group consisting of fillers, cell regulators, release agents, colorants/pigments, surface-active compounds, handfeeling agents, dullers, thickeners, crosslinkers and stabilizers.


Examples of suitable fillers comprise glass fibers, mineral fibers, natural fibers, such as flax, jute or sisal for example, glass flakes, silicates such as mica or glimmer, salts, such as calcium carbonate, chalk or gypsum. The fillers are typically used in an amount from 0.5% to 60% by weight, preferably from 3% to 30% by weight, and more preferably from 3% to 10% by weight, based on the overall dry weight of the top coating or the 2K PU foam layer.


Backing Substrate


In an embodiment of the present disclosure, the backing substrate has a thickness of in the range from 0.01 mm to 50 mm, preferably in the range from 0.05 mm to 10 mm and more particularly in the range from 0.1 mm to 5 mm. The backing substrate may comprise one or more selected from the group consisting of fabric, preferably woven or nonwoven fabric, impregnated fabrics, knit fabric, braid fabric or microfiber; foil of metal or plastic, e.g. rubber, PVC or polyamides; and leather, preferably split leather.


The backing substrate can be made of a woven or nonwoven textile. Preferably, the textile is a nonwoven textile. The textile may be made by any suitable method such as those known in the art. The textile may be prepared from any suitable fibrous material. Suitable fibrous materials include, but are not limited to, synthetic fibrous materials and natural or semi synthetic fibrous materials and mixtures or blends thereof. Examples of synthetic fibrous materials include polyesters, polyamides, acrylics, polyolefins, polyvinyl chlorides, polyvinylidene chlorides, polyvinyl alcohols and blends or mixtures thereof. Examples of natural semi-synthetic fibrous materials include cotton, wool and hemp.


Manufacture Technology


The externally emulsified PUD may be applied by conventional coating technologies such as spraying coating, blade coating, die coating, cast coating, etc.


The top coating can be either partially or completely dried before the application of the next layer. Preferably, the top coating is completely dried so as to minimize the moisture entrapped therein, and then the next layer is applied thereon. In an alternative embodiment of the present application, only part of the moisture is removed from the top coating layer on the release layer, then the top coating is completely dried together with the 2K PU foam layer applied thereon.


According to one embodiment, the component (Bi) and the component (Bii) for the 2K non-solvent PU foam are mixed together, applied to the top coating layer, and pre-cured by being heated in an oven at a temperature of e.g. from 70° C. to 120° C., preferably from 75° C. to 110° C. for a short duration of 10 seconds to 5 minutes, preferably from 30 seconds to 2 minutes, more preferably from 45 to 90 seconds. Then the backing substrate (e.g. a textile fabric) is applied to the pre-cured 2k PU foam layer with the assistance of a pressing roller, followed by being post cured at a higher temperature of e.g. from 100° C. to 160° C., preferably from 110° C. to 150° C. for a longer duration of 3 to 20 minutes, preferably from 3 to 15 minutes, more preferably from 4 to 10 minutes. The above stated two-step curing process aims to ensure high adhesion strength between the pre-cured 2k PU foam and the backing substrate.


According to a preferable embodiment of the present disclosure, the release layer is removed after the 2k PU foam has been fully cured. The release layer can be peeled off via any ordinary technologies.


According to a preferable embodiment of the present disclosure, after the removal of the release layer, a top finishing layer can be applied onto the surface of the synthetic leather (i.e. on the outermost surface of the top coating layer) and dried to form a protection film layer. The presence of the finishing layer can further increase abrasion resistance of the multilayer synthetic leather. The protection film layer may be formed by using any suitable raw materials and technologies. The finishing layer may optionally comprise additives such as wetting agent, crosslinking agent, binder, matting agent, hand-feel modifier, pigments and/or colorants, thickener or other additives used for the top coating layer. The synthetic leather disclosed herein can further comprise one or more than one optional additional layer such as a color layer between the skin layer and the finishing layer. Other suitable optional additional layers can be selected from a water repellent layer, UV protective layer and tactile (touch/feel) modification layer.


