This application is a United States National Stage Application under 35 U.S.C. §371 of International Patent Application No. PCT/KR2011/009034, filed Nov. 24, 2011, which claims benefit to Korean Application No. KR 10-2010-0118975, filed Nov. 26, 2010, the entirety of both applications are incorporated herein by reference.
The present invention relates to an optical resolution method and a purification method for preparing enantiomerically pure compounds from 2,2′-dihydroxy-1,1′-binaphthyl-3-carboxylic acid, which is an important intermediate for preparing 2,2′-binaphthol-3-aldehyde derivatives, which method is very convenient and economical, and suitable for mass production.
Compounds of the following formula 2, which are 2,2′-binaphthol-3-aldehyde, can be very usefully used to separate chiral amino alcohols or amino acids into their respective optical isomers by recognizing their chirality through an imine bond or to convert L-amino acid into D-amino acid or D-amino acid into L-amino acid (see Korean Patent No. 10-0661280; H. Park, K. M. Kim, A. Lee, S. Ham, W. Nam, J. Chin, J. Am. Chem. Soc. 2007, 129, 1518-1519; K. M. Kim, H. Park, H. Kim, J. Chin, W. Nam, Org. Lett. 2005, 7, 3525-3527).
The respective compounds of the formula 2 can be prepared from the enantiomerically pure compounds of the following formula 1 by sequential alkylation of the 2 hydroxyl group, reduction, and oxidation thereof. Since the compounds of the formula 1 can be selectively alkylated at the 2 hydroxyl group, they are useful intermediates that can be alkylated in a high yield without using a protecting group. Thus, it is significantly important to prepare enantiomerically pure compounds 1a and 1b from racemic compound 1 of the formula 1 in an economical way.
A method of reacting racemic compound 1 of the formula 1 (2,2′-dihydroxy-1,1′-binaphthyl-3-carboxylic acid) with cinchonidine or cinchonine, and filtering and separating the obtained salts using the difference in the solubility of the salts has already been disclosed by Hovorka, M., et al. (Hovorka, M.; Stibor, I; Holakovsky, R.; Smiskova, I.; Struzka, V. Czech Rep. (2001), CZ 287879 B6). However, said method is uneconomical because cinchonidine and cinchonine used in the optical resolution are very expensive. Further, said method requires a large amount of solvents because of bad solubility of the obtained salts, which results in increase in reaction volume and a decrease in productivity. Due to these disadvantages, said method is not suitable for mass production.
It is an object of the present invention to solve the above problems of prior art. Thus, it is an object of the present invention to provide a method for preparing enantiomerically pure compounds 1a and 1b using inexpensive chiral amine compounds instead of expensive cinchonidine or cinchonine, which is very convenient and economical, and suitable for mass production.
The present invention provides an optical resolution method for economically preparing compounds 1a and 1b of the formula 1 using the difference in the solubility of diastereomeric salts obtained by sequentially using compounds 3a ((S)(−)-1-phenethylamine) and 3b ((R)(+)-1-phenethylamine) of the formula 3, which are inexpensive chiral amines.
Further, the present invention provides a purification method of recrystallizing optically resolved compounds 1a and 1b to remove racemic compounds to prepare enantiomerically pure compounds.
The present invention provides a method for preparing enantiomerically pure compounds 1a and 1b from the compound 1 of the formula 1, which is very convenient and economical, and suitable for mass production. Therefore, if the method is applied to production lines of an industrial scale, significant effects can be achieved.
The present invention provides an optical resolution method of racemic compound 1 of the formula 1.
As shown in the above reaction formula 1, diastereomeric salts are prepared by dissolving compound 1 in an appropriate solvent and reacting it with compound 3a. During this process, compound 4a, whose solubility is relatively low, is precipitated in the form of solid, and the precipitate is filtered and separated to prepare salt 4a (>95% ee) of the optically resolved compound 1a. Methyl isobutyl ketone, acetonitrile, toluene, etc. are suitable as the solvents used in the reaction of compound 1 with compound 3a, which may be used alone or as a mixture thereof. A mixture solvent of methyl isobutyl ketone and acetonitrile would be preferable.
Further, salt 5a of the optically resolved compound 1b can be prepared from the compound 4b (>60% ee) solution of the above reaction formula 1. As shown in the above reaction formula 2, compound 5a, whose solubility is relatively low, is precipitated in the form of solid by washing the compound 4b solution with aqueous hydrochloric acid and reacting it with compound 3b, and then, the precipitate is filtered and separated to prepare salt 5a (>95% ee) of the optically resolved compound 1b.
In addition, if chiral amine 3b is used in reaction formula 1, instead of chiral amine 3a, salt 5a (>95% ee) of the optically resolved compound 1b which is separated in the form of solid can be prepared. Then, if the filtrate is reacted with chiral amine 3a using the method of reaction formula 2, salt 4a (>95% ee) of the optically resolved compound 1a which is separated in the form of solid can be prepared.
Thus, the present invention may use chiral amine 3a or 3b alone or may use chiral amines 3a and 3b successively in optical resolution, and in the case of using them successively, the reaction order is not limited.