The process of the present invention may be carried out continuously or batchwise. An example of the continuous process is a roll to roll process, and is schematically shown in FIG. 2. A roll of the release layer is unwound and transmitted through two or more work station where the externally emulsified PUD and the two-part raw materials for the non-solvent PU foam are applied in sequence. Heating or irradiation devices may be arranged after each coating station to promote the drying or curing of the coated layers, and rollers can also be used for enhancing the adhesion strength between the layers. The unwound release layer is generally from 10 to 20,000 meters, from 10 to 15,000 meters and preferably from 20 to 10,000 meters in length and is typically transmitted at a speed in the range from 0.1 to 60 m/min, preferably from 3 to 45 m/min, more preferable from 5 to 15 m/min. In the end of the continuous technology, the release layer is peeled off and wound up on a spindle. The wound-up release layer may be reused, preferably for at least 2 times.


The backing substrate can be provided in a roll to roll mode, i.e. the backing substrate is provided as a roll, unwound and applied on the surface of the partially cured 2K non-solvent PU foam, then the 2K non-solvent PU foam is fully cured and the laminated synthetic leather article can be wound on a spindle and stored/sold as a roll.


In one preferred embodiment, the synthetic leather is oriented by being stretched in one or two directions (i.e. uniaxial or biaxial orientation). The dimension of the oriented synthetic leather may be increased by a factor of 1.1 to 5, preferably by a factor of 1.2 to 2. The oriented synthetic leather exhibits improved breathability.


The multilayer structure synthetic leather disclosed herein can be cut or otherwise shaped so as to have a shape suitable for any desired purpose, such as shoe manufacturing. Depending on the intended application, the synthetic leathers can be further treated or post-treated similarly to natural leathers, for example by brushing, filling, milling or ironing. If desired, the synthetic leathers may (like natural leather) be finished with the customary finishing compositions. This provides further possibilities for controlling their character. The multilayer structure disclosed herein may be used in various applications particularly suitable for use as synthetic leather, for example, footwear, handbags, belts, purses, garments, furniture upholstery, automotive upholstery, and gloves. The multilayer structure is particular suitable for use in automotive applications.


EXAMPLES

Some embodiments of the invention will now be described in the following Examples, wherein all parts and percentages are by weight unless otherwise specified.


The information of the raw materials used in the examples is listed in the following table 1:









TABLE 1







Raw materials









Components
Grades
Supplier





Internally emulsified aliphatic
Bayderm ™
Dow Chemical


polyurethane dispersion with
Bottom PR



triethyl amine neutralized




carboxylic acid side




group on polymer chain




Externally emulsified aromatic
Syntegra ™
Dow Chemical


polyurethane dispersion with
YS3000



sulfonate surfactant, solid content




55%, emulsifier loading: 1.65%.




External emulsifier
Sodium
Sinopharm.



dodecylbenzene




sulfonate



Color master batch
Euderm Black B-N
Lanxess


Thickener
Acrysol RM 825
Dow Chemical


Aliphatic isocyanate,
Isophorone
Evonik


functionality = 2
diisocyanate (IPDI)



Catalyst (organic tin)
Dabco T120
Evonik


Polyether polyol, Mw = 2000, EO
Voranol 9287A
Dow Chemical


capped, EO content = 12 wt. %,
Polyol



Functionality = 2




Methyl polyethylene glycol,
MPEG1000
Sinopharm.


Mw = 2000




Functionality = 1




Amine chain extender,
Amino ethyl
Sinopharm.


functionality = 3
ethanol




amine (AEEA)



Polyol in 2k PU composite
See Table 2
Dow Chemical


Prepolymer in 2k PU composite
Voralast ™
Dow Chemical



GE 143 ISO



Non-woven fabric
Spunlace, 6~7 mm
Xiaoshan




Hangmin


Release paper
DE-90
Ajinomoto









The 2K non-solvent PU foam is prepared by combining the isocyanate prepolymer (Voralast™ GE 143 ISO) shown in table 1 and the raw materials (i.e. component (Bii)) listed in table 2.









TABLE 2







Raw materials (component (Bii)) used in 2K PU composite









Materials
Content/%
Vendor












SPECFLEX ™ NC 701
28
Dow Chemical


VORANOL ™ CP 6001
46
Dow Chemical


VORANOL ™ 4240/EP 1900
18
Dow Chemical


Dipropylene glycol
4
Dow Chemical


Ethylene glycol
3
Dow Chemical


WATER
0.22
NA


Dow Corning 193
0.5
Dow Chemical


Polycat SA2LE
0.2
Evonik


Polycat SA-1
0.04
Evonik


Niax C-225
0.02
Evonik







Mixing ratio








Above polyol formulation/Voralast ™ GE 143 ISO
100/54









Inventive Example 1

In this example, a synthetic leather is prepared by applying an externally emulsified aliphatic polyurethane dispersion as a skin layer directly adhering onto a 2k PU foam layer, and high peel strength is achieved.


1) Preparation of the Isocyanate Prepolymer for the Polyurethane Particles in the PUD:


Voranol 9287 A (70 g) and MPEG1000 (2 g) were charged into a 250 ml three neck flask and dehydrated at 110° C. under 76 mmHg vacuum for one hour, then naturally cooled down to about 73° C. IPDI (28 g) was poured into the dehydrated polyol mixture at about 73° C. under nitrogen flow protection and mechanical stirring. Then catalyst T120 (0.03 g) was added into the reactants. The reaction lasted for one hour at about 73° C., and then the temperature was raised to about 83° C. to continue the reaction for additional 2.5 hours. The product (prepolymer) was packaged with plastic bottle and stored hermetically under nitrogen protection. NCO % was measured as 7.0 wt %


2) The Preparation of Externally Emulsified Polyurethane Dispersion


The above prepolymer (100 g) was poured into a 1000 ml plastic cup, and stirred with a cowles mixer. SDBS aqueous solution (13 g) with a concentration of 23% weight was gradually added into the prepolymer under 3800 rpm mixing. After stirring for additional several minutes, the deionized water (84.8 g) was dropwisely added into the prepolymer under 3800 rpm mixing. Phase inversion happened after the addition of water, and an oil in water emulsion was formed. The mixing speed was then lowered down to 1500 rpm. 79.6 g of an 10 wt % aqueous solution of chain extender (AEEA) was dropwisely added into the emulsion. After all the chain extender solution had been added, mechanical stirring continued for additional 15 minutes. Finally, polyurethane dispersion with ˜40% solid content was obtained and stored in a plastic container with cover.


3) Fabrication of Synthetic Leather


94 g of the polyurethane dispersion prepared as stated above was formulated with 5 g color masterbatch and 1 g Acrysol RM825 thickener, and mixed in FlackTek speed mixer (Model #: DAC150.1 FVA) at 2500 rpm for 4.5 min. The formulated PUD was coated on release paper to a wet film thickness of 150 μm. The coated release paper was dried in an oven at 120° C. for 5 min. The release paper with dried PU skin layer was taken out from the oven, and cooled down to ambient temperature.


The formulated 2k PU composite, with recipe of polyol formulation and Voralast* GE 143 ISO in Table 2, was coated on a surface of the dried PU skin layer opposite the release paper to a wet film thickness of 300 μm. The coated release paper was put into a 85° C. oven for 45 sec pre-curing. A textile fabric cloth was then carefully applied onto a surface of the 2k PU composite film opposite the top coating layer and was pressed with a 3.5 kg roller for 2 times. The specimen was put into a 130° C. oven for 5 min post-curing, and then taken out and cooled down to ambient temperature.


4) Characterization of the Peel Strength


The release paper was removed from the leather specimen. The leather specimens was cut into a dimension of 20 cm×3 cm, and coated with epoxy glue on the outmost surface of the top coating layer. Then it was folded with the epoxy coated surface facing together to form a 10 cm×3 cm specimen. It was pressed, and cured at room temperature for 3 hours. Then T-model peel strength test was conducted on Instron tensile machine. Force to peel apart two faces was recorded. Three specimens were tested, and peel force was recorded as 122.78N, 115.16N and 103.87N. It can be calculated that the average peel strength is 113.9 N/3 cm, with a standard deviation of 9.5 N/3 cm.