In addition, the present invention provides a method for preparing enantiomerically pure compound 1a or 1b, respectively by neutralizing compound 4a or 5a with aqueous hydrochloric acid and increasing optical purity.
As shown in the above reaction formula 3, the compound 4a (>95% ee) (or 5a) is dissolved in a suitable solvent and washed with aqueous hydrochloric acid to remove phenethylamine 3a (or 3b) that was used in optical resolution. After removing the solvent by concentrating the organic layers, they are dissolved in methanol, and the precipitated racemic compound is filtered and removed, and then, the solid that is precipitated by adding water is filtered to prepare enantiomerically pure compound 1a (>99% ee) (or 1b). Any solvent can be used as an organic solvent for the step of washing with aqueous hydrochloric acid as long as the solvent is not miscible with water and can dissolve compound 1a (or 1b). Methyl isobutyl ketone (MIBK), methyl t-butyl ether (MTBE), methylene chloride, ethyl acetate, etc. would be preferable.
Below, the present invention is explained in detail using examples. However, the following examples are only for exemplifying the present invention, and the present invention is not limited by the following examples.
After dissolving racemic 2,2′-dihydroxy-1,1′-binaphthyl-3-carboxylic acid (compound 1) (30.0 g, 90.8 mmol) which is prepared by applying and improving a known method [M. Noji, M. Nakajima and K. Koga. Tetrahedron Lett. 35 (1994), p. 7983-7984] in 330 mL of MIBK/acetonitrile (10/1, v/v), (S)(−)-1-phenethylamine (compound 3a) (5.50 g, 45.4 mmol) was added, and the mixture was stirred for two hours. After further adding compound 3a (2.75 g, 22.7 mmol) thereto, the mixture was stirred for two hours. Then, after further adding compound 3a (2.75 g, 22.7 mmol) thereto, the mixture was stirred for three hours. Thereafter, the precipitated solid was filtered to obtain 16.5 g of the subject compound 4a (36.5 mmol, 96.6% ee) at a yield of 80.4%.
1H NMR (DMSO-d6, 400 MHz) δ8.47 (s, 1H, ArH), 7.93˜7.83 (m, 1H, ArH), 7.82 (d, 2H, ArH), 7.51 (d, 2H, ArH), 7.42 (t, 2H, ArH), 7.40˜7.30 (m, 2H, ArH), 7.23˜7.12 (m, 4H, ArH), 6.97 (d, 1H, ArH), 6.87 (d, 1H, ArH), 4.44 (q, 1H, CH), 1.53 (d, 3H, CH3).
HPLC analysis condition (optical purity); analysis instrument: HPLC (Agilent 1200 series); column: Chiralcel OJ-RH (4.6×150 mm, Daicel), temperature (40° C.); solvent: 40% acetonitrile/H2O (0.1% H3PO4) (4/6, v/v), flow rate: 1.0 mL/min, detection wave length: 210 nm (or 230 nm).
The filtrate was used for the preparation of salt of (R)-2,2-dihydroxy-1,1′-binaphthyl-3-carboxylic acid·(R)(+)-1-phenethylamine (compound 5a) in the following Example 2.
After adding 6% of HCl solution (60 mL) to the filtrate of the above Example 1 and stirring the mixture for 30 minutes, organic layers were separated and washed with 3% of HCl (60 mL) and water (60 mL) sequentially. The organic layers were dried by anhydrous magnesium sulfate and filtered. Acetonitrile (30 mL) was added, (R)(+)-1-phenethylamine (compound 3b) (4.40 g, 36.3 mmol) was added, and the mixture was stirred for two hours. After further adding compound 3b (2.20 g, 18.2 mmol), the mixture was stirred for three hours. Thereafter, the precipitated solid was filtered to obtain 15.5 g of salt of (R)-2,2′-dihydroxy-1,1′-binaphthyl-3-carboxylic acid ·(R)(+)-1-phenethylamine (compound 5a) (34.3 mmol, 95.5% ee) at a yield of 75.6%.
1H NMR (DMSO-d6, 400 MHz) δ8.47 (s, 1H, ArH), 7.93˜7.83 (m, 1H, ArH), 7.82 (d, 2H, ArH), 7.51 (d, 2H, ArH), 7.42 (t, 2H, ArH), 7.40˜7.30 (m, 2H, ArH), 7.23˜7.12 (m, 4H, ArH), 6.97 (d, 1H, ArH), 6.87 (d, 1H, ArH), 4.44 (q, 1H, CH), 1.53 (d, 3H, CH3).
Compound 4a (15.0 g, 33.2 mmol, 96.6% ee) was added to methyl t-butyl ether (MTBE) (120 mL), and while stiring the mixture, 6% of aqueous hydrochloric acid (60 mL) was added thereto. After stirring the mixture for one hour at room temperature and separating layers, the organic layers were washed with water (60 mL). The organic layers were concentrated under reduced pressure, methanol (60 mL) was added thereto, and the mixture was stirred for one hour. The precipitated solid was filtered and removed. The filtrate was slowly added to water (120 mL). The precipitated solid was filtered and dried at 80° C. to obtain the subject compound 1a (10.2 g, 30.9 mmol, 99.1% ee) at a yield of 93%.