Inventive Example 2

In this example, a synthetic leather is prepared by applying an externally emulsified aromatic polyurethane dispersion as a skin layer directly adhering onto a 2k PU foam layer, and high peel strength is achieved.


1) Fabrication of Synthetic Leather


94 g Syntegra YS3000, an externally emulsified aromatic PUD provided by Dow Chemical, was formulated with 5 g color masterbatch and 1 g RM825 thickener, and mixed in FlackTek speed mixer (Model #: DAC150.1 FVA) at 2500 rpm for 4.5 min. The formulated PUD was coated on release paper to a wet film thickness of 150 μm. The coated release paper was dried in an oven at 120° C. for 5 min. The release paper with dried PU skin layer was taken out from the oven, and cooled down to ambient temperature.


The formulated 2k PU composite, with recipe of polyol formulation and Voralast* GE 143 ISO in Table 2, was coated on a surface of the dried PU skin layer opposite the release paper to a wet film thickness of 300 μm. The coated release paper was put into a 85° C. oven for 45 sec pre-curing. A textile fabric cloth was then carefully applied onto a surface of the 2k PU composite film opposite the top coating layer and was pressed with a 3.5 kg roller for 2 times. The specimen was put into a 130° C. oven for 5 min post-curing, and then taken out and cooled down to ambient temperature.


2) Characterization of the Peel Strength


The peel strength was characterized according to ASTM D5170. The release paper was removed from the leather specimen. The leather specimens was cut into a dimension of 20 cm×3 cm, and coated with epoxy glue on the outmost surface of the top coating layer. Then it was folded with the epoxy coated surface facing together to form a 10 cm×3 cm specimen. It was pressed, and cured at room temperature for 3 hours. Then T-model peel strength test was conducted on Instron tensile machine. Force to peel apart two faces was recorded. Two specimens were tested, and peel force was recorded as 91.58N and 94.26N. It can be calculated that the average peel strength is 92.92 N/3 cm, with a standard deviation of 1.90 N/3 cm.


Inventive Example 3

In this example, a synthetic leather is prepared by applying an externally emulsified aliphatic polyurethane dispersion as a skin layer directly adhering onto a 2k PU foam layer, and good peel strength is achieved.


The procedures of the Inventive Example 1 were repeated, except that after the deposition of the externally emulsified PUD on the release paper to a wet film thickness of 150 μm, the coated release paper was dried in an oven at 110° C. (rather than 120° C.) for 5 min. Two specimens were tested, and peel force was recorded as 28N and 20N. It can be calculated that the average peel strength is 24 N/3 cm, with a standard deviation of 5.66 N/3 cm.


Inventive Example 4

In this example, a synthetic leather is prepared by applying an externally emulsified aromatic polyurethane dispersion as a skin layer directly adhering onto a 2k PU foam layer, and good peel strength is achieved.


The procedures of the Inventive Example 2 were repeated, except that after the deposition of the externally emulsified PUD on the release paper to a wet film thickness of 150 μm, the coated release paper was dried in an oven at 110° C. (rather than 120° C.) for 5 min. Two specimens were tested, and peel force was recorded as 29N and 32N. It can be calculated that the average peel strength is 30.5 N/3 cm, with a standard deviation of 2.12 N/3 cm.


Comparative Example 1

In this example, a synthetic leather is prepared by applying an internally emulsified aliphatic polyurethane dispersion as a skin layer directly adhering onto a 2k PU foam layer, and the synthetic leather exhibits extremely poor peel strength.


1) Fabrication of Synthetic Leather


94 g Bayderm Bottom PR, as internally emulsified aliphatic PUD provided by Dow Chemical, was formulated with 5 g color masterbatch and Ig RM825 thickener, and mixed in FlackTek speed mixer (Model #: DAC150.1 FVA) at 2500 rpm for 4.5 min. The formulated PUD was coated on release paper to a wet film thickness of 150 μm. The coated release paper was dried in an oven at 110° C. for 5 min. The release paper with dried PU skin layer was taken out from the oven, and cooled down to ambient temperature.