1H NMR (DMSO-d6, 400 MHz) δ11.09 (s, 1H, OH), 9.17 (s, 1H, OH), 8.72 (s, 1H, ArH), 8.08-8.03 (m, 1H, ArH), 7.86 (t, 2H, ArH), 7.37˜7.28 (m, 3H, ArH), 7.26˜7.15 (m, 2H, ArH), 6.99˜6.91 (m, 2H, ArH).
The subject compound 1b (10.3 g, 31.2 mmol, 99.0% ee) was obtained at a yield of 91% using compound 5a (15.5 g, 34.3 mmol, 95.5% ee) by the same method as in the Example 3 above.
1H NMR (DMSO-d6, 400 MHz) δ11.10 (s, 1H, OH), 9.27 (s, 1H, OH), 8.70 (s, 1H, ArH), 8.08˜8.04 (m, 1H, ArH), 7.86 (t, 2H, ArH), 7.35˜7.30 (m, 3H, ArH), 7.26˜7.15 (m, 2H, ArH), 6.98˜6.91 (m, 2H, ArH).
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0118975 | Nov 2010 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2011/009034 | 11/24/2011 | WO | 00 | 1/23/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/070896 | 5/31/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20060173211 | Kim et al. | Aug 2006 | A1 |
20140012038 | Chang et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2643284 | Aug 2014 | EP |
2003-327559 | Nov 2003 | JP |
10-0208867 | Jul 1999 | KR |
10-0661280 | Dec 2006 | KR |
10-2010-0039114 | Apr 2010 | KR |
10-2010-0054628 | May 2010 | KR |
101270586 | Jun 2013 | KR |
2004060850 | Jul 2004 | WO |
2012070896 | May 2012 | WO |
2012070896 | Jul 2012 | WO |
Entry |
---|
Czechoslovakian Patent Invention No. 9,600,064A3 (Vyosoka Skola Chem Tech [CZ] vs Chemicko Technologicka [CZ]), dated May 13, 1998, and English translation. CZ9600064A3 is also published as CZ287879B6. |
Hovorka, M. et al., Chiral Tridentate Ligands Based on 3-Substituted Binaphthols and Derived Complex Hydrides of Aluminum, Pure & Appl. Chem., 1998, vol. 70, pp. 415-418, See Figures 2-3. |
International Search Report and Written Opinion dated May 29, 2012, regarding PCT/KR2011/009034. |
Fogassy, Elemer et al., “Optical Resolution Methods,” Organic & Biomolecular Chemistry 2006, vol. 4, pp. 3011-3030, see Section 3.1.1.2 in p. 3014. |
Supplementary material of Xiong, Xiao-Feng et al., “Merging Chiral Organocatalysts: Enantio- and Diastereoselective Direct Vinylogous Mannich Reaction of Allcylimines,” Chem. Comm. 2009, pp. 6994-6996, see p. S2. |
Molnar, Peter et al., Influence of Benzylamine on the Resolution of Ibuprofen with (+)-(R)-Phenylethylamine via Supercritical Fluid Extraction, Chirality 2009, vol. 21, pp. 628-636, See abstract; Figure 1. |
H. Park, K.M. Kim, A. Lee, S. Ham, W. Nam, J. Chin, “Bioinspired Chemical Inversion of L-Amino Acids to D-Amino Acids”, J. Amer. Chem. Soc. 2007, 129, pp. 1518-1519. |
K.M. Kim, H. Park, H. Kim, J Chin, W. Nam, “Enantioselective Recognition of 1, 2-Amino Alcohols by Reversible Formation of Imines with Resonance-Assisted Hydrogen Bonds”, Org. Lett. Published Jul. 7, 2005, pp. 3525-3527. |
Hovorka, M., et al., Czech Rep. 2001, CZ287879B6 (also published as CZ9600064A3). |
International Preliminary Report on Patentability dated May 28, 2013, and Written Opinion dated May 29, 2012 regarding PCT/KR2011/009034. |
Supplementary European Search Report and Search Opinion dated Jul. 3, 2014, regarding EP11842877. |
Holakovsky et al.; “Preparation of New Binaphthol-Based Tridentate Ligands or Enatioselective Synthesis”, Collection of Czechoslovak Chemical Communications, vol. 5, 2000, p. 805-815, XP8168196. |
Notification of Reason for Refusal dated Aug. 24, 2012, regarding Korean Application No. KR10-2010-0118975. |
Written Opinion According to Notification of Reasons for Refusal, dated Oct. 10, 2012, regarding Korean Application No. KR10-2010-0118975. |
Decision of Grant of Patent dated Feb. 28, 2013, regarding Korean Application No. KR10-2010-0118975. |
Number | Date | Country | |
---|---|---|---|
20140142336 A1 | May 2014 | US |