The formulated 2k PU composite, with recipe of polyol formulation and Voralast* GE 143 ISO in Table 2, was coated on a surface of the dried PU skin layer opposite the release paper to a wet film thickness of 300 μm. The coated release paper was put into a 85° C. oven for 45 sec pre-curing. A textile fabric cloth was then carefully applied onto a surface of the 2k PU composite film opposite the top coating layer and was pressed with a 3.5 kg roller for 2 times. The specimen was put into a 130° C. oven for 5 min post-curing, and then taken out and cooled down to ambient temperature.


2) Characterization of the Peel Strength


The release paper was removed by peeling off with hand. The skin layer derived from the internally emulsified PUD was separated from 2k PU foam layer and stuck on release paper. The exposed surface of 2k PU foam layer was sticky. It showed poor adhesion between the skin layer derived from internally emulsified PUD and the foam layer derived from non-solvent 2k PU composite. The skin layer/foam layer interfacial adhesion was so low that it was impossible to measure the peel strength.


The information about the raw materials, procedures and experimental results of the Inventive examples and comparative example are summarized in Table 3.









TABLE 3







Summary of Inventive Examples 1-4 and the Comparable Example













Inventive
Inventive
Inventive
Inventive
Comp.



Example 1
Example 2
Example 3
Example 4
Example 1





Skin Layer







Type
Ext. Emuls.
Ext. Emuls.
Ext. Emuls.
Ext. Emuls.
Int. Emuls.



Aliphatic
Aromatic
Aliphatic
Aromatic
Aliphatic


Dispersion Solids Content, %
~40
55
~40
55
35


Wet Film Thickness, μm
150
150
150
150
150


Drying Temp, ° C.
120
120
110
110
110


Drying Time, min.
5
15
5
5
5


Application of 2K PU Layer







Wet Film Thickness, μm
300
300
300
300
300


Pre-Cure Temp, ° C.
85
85
85
85
85


Pre-Cure Time, min
0.75
0.75
0.75
0.75
0.75


Application of Fabric







Pressure, 3.5 kg roller
2X
2X
2X
2X
2X


Cure Temp, ° C.
130
130
130
130
130


Cure Time, min.
5
5
5
5
5


Release of Skin from Release Paper
okay
okay
okay
okay
poor,







resulting in







separation







of skin layer







from 2K PU







foam layer


Adhesion between Skin and 2KPU







Layer







Peel Strength, N/3 cm
114 +/− 10
93 +/− 2
24 +/− 6
31 +/− 2
too low to







be measured









The comparison between the inventive examples and the comparative examples clearly illustrates that the interfacial adhesion between skin layer derived from externally emulsified polyurethane dispersion, and foam layer derived from non-solvent 2k PU composite is strong enough to meet the final synthetic leather performance requirement. On the other hand, interfacial adhesion between skin layer derived from internally emulsified polyurethane dispersion, and foam layer from non-solvent 2k PU composite is too weak to endow the final synthetic leather with required performance. This novel finding paves the way to cost-effective Eco process for synthetic leather fabrication. While not wishing to be bound by any theory, we hypothesize that internal ionic stabilization of the PUD that forms the skin layer subsequently interferes with the polyurethane curing reactions of the foam layer and leads to poor interfacial adhesion between the skin and foam layers.

Claims
  • 1. A synthetic leather article, comprising, from top to bottom: (A) a top coating layer derived from an externally emulsified polyurethane dispersion, wherein the externally emulsified polyurethane dispersion comprising one or more external emulsifiers and a first externally emulsified polyurethane derived from (Ai) one or more first isocyanate components comprising at least two isocyanate groups, and (Aii) one or more first isocyanate-reactive components comprising at least two isocyanate-reactive groups, wherein the external emulsifiers or the residual moieties thereof are not covalently attached to the backbone chain of the first polyurethane;(B) a polyurethane foam layer comprising a second foamed polyurethane derived from a solvent-free system comprising (Bi) one or more second isocyanate components, (Bii) one or more second isocyanate-reactive components, and (Biii) one or more foaming agents; and(C) a backing substrate.
  • 2. The synthetic leather article according to claim 1, wherein the first externally emulsified polyurethane does not comprises cationic or anionic hydrophilic pendant group or a group which can be converted into the cationic or anionic hydrophilic pendant group covalently attached to the backbone chain of the first externally emulsified polyurethane.
  • 3. The synthetic leather article according to claim 1, wherein the first isocyanate components (Ai) and the second isocyanate components (Bi) are independently select from the group consisting of: a) C4-C12 aliphatic polyisocyanates comprising at least two isocyanate groups, C6-C15 cycloaliphatic or aromatic polyisocyanates comprising at least two isocyanate groups, C7-C15 araliphatic polyisocyanates comprising at least two isocyanate groups, and a combination thereof; andb) an isocyanate prepolymer prepared by reacting one or more polyisocyanates of a) with one or more isocyanate-reactive components selected from the group consisting of C2-C16 aliphatic polyhydric alcohols comprising at least two hydroxy groups, C6-C15 cycloaliphatic or aromatic polyhydric alcohols comprising at least two hydroxy groups, C7-C15 araliphatic polyhydric alcohols comprising at least two hydroxy groups, polyester polyols having a molecular weight from 500 to 5,000, polycarbonate diols having a molecular weight from 200 to 5,000, polyetherdiols having a molecular weight from 200 to 5,000, C2 to C10 polyamine comprising at least two amino groups, C2 to C10 polythiol comprising at least two thiol groups, C2-C10 alkanolamine comprising at least one hydroxyl group and at least one amino groups, and a combination thereof, with the proviso that the isocyanate prepolymer comprise at least two free isocyanate groups; andthe first isocyanate-reactive components (Aii) and the second isocyanate-reactive components (Bii) are independently selected from the group consisting of: C2-C16 aliphatic polyhydric alcohols comprising at least two hydroxy groups, C6-C15 cycloaliphatic or aromatic polyhydric alcohols comprising at least two hydroxy groups, C7-C15 araliphatic polyhydric alcohols comprising at least two hydroxy groups, polyester polyols having a molecular weight from 500 to 5,000, polycarbonate diols having a molecular weight from 200 to 5,000, polyetherdiols having a molecular weight from 200 to 5,000, C2 to C10 polyamine comprising at least two amino groups, C2 to C10 polythiol comprising at least two thiol groups, C2-C10 alkanolamine comprising at least one hydroxyl group and at least one amino groups, and a combination thereof.
  • 4. The synthetic leather article according to claim 1, wherein the external emulsifier is selected from the group consisting of poly(oxy-1,2-ethanediyl)α-sulfo-ω(nonylphenoxy) salt; alkali metal oleates and stearates; alkali metal C12-C16alkyl sulfates; amine C12-C16alkyl sulfates; alkali metal C12-C16alkyl benzene sulfonates; amine C12-C16alkyl benzene sulfonates; fluorinated C4-C16alkyl esters and alkali metal C4-C16perfluoroalkyl sulfonates; organosilicon emulsifiers; and the combination thereof.
  • 5. The synthetic leather article according to claim 1, wherein the solvent-free system further comprises a catalyst selected from the group consisting of organotin compounds and strongly basic amines, and the foaming agent (Biii) is water.
  • 6. A method for producing the synthetic leather article according to claim 1, comprising: (1) providing the externally emulsified polyurethane dispersion comprising one or more external emulsifiers and the first externally emulsified polyurethane and applying the externally emulsified polyurethane dispersion onto a release layer so as to form the top coating layer on the release layer;(2) applying the solvent-free system onto the opposite side of the top coating layer from the release layer, at least partially curing and foaming the solvent-free system to form the polyurethane foam layer on the top coating layer; and(3) applying the backing substrate onto the opposite side of the polyurethane foam layer from the top coating layer.
  • 7. The method according to claim 6, wherein in step (2), at least partially curing the solvent-free system comprises a pre-curing sub-step occurred before step (3) and a post-curing sub-step occurred after step (3), the pre-curing sub-step comprises heating the solvent-free system at a first temperature to partially cure solvent-free system, and the post-curing sub-step comprises heating the solvent-free system at a second heating temperature higher than the first heating temperature to completely cure solvent-free system.
  • 8. The method according to claim 6, wherein the externally emulsified polyurethane dispersion is prepared by the steps of: (i) reacting one or more compounds comprising at least two isocyanate groups or a first prepolymer of the compound with one or more compounds comprising at least two hydroxyl groups to produce a second prepolymer comprising two or more free isocyanate groups and having no cationic or anionic hydrophilic pendant group or a group which can be converted into the cationic or anionic hydrophilic pendant group covalently attached to the second prepolymer;(ii) dispersing the second prepolymer obtained in step (ii) in water with the presence of the external emulsifier to form an emulsion; andoptionally (iii) adding one or more isocyanate-reactive components comprising at least two hydroxy groups into the emulsion obtained in step (ii) and reacting them with the second prepolymer to produce the externally emulsified polyurethane dispersion.
  • 9. The method according to claim 6, wherein the externally emulsified polyurethane dispersion is prepared by the steps of: (i) reacting one or more polyisocyanates selected from the group consisting of C4-C12 aliphatic polyisocyanates comprising at least two isocyanate groups, C6-C15 cycloaliphatic or aromatic polyisocyanates comprising at least two isocyanate groups, C7-C15 araliphatic polyisocyanates comprising at least two isocyanate groups, and a combination thereof, or a first prepolymer derived from the polyisocyanates, with one or more isocyanate-reactive components selected from the group consisting of C2-C16 aliphatic polyhydric alcohols comprising at least two hydroxy groups, C6-C15 cycloaliphatic or aromatic polyhydric alcohols comprising at least two hydroxy groups, C7-C15 araliphatic polyhydric alcohols comprising at least two hydroxy groups, polyester polyols having a molecular weight from 500 to 5,000, polycarbonate diols having a molecular weight from 200 to 5,000 and polyetherdiols having a molecular weight from 200 to 5,000, to form a second prepolymer comprising two or more free isocyanate groups and having no cationic or anionic hydrophilic pendant group or a group which can be converted into the cationic or anionic hydrophilic pendant group covalently attached to the second prepolymer;(ii) dispersing the second prepolymer obtained in step (i) in water with the presence of the external emulsifier to form an emulsion; andoptionally (iii) adding C2 to C10 polyamine comprising at least two amino groups, C2 to C10 polythiol comprising at least two thiol groups, C2-C10 alkanolamine comprising at least one hydroxyl group and at least one amino groups, and a combination thereof, into the emulsion obtained in step (ii) and reacting the with the second prepolymer to produce the externally emulsified polyurethane dispersion.
  • 10. The use of an externally emulsified polyurethane dispersion as top coating layer in a synthetic leather article, wherein the synthetic leather article comprises: (A) a top coating layer derived from an externally emulsified polyurethane dispersion, wherein the externally emulsified polyurethane dispersion comprising one or more external emulsifiers and particles of a first polyurethane derived from (Ai) one or more first isocyanate components comprising at least two isocyanate groups and (Aii) one or more first isocyanate-reactive components comprising at least two isocyanate-reactive groups, dispersed in an aqueous solvent, wherein the external emulsifiers or the residual moieties thereof are not covalently attached to the backbone chain of the first polyurethane;(B) a polyurethane foam layer comprising a second foamed polyurethane derived from a solvent-free system comprising (Bi) one or more second isocyanate components, (Bii) one or more second isocyanate-reactive components, and (Biii) one or more foaming agents; and(C) a backing substrate;wherein the top coating layer directly contacts with the polyurethane foam layer.
  • 11. The use of claim 10, wherein the external emulsifier is selected from the group consisting of poly(oxy-1,2-ethanediyl)α-sulfo-ω(nonylphenoxy) salt; alkali metal oleates and stearates; alkali metal lauryl sulfates; amine lauryl sulfates; alkali metal alkylbenzene sulfonates; amine alkyl benzene sulfonates; fluorinated alkyl esters and alkali metal perfluoroalkyl sulfonates; organosilicon emulsifiers; and the combination thereof.
  • 12. The use of claim 10, wherein the first isocyanate components (Ai) and the second isocyanate components (Bi) are independently select from the group consisting of: a) C4-C12 aliphatic polyisocyanates comprising at least two isocyanate groups, C6-C15 cycloaliphatic or aromatic polyisocyanates comprising at least two isocyanate groups, C7-C15 araliphatic polyisocyanates comprising at least two isocyanate groups, and a combination thereof; andb) an isocyanate prepolymer prepared by reacting one or more polyisocyanates of a) with one or more isocyanate-reactive components selected from the group consisting of C2-C16 aliphatic polyhydric alcohols comprising at least two hydroxy groups, C6-C15 cycloaliphatic or aromatic polyhydric alcohols comprising at least two hydroxy groups, C7-C15 araliphatic polyhydric alcohols comprising at least two hydroxy groups, polyester polyols having a molecular weight from 500 to 5,000, polycarbonate diols having a molecular weight from 200 to 5,000, polyetherdiols having a molecular weight from 200 to 5,000, C2 to C10 polyamine comprising at least two amino groups, C2 to C10 polythiol comprising at least two thiol groups, C2-C10 alkanolamine comprising at least one hydroxyl group and at least one amino groups, and a combination thereof, with the proviso that the isocyanate prepolymer comprises at least two free isocyanate groups; andthe first isocyanate-reactive components (Aii) and the second isocyanate-reactive components (Bii) are independently selected from the group consisting of: C2-C16 aliphatic polyhydric alcohols comprising at least two hydroxy groups, C6-C15 cycloaliphatic or aromatic polyhydric alcohols comprising at least two hydroxy groups, C7-C15 araliphatic polyhydric alcohols comprising at least two hydroxy groups, polyester polyols having a molecular weight from 500 to 5,000, polycarbonate diols having a molecular weight from 200 to 5,000, polyetherdiols having a molecular weight from 200 to 5,000, C2 to C10 polyamine comprising at least two amino groups, C2 to C10 polythiol comprising at least two thiol groups, C2-C10 alkanolamine comprising at least one hydroxyl group and at least one amino groups, and a combination thereof.
  • 13. The use of claim 10, wherein the externally emulsified polyurethane dispersion is prepared by the steps of: (i) reacting one or more polyisocyanates selected from the group consisting of C4-C12 aliphatic polyisocyanates comprising at least two isocyanate groups, C6-C15 cycloaliphatic or aromatic polyisocyanates comprising at least two isocyanate groups, C7-C15 araliphatic polyisocyanates comprising at least two isocyanate groups, and a combination thereof, with one or more isocyanate-reactive components selected from the group consisting of C2-C16 aliphatic polyhydric alcohols comprising at least two hydroxy groups, C6-C15 cycloaliphatic or aromatic polyhydric alcohols comprising at least two hydroxy groups, C7-C15 araliphatic polyhydric alcohols comprising at least two hydroxy groups, polyester polyols having a molecular weight from 500 to 5,000, polycarbonate diols having a molecular weight from 200 to 5,000 and polyetherdiols having a molecular weight from 200 to 5,000, to form an prepolymer comprising two or more free isocyanate groups and having no cationic or anionic hydrophilic pendant group or a group which can be converted into the cationic or anionic hydrophilic pendant group covalently attached to the backbone chain of the prepolymer;(ii) dispersing the prepolymer obtained in step (i) in water with the presence of the external emulsifier to form an emulsion; andoptionally (iii) adding C2 to C10 polyamine comprising at least two amino groups, C2 to C10 polythiol comprising at least two thiol groups, C2-C10 alkanolamine comprising at least one hydroxyl group and at least one amino groups, and a combination thereof, into the emulsion obtained in step (ii) and reacting them with the prepolymer to produce the externally emulsified polyurethane dispersion.
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2018/115581 11/15/2018 WO 00